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We intend to show that transient chaos is a very appealing, but still not widely appreciated, subfield of non-
linear dynamics. Besides flashing its basic properties and giving a brief overview of the many applications, a
few recent transient-chaos-related subjects are introduced in some detail. These include the dynamics of de-
cision making, dispersion and sedimentation of volcanic ash, doubly transient chaos of undriven autonomous
mechanical systems, and a dynamical systems approach to energy absorption or explosion.
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The appearance of chaos with finite lifetime is known
as transient chaos (for reviews see [1, 2]) and provides an
example of a “nonequilibrium state” that is different from
the asymptotic state, and cannot thus be understood from
the asymptotic behavior alone. In such case one observes
a moving around of the system in an apparently chaotic
manner and then, often rather suddenly, a settling down
to a steady state which is either a periodic or a chaotic
motion (but of different type than the transients). Study-
ing only the asymptotic behavior of such dynamics would
mean loosing the interesting, chaotic part contained in the
transients.

I. INTRODUCTION

My first scientific encounter with transient chaos was at
the Dynamics Days conference, held at Twente, Holland, in
1985. For me, one of the highlights was the talk given by Pe-
ter Grassberger on their not-yet-published results on systems
exhibiting chaos over finite times only. In one of the breaks
of the meeting I came accross with his student and coauthor,
Holger Kantz, and had a short discussion. I remember, my
main question was if the generation of their plots shown in
the talk required huge numerical efforts. I had to ask this be-
cause, after a postdoc period, I was facing a return to Hungary
and could not count there on a particularly strong computa-
tional background (in fact, the results of my first papers on
transient chaos, e.g. [3], were obtained using a Commodore
64). In view of the encouraging answer received from Holger,
I did not see any reason for not following the attraction I felt
towards this phenomenon.

The most appealing features of the talk, and of its published
version, the Kantz-Grassberger paper [4], were that a nonat-
tracting set can have consequences observable in practice, and
that such sets are of a very fragile fractal structure. Nonattract-
ing fractals which are in a mathematical sense sets of measure
zero can thus lead in physics to quantities that can be actually
measured in experiments!

It became clear for me only afterwards that nonlinear phe-
nomena like crises [5] and basin boundaries [6] - discovered
a few years earlier - are also related to such nonattracting
chaotic sets. This fact immediately illustrated the broad appli-

cability of transient chaos. Since then, even when my research
is not directly related to dynamical systems, I never forget to
think of transient chaos if a phenomenon does not find an im-
mediate explanation.

Some of the important morals following from the study of
transient chaos can be summarized as:

• The traditional view according to which chaos is a long-
term, asymptotic property might often be strongly re-
strictive since it excludes the investigation of transients
which might also be of chaotic nature. In fact, in
physical terms, asymptotic can only mean that the phe-
nomenon lives on times scales longer than the longest
observational time available. Phenomena with lifetimes
shorter than this can be just as relevant.

• The resolution of the paradox of physically measuring
a nonattracting set of measure zero, mentioned above,
is resolved by the fact that following chaos around such
a set over long but finite times requires the localization
of only a small neighborhood of the set (instead of its
specification with infinite resolution). This neighbor-
hood is itself of finite volume and, thus, observable.

• Transient chaos plays a similar role in the realm of
chaotic processes as an unstable equilibrium point in
simple mechanical systems. It is especially well suited
to characterize nonequilibrium processes preceding the
approach to steady states.

• Transient chaos is an example for a phenomenon where
long time single-particle and short time ensemble aver-
ages are different. An ensemble of trajectories that stays
around the nonattracting chaotic set for a while yields
averages characterizing this set, different from the long
time asymptotics.

• In invertible systems, we are going to focus on, the
nonattracting set [77] is a chaotic saddle. Often, it can
be considered to be the union of an infinity of unstable
hyperbolic (also called saddle) orbits. A chaotic saddle
turns out, however, to be globally less repelling than the
component saddle orbits one by one. The fractal struc-
ture thus tends to stabilize the saddle dynamically.
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• Changing some parameters might lead to an ever weak-
ening repulsion of the saddle. Long term (permanent)
chaos arises thus as nothing but a limiting case of tran-
sient chaos.

In the next section we summarize some basic properties of
transient chaos based on an easily understandable example. In
Section III we briefly list typical occurences of transient chaos
in the realm of dynamical systems. Sections IV-VII continue
this list with recent examples presented in some detail. Sec-
tion VIII provides a short summary and outlook.

