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E xperiments at the Applied Physics Laboratory have shown that chaos theory can
be used to quantitatively model two-dimensional fluid flows. These results support the
utility, under some circumstances, of low-degree-of-freedom approaches to the
theoretically infinite-degree-of-freedom phenomena described by the Navier-Stokes
equations. However, the types of predictions made by chaos theory are fundamentally
different from the predictions that result from usual approaches such as computational
fluid dynamics. Chaotic models of fluids thus require further investigation before their

overall utility can be evaluated.
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INTRODUCTION: FLUID DYNAMICS
AND CHAOS THEORY

At a meeting of the British Association for the
Advancement of Science in 1932, shortly before his
death, Sir Horace Lamb! declared that he hoped God
would provide enlightenment on two scientific issues:
quantum electrodynamics and turbulence. Lamb re-
portedly commented that he was optimistic about get-
ting a satisfactory explanation of the first mystery. Less
whimsically, Steven Strogatz® of Cornell has attempted
to provide a two-parameter classification for all dynam-
ical systems. The two parameters are nonlinearity and
the number of degrees of freedom. At the extreme end
of both scales is a cluster of seriously intractable prob-
lems: ecosystems, turbulent fluids, and finally, life itself.

These anecdotes reflect the ability of fluid systems
to produce extremely complicated behavior, the treat-
ment of which has largely resisted general analytical
approaches. Consequently, fluid mechanics is a field
with a bewildering number of specialty areas; progress
in many special cases and niche problems, using many
different methods, has been necessary to address the
field as a whole.

When any new approach to such a difficult field
arises, there is a temptation to hope for a breakthrough,
followed by disappointment when none is forthcoming,
followed in turn by a more careful examination of the
methods, including an assessment of their strengths and
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weaknesses as they are added to the overall tool kit.
Chaos theory is in the process of moving from the
second to the third stage of this process.

Chaos may be incompletely but accurately described
as the ability of simple nonlinear systems to produce
complicated behavior. The temporal behavior of cha-
otic systems is, in fact, so suggestive of turbulent fluid
behavior that words like “turbulent” and “laminar”
were quickly misappropriated by dynamicists. However,
although fluid systems are nonlinear, they are also
spatially distributed, and the underlying dynamical
equations are infinite-dimensional. Chaos theory, on
the other hand, concerns finite- (especially low-) di-
mensional nonlinear systems. This explains the temp-
tation stage: if the behavior of solutions to the Navier—
Stokes equations could be adequately captured in a
low-dimensional system, the practical implications
would be tremendous. In fact, much of the modern
interest in chaos theory was precipitated by Edward
Lorenz’s modeling of Rayleigh-Bénard convection,’
and several early experiments testing the applicability
of chaos theory involved fluid systems.*’

Unfortunately, chaos theory is no panacea for resolv-
ing the many problems of fluid dynamics. Its applica-
bility is limited primarily to relatively low excitations,
and its predictive capability is also limited. As a result,
some veteran fluid dynamicists have indulged in a “we
told you so” attitude toward perhaps too-ingenuous
nonlinear dynamicists. However, chaos theory has
made some important conceptual contributions to fluid
dynamics. For example, the incorrect Landau picture of
the onset of turbulence® was displaced by the (chaotic)
Ruelle-Takens—Newhouse route”® (although the latter
route also is now recognized as an incomplete descrip-
tion”!%). Further, a nonlinear dynamics approach has
proven fruitful in elucidating the nature of intermitten-
cy in the turbulent boundary layer.!!

We have our own particular niche in the application
of chaos theory to fluid dynamics. For several years we
have been investigating, with a number of different
collaborators, the applicability of chaos theory to rel-
atively low-excitation flows in two dimensions. Such
flows have long been studied analytically, because of
various mathematical simplifications that are possible
and because of greater tractability in computational fluid
dynamics. Further, two-dimensional flows are relevant to
a number of practical problem areas, including geo-
strophic flows in the atmosphere and oceans (Fig. 1).

Our work has shown that low-dimensional chaotic
models can provide excellent quantitative descriptions
of some of the complicated phenomena observed in
such flows. However, the nature of the descriptions is
generally very different from those provided by more
conventional approaches. Although the utility of some
of these descriptions is still not settled, chaos theory
clearly provides additional insight into the fluid systems.