II. BASIC PROPERTIES OF TRANSIENT CHAOS - AN
INTUITIVE VIEW

Transient chaos occurs even in very common every-day-
life examples: any system moving irregularly over a period of
time and then changing to a regular behavior might be a can-
didate of transient chaos. For illustrative purposes we choose
such an example, the dispersion of dye (or pollutant material)
in a fluid current.

In rivers, in the wake of pillars, piers or groynes one often
observes some kind of accumulation of surface floaters. For
very small tracers, the accumulation proves to be temporary,
and the particle escapes the wake after some time. Before this
happens, it carries out an irregular motion in the wake. The
physical background for this is the shedding of vortices from
the edges of the obstacle which generates a time-dependent
stirring of the fluid within the wake. The lifetime of a tracer
within the wake can depend on when and where it enters the
wake. Very long lifetimes must be exceptional because the
current is tending to transport everything downstream.

A. Geometry and dynamics

It is a real suprise that nonescaping tracer orbits, orbits
bound to the wake forever, exist, which are of course unstable.
Their number might even be infinite, nevertheless they do not
fill a finite portion of the wake.

Typical tracer trajectories do not hit exactly any of the
nonescaping orbits, but might become influenced by the lat-
ter. Such tracers follow some of the nonescaping orbits for
a while and later turn to follow another one. This wander-
ing among nonescaping orbits results in the chaotic motion
of typical tracers over the time span they remain in the wake
(downstream of the wake the effect of vortices die out, the
flow becomes nearly uniform, and chaotic tracer dynamics is
no longer available).

The union of all unstable nonescaping orbits is the chaotic
saddle. The saddle forms a fractal set with a unique fractal
dimension. An example is shown in Fig. 1 where an in-
stantaneous picture of the chaotic saddle is shown in a two-
dimensional flow. The fragile nature of this set is reflected by
the lack of any line pieces: the chaotic saddle in this represen-
tation is a cloud of points only (in contrast to chaotic attractors
which are filamentary).

FIG. 1: Instantaneous view of a chaotic saddle in the wake of a cylin-
der of radius unity (green line) in a two-dimensional model of the
von Kármán vortex street [7] (flow from left to right) at a Reynolds
number where periodic vortex shedding takes place. Tracers started
in any points seen would never escape the wake neither forward nor
backward in time. Note the stretched horizontal scale chosen for bet-
ter visualization. Courtesy of G. Károlyi.

Each nonescaping orbit is of hyperbolic (saddle) type, and
therefore the chaotic saddle as a whole also has a stable and an
unstable manifold. The stable manifold is a set of points along
which the saddle can be reached after an infinitely long time.
At a certain instant of time it can also be considered as the
set of initial conditions leading to particle motions that never
leave the wake. The stable manifold is thus also of fractal
character but this set is filamentary as Fig. 2a indicates.

The unstable manifold of the chaotic saddle is the set along
which particles lying infinitesimally close to the saddle will
eventually leave it in the course of time. Its instantaneous
form is also a fractal curves, winding in a complicated man-
ner (Fig. 2b). When time changes, both the saddle and its
manifolds move.

FIG. 2: Stable (left) and unstable (right) manifold in the flow of Fig.
1 at the same instant as there. Both manifolds are fractal curves. The
chaotic saddle also appears as the intersection of these two mani-
folds. Courtesy of G. Károlyi.

An appealing feature of the advection problem [8] is that
the manifolds (abstract mathematical objects in the theory of
dynamical systems) carry clear physical meaning here. For
the unstable manifold this becomes clear by considering a
droplet (ensemble) of a large number of tracers which initially
overlaps with the stable manifold. As the droplet is advected
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FIG. 3: The fractal unstable manifold of Fig. 2 stretches out the wake
far downstreams. The linear range is much larger and no distortion
is applied. Courtesy of G. Károlyi.

towards the wake, its shape is strongly deformed, but part of
the ensemble comes closer and closer to the chaotic saddle as
time goes on. Since, however, only a small portion of par-
ticles can fall very close to the stable manifold, the majority
of the tracers does not hit the saddle exactly and start flowing
away from it along the unstable manifold. Therefore we con-
clude that in open flows droplets of particles trace out the un-
stable manifold of the chaotic saddle after a sufficiently long
time of observation. The fractal unstable manifold becomes
thus a real physical observable, something which can be pho-
tographed. The unstable manifold stretches out from the wake
far downstream, as seen in Fig. 3. Droplet experiments trace
out this object indeed [9, 10]. It should be kept in mind that far
away from the obstacle the fractal pattern is not an indicator of
chaos in that region, it is rather a fingerprint of transient chaos
within the wake transported far downstream by the nearly uni-
form flow there.

The definition of the chaotic saddle and of its manifolds
was given above without any reference to a possible time-
periodicity of the flow and of the geometry of the obstacle. In
the particular case of time-periodic flows, the chaotic saddle
can be decomposed into unstable periodic cycles (similarly as
usual chaotic attractors) and the pattern of the saddle and its
manifolds repeat themselves with the period of the flow. In the
general case of aperiodic time-dependence, the only differ-
ence is that there are no periodic orbits among the nonescap-
ing ones, and the patterns of the saddle and its manifolds never
repeat themselves. If the time-dependence is strong enough
and long lasting, these patterns can be seen all the times. (The
mathematical background for their proper description is ran-
dom dynamical systems [11], and snapshot chaotic saddles

FIG. 4: Unstable manifold of a chaotic saddle traced out
in a layer of marine stratocumulus clouds in the wake of
Guadalupe Island on June 11, 2000, Courtesy of NASA,
http://eosweb.larc.nasa.gov/HPDOCS/misr/misr−html/von−karman−
vortex.html

[2, 12, 13].) This is the explanation of the ubiquity of fila-
mentary unstable manifolds visible in experiments [9] and in
satellite images showing the oceanic or atmospheric wakes of
islands (for an example see Fig. 4). The unstable manifold
can also be seen as the main transport route since tracers es-
caping the wake after a long times accumulate along this set
(see e.g., [7, 14, 15]).

B. Characteristic numbers

Escape rate. When distributing a large number N0 of trac-
ers upstream the obstacle, most of them leave the wake even-
tually. Thus the probability p(t) of findings points staying still
in the wake after time t is a monotonically decreasing func-
tion. How rapidly it decreases is an important characteristic
of the saddle. The decay is typically exponential

p(t) ∼ e−κt. (1)

The positive number κ is called the escape rate and turns out
to be independent of the choice of the initial distribution of
the N0 tarcers. The escape rate is thus a unique property of
the chaotic saddle. It measures the saddle’s strength of global
repulsion. Relation (1) is not necessarily valid from the very
beginnig, it holds after some time t0 needed for the ensemble
to come sufficiently close to the saddle (t0 depends thus on
the initial condition) [78]. As a consequence, this dependence
also holds for the average lifetime τ̄ of particles in the wake.
As an order of magnitude estimate, however, the reciprocal of
κ might be a good choice.

Topological entropy. The stretching dynamics of typical
material lines can be used to define topological entropy. A
line segment of initial length L0 is stretched more and more
in the unstable directions. Let L(t) denote the length of the
line segment within the wake after time t. After a sufficiently
long time this length is known [16] to increase exponentially,
and the growth rate is given by just the topological entropy, h,
according to the relation

L(t) ∼ eht, (2)

valid for times longer than some t′0. The traditional defini-
tion based e.g., on unstable cycles and the one given here are
equivalent in time-periodic dynamics. In aperiodic problems,
however, only equation (2) can be used for the definition of
topological entropy. The positivity of h can be considered as
a criterion for the existence of (at least) transient chaos. A
generalization of the concept of topological entropy, termed
expansion entropy, valid in any dimension, just appears in one
of the contributions to this Focus Issue [17].

Natural measure of the saddle, Lyapunov exponents,
and dimensions. Just like on a chaotic attractor, there exists
a natural probability distribution on any chaotic saddle, too.
This is obtained by distributing an ensemble of points around
the saddle and following those with long lifetimes. The fre-
quency of visiting different regions of the saddle by these tra-
jectories defines the natural distribution. One can then speak
about averages taken with respect to this measure. The largest
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average Lyapunov exponent λ̄ on a saddle is positive. It is
worth noting, however, that this is not a unique signal of tran-
sient chaos since the Lyapunov exponent is positive even on
a single saddle orbit. A unique sign of chaos in such cases
(besides h > 0) is a nontrivial fractality. To this end the in-
formation dimension D1 of the saddle is a particularly useful
tool. The Lyapunov exponent describes the local instability
of the saddle, while the escape rate is a global measure of in-
stability. In chaotic cases λ̄ > κ [2], which illustrates that
fractality stabilizes the saddle dynamically, as mentioned in
the Introduction.