(a)
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Figure 1. Examples of the von Karman vortex street in two-
dimensional fluid flows. (a) The wake behind a cylinder moving
through the APL stratified towing tank. (b) Cloud patterns down-
wind of Sorocco Island, Mexico, imaged from the space shuttle
(mission STS044). The problem scales, working fluids, reasons for
two-dimensionality of the flows, and means of visualizing the
wakes are completely different in the two cases, yet the phenom-
ena are the same.

This article summarizes two very different types of
two-dimensional fluid flows. For these two types of flows,
experiments performed at APL have confirmed the
validity of a common, chaos-based approach that con-
nects fundamental dynamical quantities to the static
geometry of a flow visualization at an instant in time.
We first discuss closed surface flows. These can exhibit
a type of time-varying strange attractor, whose geomet-
ric properties can be predicted in terms of dynamical
quantities. We then discuss an open flow, where the
chaotic behavior is unstable and transient, but which
nevertheless leaves characteristic traces that can be
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quantitatively assessed. Finally, we conclude by men-
tioning several fluid models that appear to be amenable
to chaotic techniques but for which experiments have
not yet been done.

SURFACE FLOWS

Background

The strange attractor of a dissipative dynamical
system (one in which phase-space volumes shrink with
time) is a fractal set approached asymptotically at large
times by typical system trajectories. Being fractal, the
set has zero volume in the embedding space. (See the
earlier Technical Digest article by Sommerer!? for a more
complete discussion of fractals.) This behavior seems
very unlike the behavior of fluid elements in an incom-
pressible fluid; the very word incompressible belies the
possibility of fluid elements collapsing to a set of zero
volume. However, this counterintuitive behavior is
possible if we consider a set of passive tracers confined
to the surface of the fluid. The incompressibility condi-
tion V + v = 0 does indeed prevent an arbitrary initial
volume of tracers, advected with the fluid velocity v,
from concentrating on a zero-volume set. However, if
the tracers are constrained to the fluid surface (for
which z = 2, v, = 0), then their advection can be com-
pressible, even though V - v = 0. In particular, (dv /ox
+ av},/ay)| = —avz/az|z=10 #0. This situation, which
Ott observed in a pedagogical demonstration where
patterns of foam formed on the surface of a moving
fluid, led him to consider a simple dynamical model
that caricatured the surface flow. Several theoretical
results concerning the onset of chaos in such models
were forthcoming.'>!*

The dynamical model was a random mapping of the
form

L1 = Balrah (1)
where at each time step n, the mapping F, is chosen
at random from a prescribed family of mappings, thus
transforming the system state r, into the new system
state r,.;. Here, the system state corresponds to a po-
sition on the surface of the fluid. Such systems belong
to a class included in a powerful theorem of Ledrappier
and Young."” This theorem connects the information
dimension (see the boxed insert) of the mapping’s
strange attractor to the Lyapunov exponents of the
system. Lyapunov exponents are fundamental quanti-
ties of a dynamical system that describe how nearby
system trajectories track one another. Geometrically,
the Lyapunov exponents \; and \, can be interpreted
as follows. Given an initial infinitesimal circle of radius
dr, for very large n the image of the circle after n
applications of the mapping in Eq. (1) will be an ellipse
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of semimajor and semiminor axes on the order of
dr exp(n\,) and dr exp(n\,), respectively. (Note that
for a dissipative situation, the area of the initially cir-
cular region shrinks, implying A\; + A\, <0, while for
chaos one of the \ values, say \y, is positive.) Having
at least one positive Lyapunov exponent is associated

GENERALIZED DIMENSIONS

Most readers are familiar with the notion of Euclidean
dimensions: a point is zero-dimensional, a line is one-
dimensional, etc. The usual description is that the dimen-
sionality of a geometric set is associated with the minimum
number of coordinates needed to specify a point in the set.
In fact, the notion of dimension can be generalized to
accommodate geometrically complex objects that are diffi-
cult to categorize with simple Euclidean geometry. Such
objects, known as fractals, can have dimensions that are not
integers. This statement demands a rather precise definition
in terms not depending on coordinates, since one clearly can
have only an integer number of coordinates.

We will provide the definition in terms of a probability
distribution living within some Euclidean space. The usual
notion of a geometric object is less general than a distribu-
tion, but dovetails as follows: the geometric object is the set
having nonzero probability. One can calculate an entire
spectrum of generalized dimensions for the probability dis-
tribution, using the conceptual aid of a grid of boxes of side
length € overlaid on the distribution. The total probability
within the ith box is denoted p;. Then, the generalized di-
mension of the distribution is defined to be

1l

d, =——1Iim
l-qe0 logl/e

where N(€) is the number of boxes of side length € having
nonzero probability.