C. Remarks

In the particular example of dispersion in fluid flows a few
further remarks are in order. The precise dynamics of the trac-
ers depends on their size. Very small ones (relative to the size
of the obstacle), immediately follow the flow. This implies
that in incompressible flows (which is the most typical case)
the dynamics is volume preserving, and therefore attracting
orbits cannot exists, all tracers must escape the wake. For
larger, but still small, sizes Stokes drag is active, and the dy-
namics is dissipative, attractors might be present. Even if so,
they coexist with a chaotic saddle, and have typically small
basins of attraction. The shapes of the saddle and its mani-
folds remain very similar to those of Figs. 1-3.

There is an increasing current interest in Lagrangian Co-
herent Structures (LCSs) of aperiodic flows. They can,
loosely speaking, be defined [18, 19] as material surfaces
shaping the tracer patterns, i.e. as skeletons for the dynam-
ics of tracer ensembles. LCSs exist in all types of aperiodic
flows: the elliptic ones are related to extended regions of trap-
ping, and the hyperbolic ones to regions of strong stirring.
Among the latter, repelling LCSs separate the fate of initially
nearby tracers, while attracting ones identify material surfaces
along which particles accumulate after some time. Although
these concepts were born outside the realm of transient chaos,
it is intuitively clear, that in open flows, like flows around ob-
stacles, the repelling (attracting) LCS corresponds to the sta-
ble (unstable) manifold of the time-dependent chaotic saddle
existing in the wake. What we see in Figs. 3-4 can also be
considered to be attracting LCSs. The remarkable feature of
material accumulation along manifolds made me finish one of
my talks, more than a decade ago, with the sentence: ”If you
are after a good catch, go fishing along an unstable manifold”.
By now, plankton and larvea on the ocean surface are shown
to aggregate from different regions onto such sets, and marine
predator birds are found to track LCSs, the analogs of unstable
manifolds, in order to locate food patches [20–22].

III. OCCURENCES OF TRANSIENT CHAOS

We illustrate with a series of short notes some phenomena
from the realm of dynamical systems which find (often supris-
ing) explanations in terms of transient chaos.

Periodic windows. Periodic windows are ubiquitous in the
chaotic regime of dynamical systems [23]. In such windows
chaos is present in the sense that there exists an infinity of pe-
riodic orbits but their union is not necessarily attractive. Tran-
sient chaos thus always occurs in such windows both inside
the period doubling regime, where the attractor is a cycle of
length 2n with an integer n, and outside these regimes where
transient chaos coexists with a small size chaotic attractor:
the topological entropy is positive everywhere in the window.
Since the total measure of windows is known to be finite in
the parameter space, just like that of strictly chaotic parameter
values, the probability to find transient chaos is comparable to
that of permanent chaos even in systems known to be chaotic
in a traditional sense.

Crises. Transient chaos can also be a sign of permanent
chaos to be born. More generally, all types of crisis config-
urations: attractor destructions, explosions or mergers [5] are
accompanied with long lived transient chaos. Large attractors
born at crises incorporate into themselves the chaotic saddles
existing before. Consequently, the dynamical properties of the
saddle are partially inherited by the large attractor. The aver-
age time trajectories of the large attractor spend in the region
where the saddle existed is practically the same as the average
lifetime of transient chaos in the pre-crisis regime. Transient
chaos can thus provide a backbone of the motion on composed
chaotic attractors.

Fractal boundaries. Fractal basin boundaries [6] are an-
other common properties of dynamical systems. If two or
more simple or chaotic attractors coexist, trajectories may hes-
itate for a long time before getting captured by one of the at-
tractors. On fractal basin boundaries such trajectories exhibit
transient chaos. In fact, fractal basin boundaries turn out to be
stable manifolds of chaotic saddles existing on the boundary.

Controlling chaos. The celebrated Ott-Grebogi-Yorke
(OGY) method of controlling chaos [24] is based on the re-
quirement that control sets in if the trajectory visits a pres-
elected target region. The set of points never reaching this
target region forms a fractal subset whose escape rate deter-
mines the time needed to achieve control. Thus, the OGY
method converts the motion on a chaotic attractor into a kind
of transient chaos before control sets in.

Chaotic scattering. For scattering processes in open
Hamiltonian problems the only way chaos can appear is in
the form of transients, because of the asymptotic freedom of
the incoming and outgoing motion [23, 25]. Trajectories are
then trapped in a given region of the configuration space for
a while, within which a chaotic saddle also exists. A de-
tailed characterization of the trapping process is based on the
so-called delay-time function telling us how the time spent
around the chaotic saddle depends on the impact parameters
of initial conditions. A unique sign of chaotic scattering is the
rather irregular appearance of the delay-time function. It is
singular exactly in points that lie on the saddle’s stable mani-
fold.