The definition of the generalized dimension is valid for
all g (including g = 1, where U'Hopital’s rule must be used
to make sense of the definition), but a few particular values
of g are most widely used. For ¢ = 0 all parts of the geometric
set are treated on equal footing; dy corresponds to our usual
ideas of geometric dimension for “ordinary” objects, though
it, too, can attain fractional values for geometrically com-
plicated objects.!? For g = 1, the definition produces the
information dimension, which emphasizes the contributions
of the most probable parts of the distribution. This is a
valuable distinction in an experimental context, because
finite data on the distribution make one liable to undercount
low-probability boxes. Thus, the information dimension d; is
less sensitive than dy to whether all of the low-probability
boxes have been found. For g = 2, even more emphasis is
put on high-probability boxes; this special case is termed the
correlation dimension.

The experimental estimation of generalized dimensions
is easy for images, where image intensity can be associated
with probability values, and pixels (or groups of pixels) can
be associated with the € grid of boxes. Of course, the image
pixel represents the smallest experimentally attainable value
of €, so in practice the limit in the definition is not taken.
Instead, the generalized dimension is estimated as the slope
of a plot of the numerator versus the denominator in the
formula defining d,.
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with sensitive dependence on initial conditions, which
is synonymous with chaos. The connection of funda-
mental dynamical quantities (the Lyapunov expo-
nents) with a flow visualization result (the strange
attractor) would allow a stringent test of whether the
dynamical model was more than a caricature of the fluid
flow, i.e., whether chaos theory could actually describe
the flow; also, not incidentally, it would suggest one
possible reason why fractals are ubiquitous in nature.

Experiments

Our apparatus for investigating this possibility exper-
imentally is shown schematically in Fig. 2. A bulk flow
(if one can apply that term to an appartus with a flow
basin only 10 cm in diameter) was produced by pump-
ing the working fluid (viscous sucrose solution) over an
annular sill and recovering it from the center of the
enclosed basin. With perfect symmetry, steady pumping
producing a steady flow would lead to convergence of
any passive tracer confined to the surface at a point
above the fluid recovery port. However, fluid instabil-
ities produce recirculation cells on the surface of the
fluid. Steady pumping producing a steady flow in reality
would drive passive floaters onto one or more closed
curves or fixed points. (The Poincaré-Bendixon theo-
rem precludes a steady two-dimensional vector field
from producing a strange attractor.'®) Instead, we
pumped the fluid in a sequence of equally energetic
pulses (that is, for the same interval and at the same
speed), allowing the fluid to come to rest between pulses.

Digital
imager

Fluorescent
particles on
fluid surface

Pump

Pulsatile
flow modulator

Figure2. Schematic of the apparatus for surface flow experiments.

This iterative process takes each point in a two-
dimensional region (the stationary fluid surface) and
maps it onto another point on the same surface. Thus,
the pumping action produces a physical analog to the
mathematical system of Eq. 1, where r =(x,y). The fluid
instabilities and other perturbing factors make each
pulse different in detail from all of the others, although
they are statistically identical. In particular, the axis of
the nascent recirculation structure changes randomly
from iteration to iteration. Thus, we considered these
random effects to be the random choice from a family
of mappings. Parametrically, we could control the
pumping rate and interval, the viscosity of the working
fluid (by controlling its temperature), and the height
of the fluid surface above the sill. As tracers, we used
small fluorescent particles that were constrained to the
fluid surface by a combination of buoyancy and surface
tension. These tracers were initially distributed approx-
imately uniformly over the fluid surface. A sequence of
pumping pulses produced a complicated aggregate
pattern of particles, visualized by exciting the fluores-
cent dye in the particles with ultraviolet light and
imaging the distribution of particles with a charge-
coupled device (CCD) camera. The aggregate of par-
ticles was a candidate strange attractor of the system in
Eq. 1. Note that no explicit identification of the map-
ping is necessary to test this hypothesis, because the
Ledrappier—Young theorem relates the consequences of
the map F, whatever its explicit form.

Results

For a mapping such as Eq. 1, with Lyapunov expo-
nents \; >0 >\, \;+\, < 0, the Ledrappier—Young the-
orem predicts that the information dimension of the
strange attractor is given by

_1e M
d1—1+‘—g, (2)

implying that the experimental tracer pattern on the
surface of the fluid should be fractal for large values of
the time step n. A typical large-time particle distribu-
tion for a particular set of flow parameters is shown in
Fig. 3. Measured values of the information dimension
of such fractal patterns agreed well with predictions
made on the basis of the Lyapunov exponents for the
surface flow (Fig. 4); the Lyapunov exponents were
estimated by noting the deformation of small blobs of
tracers under the influence of the flow.!"!® This agree-
ment is strong evidence that the simple dynamical
model captures essential features of the fluid behavior,
in spite of the model’s much lower dimensionality.
More recently, new theoretical®* and experimental®!
results connecting the correlation dimensions of the
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tracer patterns with power spectra of the patterns pro-
vide additional evidence that chaotic models adequate-
ly describe the dynamics of these surface flows. (Readers
of David Mermin’s Boojums All the Way Through?* will
appreciate that a measure of the significance of this
work is the willingness of the journal Physical Review
Letters to use the word “scum” in an article title.)

CHAOTIC SCATTERING MODEL
OF A FLUID WAKE

Background
At a 1993 NATO Advanced Studies Workshop,

where Sommerer presented the initial experimental

Figure 3. Fractal pattern formed on the surface of a moving fluid. This false-color image
shows differences in tracer concentration. High particle density (yellow-blue) indicates
regions of past compressive surface flow or downwelling. Low tracer density (black-red)
indicates past upwelling. (Reprinted with permission from Ref. 17. Copyright 1993
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results on surface flows, Tél present-
ed theoretical and numerical work
(done with Jung and Ziemniak) on
a very different two-dimensional
fluid problem?~*¢ (see also Ref. 27).
This work considered the modeling
of a fluid wake via chaotic scattering.
Chaotic scattering® refers to the
possibility that a system can mani-
fest symptoms of chaos (such as
sensitive dependence on initial
conditions) for a finite time, even
though the system’s phase-space
trajectory is asymptotically free
during earlier and later epochs (i.e.,
the system is open). This can occur
when the system’s phase-space tra-
jectory shadows a genuinely chaotic
but unstable set, which, as such, is
not directly observable in a typical
experiment. Chaotic scattering has
been identified as a possible phe-
nomenon in a wide variety of con-
texts, including celestial mechan-
ics, microwave scattering, solar
physics, geophysics, optics, and
atomic and nuclear physics, as well
as fluid dynamics. However, there
have been almost no laboratory
demonstrations of chaotic scatter-
ing in any kind of system. Tél and
Sommerer discussed the possibility
of experimentally testing the chaotic
wake model with some trepidation.

First, the experiment would have
to be much larger physically than
the surface flow experiment to ex-
plore the relevant fluid parameters.

Second, the flow would be open,
leading to time constraints on ex-
perimental runs. In a two-dimensional incompressible
flow, there exists a time-dependent stream function
(x,y,t) such that the fluid velocity field v(x,y,t) is
given by

vx(x,y,t)=ai‘f/(xa}‘»t)y (3)
Y

550 = —a%wx,y,t)‘ (4)

A fluid element (and an advected passive tracer) will
have as its equations of motion simply
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Figure 4. Summary of experimental results for surface flows.
Measurements of fractal dimension (red symbols) agree well with
dynamical predictions (black symbols) for all flow conditions and
trials. Shift in absolute values with different flow conditions indi-
cates that measured quantity is diagnostic for flow condition.

Bt =g, ol 3, (5)
dt

= vy (x(t), y(), ), (6)

so a passive tracer’s equations of motion have the exact
form of Hamilton’s equations, with i/(x,y,t) playing the
role of a time-dependent Hamiltonian.”’ Note that in
this case the phase space of the Hamiltonian system is
just the physical space of the two-dimensional fluid
flow. Thus, phase-space behavior can be observed di-
rectly. In a Hamiltonian system, phase-space volumes
are conserved. Thus, there are no attractors (strange or
otherwise) in a Hamiltonian system; consequently, di-
agnosis of the system properties in an experiment would
have to occur “on the fly” rather than after the exper-
iment settled down to long-term behavior. The chaotic
behavior would be transient and unstable and, there-
fore, not so easily amenable to diagnosis using typical
techniques of nonlinear dynamics.