Noise induced chaos. In systems subjected to external ran-
dom forces the form of the attractor observed might depend on
the noise intensity. The phenomenon when a system with sim-
ple periodic attractors turns to be chaotic at sufficiently strong
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(but yet weak) noise is called noise induced chaos [26, 27]. In
such systems there is always a chaotic saddle coexisting with
the simple attractors in the noiseless case. At increasing noise
intensity the saddle suddenly becomes embedded into a noisy
chaotic attractor, along with the original simple attractors.

Transport phenomena. Diffusion and other transport phe-
nomenona along a given direction can be interpreted as con-
sequences of chaotic scattering and transient chaos. This de-
terministic way of describing transport phenomena in a single
particle picture is based on the idea of considering an open
(scattering) system that is of finite but large extent along a
given direction. The phase space is low-dimensional but of
large linear size. An analysis of the character of transient
chaos leads to the observation that the escape rate of the sad-
dle can be connected with transport coefficients [25, 28, 29].
It is worth mentioning that other characteristics of the chaotic
process cannot be expressed solely by means of macro pa-
rameters. It is the escape rate alone that has a well defined
large-system limit.

Complex dynamics preceding thermal equlibrium. Sys-
tems approaching thermal equilibrium can possess only fixed
point attractors in the space of macroscopic variables. If a dy-
namics preceding thermal equilibrium is complex, it must be
transiently chaotic. This is examplified with stirred chemical
reactions in closed containers which are found to exhibit, both
theoretically and experimentally [30, 31], long-lasting chaotic
transients for sufficiently nonequilibrium initial conditions.

Supertransients. Transient chaos also occurs in spatiotem-
poral dynamical systems having high-dimensional phase
spaces. These transients differ from their typical low-
dimensional counterparts in that the average lifetime can be
extremely long before settling down onto a final attractor
which is usually nonchaotic [5, 32]. More qualitatively, the
escape rate κ(L) decreases and tends to zero with the linear
size L of the spatially extended system, e.g., exponentially, or
as a power of L [33]. In large systems with supertransients the
observation of the systems’s actual attractor is thus very hard.
A notable example is pipe flow turbulence. Around the onset,
turbulence is present in the from of localized puffs only, and
their lifetime, or the reciprocal of the escape rate, is found to
increase superexponentially with the Reynolds number [34].
Puff turbulence is thus a kind of transient chaos.

In the following sections we present a few recent applica-
tions of transient chaos, all with some sort of special appeal.

IV. DYNAMICS OF DECISION MAKING

Decision making is strongly related to optimization, and is
usually formulated in terms of N discrete logical variables
xi, which can be either true or false. The problem is typi-
cally subject to a number M of constraints. The goal is to
assign truth values to the variables such that all constraints
are satisfied. When the fraction M/N is in a critical domain,
finding optimal solutions to such constraint-satisfaction prob-
lems may be hard. The complexity of problem classes can
be measured by the scaling (as function of N ) of the time an
algorithm needs to find a solution. A hard class of problems

is called NP implying that all known algorithms that compute
solutions require, in the worst case, exponentially many iter-
ations expressed in terms of the number of variables N [35].
The correctness of a given solution can, however, typically be
checked within a polynomial number of iterations. The hard-
est problems in NP form the subclass of NP-complete prob-
lems the solutions to which would enable one to transform any
NP problem into this subclass in polynomial time. Applica-
tions of these NP-complete cases range from the ground-state
problem of Ising spin glasses, via protein folding and Sudoku
puzzles, to the travelling salesman problem. According to an
interesting recent development of the field, thanks to Ercsey-
Ravasz and Toroczkai [36], constraint-satisfaction problems
can be translated into continuous-time dynamical systems. As
such, they can exhibit chaos. In this exact mapping each dis-
crete logical variable xi is replaced by a continuous variable
si(t) ∈ [−1, 1], i = 1, ..., N where t is a dimensionless time.
The range is defined so that si = 1 (−1) corresponds to the
true (false) value. Any constraint is characterized by a func-
tion Km(s), m = 1, ...,M (depending on all the s-variables)
whose value lies in [0, 1], and Km vanishes if and only if con-
straint m is satisfied. The construction of Km is unique if the
contraints are given in a canonical form, the so-called con-
junctive normal form.