Finally, our quantitative demonstration of chaotic
scattering had to be indirect. The most spectacular
manifestation of chaotic scattering is that a generic
scattering function exhibits an uncountable number of
singularities, located on a fractal support in the space
of impact parameters. In the case of a fluid wake, we
take the time delay of fluid elements passing the perturb-
ing body to be the scattering variable; almost all fluid

elements eventually leave the wake and join free-
streaming fluid elements, but some can be delayed for
a long time. Unfortunately, exhibiting an actual scat-
tering function is impractical for a real fluid wake,
where accurate determination of the impact parameter
of a fluid element exiting the wake region is currently
impossible. The test of the theory in this case would
depend on applying a result of Kantz and Grassberger®
to connect three aspects of the experiment: the geom-
etry of the wake (fractal dimensions again), the local
dynamics of the wake (Lyapunov exponents again), and
the characteristic time delay of fluid elements interact-
ing with the wake.

This connection can be outlined qualitatively as
follows. The unstable, fractal chaotic set in the wake
is a saddle, in that it has both attracting and repelling
directions (just like a saddle point on a potential sur-
face). Fluid elements having impact parameters corre-
sponding to the attracting directions get very close to
the chaotic set, and they spend a long time in the
disturbed part of the wake. They also tend to leave the
wake region along the unstable directions. Having been
close to the unstable set, the fluid elements leaving the
neighborhood of the unstable chaotic set along the
unstable directions retain some of the geometric prop-
erties of the set. On the other hand, fluid elements
having impact parameters far from the stable directions
won't get very close to the unstable chaotic set, won’t
spend a long time in the wake region, and won’t have
geometry closely related to the chaotic set.

Experiments

Our experiments were conducted in APLs
1 X 2 X 8 m stratified flow facility, which allows exper-
iments with arbitrary, stable-density profiles (Fig. 5).
The facility was designed by Harold Gilreath and
Joseph Hopkins of APLs Milton S. Eisenhower Re-
search and Technology Development Center. We
produced a thin (1-5 cm), strong density gradient at
mid-depth, between layers of concentrated brine on the
bottom and freshwater on the top. We made all mea-
surements within the thin mixing layer, where the
Brunt-Viisild frequency N = [gp~![dp/dx|]"* was in the
range 6 s' = N = 14 57!, This very strong stratification
effectively suppressed motion in the vertical direction,
especially on timescales characteristic of fluid motion
in the horizontal directions.

The fluid wake was created by a cylinder (with ver-
tical symmetry axis, radius R.,; = 5 cm) moving horizon-
tally along the center of a channel (width 20 cm)
between false walls. We towed the cylinder from an
overhead track at low velocities U, of a few millimeters
per second, yielding Reynolds numbers Re = 2R ;U /v
in the range 100 < Re <250 (v is the kinematic viscos-
ity). In this range of Reynolds number, after an initial
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Figure 5. Schematic of the apparatus for cylinder wake experiments.

transient, the velocity field in the wake region is (ide-
ally) time-periodic. This time dependence provides
sufficient phase-space degrees of freedom (x, v, and ¢
mod T, where T, is the period of the velocity field) to
support chaos. The period T. also provides a character-
istic timescale against which to measure the dynamics
(atRe = 100, T. =595 s;at Re = 250, T, = 205 s). It should
be emphasized that although the velocity field is simply
time-periodic, the trajectories of fluid elements can be
chaotic. The dynamical system can be considered a
three-dimensional continuous-time system, or, by con-
sidering snapshots taken at intervals of T,, it can be
viewed as a two-dimensional area-preserving mapping.

The flow field in the wake is dominated by vortices
that form behind the cylinder, alternating sides in the
cross-stream direction. The nearby walls and viscosity
quickly suppress this vorticity, so the entire von Kar-
man street is reduced to only two vortices at any time.

The wake region was visualized from above using a
CCD camera fixed with respect to the cylinder. Ultra-
violet lamps inside the cylinder excited tiny fluorescent
tracer particles or fluorescent dye, depending on the
experiment.

To check that the experiment was indeed approxi-
mately two-dimensional, with a time-periodic velocity
field, APLs Hwar Ku performed a strictly two-
dimensional direct numerical simulation of the flow
field at the limiting Reynolds numbers. The simulation
used a multigrid domain decomposition approach in-
corporating the pseudospectral element method.’! We
then compared computed pathlines with observed dye
lines produced by a comb of outlets upstream from the
cylinder. The correspondence was excellent.

MODELING TWO-DIMENSIONAL FLUID FLOWS WITH CHAOS THEORY

Results

Fractal Nature of Wake

In an experiment where
the cylinder traverses a cross-
stream stripe of dye, one ex-
pects that dye leaving the
wake after being delayed for
a while should have picked
up the geometric properties
of the unstable chaotic set,
since the delayed fluid ele-
ments have been close to the
set. Thus, dye delayed for a
long time should make an ap-
proximately fractal pattern
in the fluid. (From a practical
standpoint, because the du-
ration of the experiment is
finite and because the dye
also  undergoes diffusion,
smearing over the fine struc-
ture in any patterns, we needed to look at dye that
hadn’t been delayed for too long.)

At a Reynolds number Re = 250, the information
dimension of the dye pattern in the wake was measured
to be d=1.3 £ 0.1. Due to the camera’s limited reso-
lution, the precision of this estimate is low, but the
result is statistically bounded away from an integer.

Density

Time Delay Statistics

We also considered the time delay of fluid elements
leaving the wake. By moving the cylinder though a
cross-stream stripe of dye, we marked an ensemble of
impact parameters. The first (freestreaming) dye to
reach a strip 10R,; behind the cylinder (which was also
behind the alternating vortices) had not interacted
with the wake, and it was used to define the zero of time
delay t,. We recorded the radiometric intensity of the
dye that subsequently passed through the strip. The
decay of the remaining dye (shown in Fig. 6) was ini-
tially exponential, indicating the predicted interaction
with a chaotic saddle. Longer delays showed a more
complicated time dependence due to interactions with
the cylinder wall, another marginally stable set from a
dynamical point of view.

Prediction of Wake Geometry

Kantz and Grassberger’® derived relationships

among several quantities characteristic of the chaotic
saddle of a two-dimensional mapping: the information
dimensions of geometric sets associated with its stable
and unstable directions, the Lyapunov exponents
describing how fast neighboring fluid elements diverge
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Figure 6. Average time delay statistics for the dye interacting with
the wake. Since the space of impact parameters includes the time
at which the fluid element encounters the cylinder, relative to the
phase of the periodic velocity field, the average is taken over eight
runs with different upstream placement of the dye stripe.

from one another near the saddle, and the character-
istic delay time (7) of randomly initialized trajectories
shadowing the saddle. For this experiment, the relevant
prediction is that the information dimension of the
saddle’s unstable direction in the wake is given by

AL - 1/<T> ‘

T

(7)

In the preceding paragraphs, we described the
measurement of the geometric properties and the char-
acteristic time delays. Measuring Lyapunov exponents
required a different experimental technique: particle
tracking. Unlike the experiments described earlier,
which involved moving the cylinder through blobs of
dye, determination of Lyapunov exponents requires
that particular fluid elements be marked in a way that
allows them to be identified at a later time. This
marking can be done by adding passively advected flu-
orescent particles to the flow and tracking them as they
move. In an earlier Technical Digest article, Steven
Diamond discussed particle tracking in more detail.*?
In principle, the theory of Kantz and Grassberger™
requires the determination of both the Lyapunov expo-
nents, including that corresponding to atypical trajec-
tories that approach one another along the stable di-
rection (i.e., N\, <0). However, in the case of this
two-dimensional Hamiltonian system, the conservation
of phase-space volumes implies that \, = —\,. Thus, we
had all the information necessary to provide a quanti-
tative test of the chaotic scattering model of the wake.

The predicted fractal dimension, based on the
Lyapunov exponent estimates and the measured char-
acteristic time delay, is d = 1.26 = 0.03, which is con-
sistent with the experimental direct measurement of
the wake information dimension. Sommerer, Ku, and
Gilreath* provide a more complete account of the
experiment and associated analysis.

This is the first laboratory confirmation of chaotic
scattering theory, and it gives an indication that cha-
otic scattering may have practical implications. Since
the delay of fluid elements in a wake is one component
of drag on a moving body, approximate calculation or
even reduction of drag may be facilitated using simple
chaotic scattering models. For example, because the
invariants of the chaotic saddle in the wake may be
expressed in terms of the properties of the unstable
periodic orbits embedded in the saddle, disruption of
the periodic orbits should affect the drag properties
directly. Analysis of periodic orbits in simple models is
much easier than direct numerical simulation of the
Navier-Stokes equations.

OTHER CHAOTIC FLUID MODELS

Several other fluid models also appear to be amena-
ble to chaotic techniques, although no experiments
have yet been done to confirm their potential utility.

Leapfrogging of Vortex Rings

It is a striking phenomenon that two coaxial vortex
rings with the same sense of rotation can leapfrog one
another: the rear vortex ring attempts to pass through
the front one. The leading ring then widens because
of the mutual interaction and travels more slowly. Si-
multaneously, the other ring shrinks, travels faster, and
penetrates the first one. In an ideal case this process
is repeated continuously. The two-dimensional version
of this motion, the leapfrogging of two pairs of ideal
point vortices moving along a joint symmetry axis, is
a model where tracer trajectories can be studied.*
Unstable periodic orbits and the entire chaotic saddle
have been found in numerical simulations. Simulated
tracers introduced into the flow in front of the leap-
frogging system were shown to mark, at sufficiently
long times, a chaotic saddle’s unstable direction. This
pattern, just like that in a three-dimensional simula-
tion,” is in very good qualitative agreement with the
photographs of a 1978 experiment® of smoke rings
where the smoke particles play the role of the tracer,
marking a fractal foliation.

Systems of Unidirectional Vortices

Theoretical investigations and model simulations
show that four or more vortices of equal sign in an
infinite two-dimensional fluid (or three or more
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vortices in a circular container) exhibit chaotic motion
in a finite domain around their center of vorticity.”
Consequently, the advection of particles in the field of
at least three (in a container, two) vortices is also
chaotic. Dye droplets should trace out more and more
convoluted shapes as time goes on. In this case no
escape takes place, and compact regions of the fluid
surface will be asymptotically spread by particles. Such
chaotic vortex motion can be observed in magnetically
confined plasma experiments.”® Recent theoretical in-
vestigations show that this chaos can be controlled; i.e.,
vortices can be forced to follow periodic motion forever
by suitably chosen weak time-dependent perturbations.*

Basins with Sinks and Sources

Consider a large bath tub with two sinks that are
opened in an alternating manner. In the course of
drainage, a rotational flow is formed around the sinks.
Because particles are pushed toward one or the other
sink alternately, transient chaotic mixing can take
place before the tub is empty. A model of this phenom-
enon is the blinking vortex-sink system introduced by
Aref et al.’” The time-reversed version describes the
periodic injection of fluid into the basin via two different
sources accompanied by rotation. In both cases one
observes complicated tracer trajectories before exiting
via one of the sinks (or going out to large distances in
the injection model). Again, a chaotic saddle is
present, consisting of trajectories that stay bounded and
never approach the sinks, both in the forward and in
the backward dynamics. The corresponding fractal
patterns might be observable experimentally, but an
even simpler arrangement could be a set of three or
more alternately working injection holes (without any
induced rotation), where particle motion is again ex-
pected to be chaotic.

General Features

These examples and the wake experiment shed new
light on the nature of tracer patterns. Convoluted
shapes observed in classical experiments®* did not
attract special attention because the concept of fractals
was not yet established at that time. The present ob-
servations show that dye droplets, or, more generally,
streaklines, converge to fractal foliations whenever the
advection dynamics is chaotic. The patterns can also
be interpreted as fractal dye boundaries in open flows.!
Any kind of fractality appears to be the fingerprint of
an underlying chaotic set that contains an infinite
number of bounded, nonescaping particle trajectories,
including unstable periodic orbits. Measuring the frac-
tality of the tracer patterns provides information on the
underlying chaotic set.

MODELING TWO-DIMENSIONAL FLUID FLOWS WITH CHAOS THEORY

CONCLUSIONS

We have shown that simple chaotic models provide
good descriptions of relatively complicated two-
dimensional fluid flows. Although chaos theory does
not constitute a breakthrough capable of treating all
fluid problems, it clearly takes its place as one of a
spectrum of tools available. Further, the character of
diagnostics appropriate to chaos theory is rather differ-
ent from the detailed predictions of velocity fields that
are produced by computational fluid dynamics. Our
analysis and experiments have focused on the relation
of local, dynamical quantities to global, static geometric
measures. This nonstandard treatment has both disad-
vantages and potential advantages. If a detailed flow
simulation is called for, then clearly chaos theory will
not do. On the other hand, static measurements may
be used to infer something about the time-averaged
dynamics of the fluid system without the need for tem-
porally resolved computations or measurements. Cer-
tainly, the theoretical and experimental exploration of
such techniques continues apace.
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