The dynamics of variables si is given as a gradient system

ṡi = −∂V (s,a)

∂si
, i = 1, ..., N, (3)

where the potential, or cost, function V is a sum of the
squares of the constraint functions weighted with positive fac-
tors am(t) > 0: V =

∑M
m=1 am(t)Km

2. Potential V has
an absolut minimum at zero for any solution of the problem
where all Km vanish. For large N , function V might have,
however, several local minima away from zero. In order to
avoid the capturing of the dynamics in any of such minima,
Ercsey-Ravasz and Toroczkai chose the weigthing factors am
to be time-dependent according to the dynamics:

ȧm = am(t)Km(s), m = 1, ...,M (4)

with some positive initial value, say am(0) = 1. Since Km is
nonnegative, the auxiliary variable am increases in time (in an
approximately exponential manner) as long as the constraint
is unsatisfied. If a local minimum due to constraintm is unsat-
isfied, the exponential growth of am guarantees that the local
minimum becomes washed out. As a consequence, for cases
with at least one solution, system (3), (4) has the remarkable
property that randomly chosen initial conditions si(0) lead,
with the exception of a set of measure zero, eventually to a
solution with V = 0. Limit cycles do not exist, and the sys-
tem is shown [36] to always find a solution s∗, a fixed point
with | si |= 1, of the optimization problem. This property
remains true even under noisy perturbations [37].

If solutions exist, dynamics (3), (4) can thus exhibit chaos
only in the form of transients. Furthermore, the difficulty of
the solution can be considered to be proportional to the av-
erage time needed to find a solution. This opens the way of
considering the escape rate of the transiently chaotic search
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dynamics to be a measure of the hardness of the problem in-
stance.

As an example to illustrate the search dynamics, we show
a Sudoku puzzle [38] and the characteristic time-dependence
of some of the s-variables in Fig. 5. In Sudoku, one has to
fill in the cells of a 9 × 9 grid with integers 1 to 9 such that in
all rows, all columns, and in nine 3 × 3 blocks every digit ap-
pears exactly once, while a set of given isolated digits should
also be taken into account (see left panel of Fig. 5). These
rules and the given digits determine both N and M , the num-
ber of independent variables (each empty cell is represented
by at most 9 independent logical variables) and constraints,
respectively. Sudoku puzzles are designed to have unique so-
lutions. The right panel of Fig. 5 shows the time evolution
of the continuous-time dynamics of the 3 × 3 grid formed
by rows 4-6 and columns 7-9. In each cell there is only one
s-variable which converges to 1, the one representing the so-
lution, all the others converge to −1 since they correspond
to false digits. The dynamics preceding the asymptotic state
is rather complex: all s-values change irregularly, exhibiting
long chaotic transients. The solution can be seen to be found
in this example after about 150 time units. In other runs even
much longer search times are found. In an ensemble of 104

randomly chosen inital conditions the probability that the dy-
namics has not found the solution by time t follows the rule
(1), and the escape rate of the underlying chaotic saddle is
obtained to be κ = 0.00026 (1/κ = 3850) [38].

FIG. 5: Transient chaos preceding the finding of the Sudoku solu-
tion in the search dynamics (3), (4). The puzzle given in the left
panel is one of the hardest: with the 21 given digits, it corresponds
to N = 257, M = 2085. The time-dependence of the variables
saij (representing digit a, colored as in the color bar on the right) in
cell i, j is shown in the right panel. In each cell there are 9 running
trajectories but many of them are on top of each other close to −1.
Courtesy of M. Ercsey-Ravasz and Z. Toroczkai.

The authors of [38] also showed that the escape rate of a
puzzle correlates very well with human difficulty ratings. Four
categories predefined by the public: easy, medium, hard, and
ultra-hard turn out to be related to the escape rate via a loga-
rithmic law. η = − log10 κ values correspond to them in the
ranges 0 < η ≤ 1, 1 < η ≤ 2, 2 < η ≤ 3, and 3 < η ≤ 4,
respectively. Puzzles with η > 4 are not known.

A further interesting property of the escape rate of random
decision making problems is that in cases when the number
N of independent s-variables can change in a broad range,
the escape rate is found [36] to decrease as a power of N

κ(N) = bN−β (5)

with an exponent β ≈ 5/3. The transient dynamics of deci-
sion making is thus supertransient. This law holds for a fixed
value ofM/N = 4.25 in the critical region, and illustrates that
the escape rate κ(N) is a dynamical measure of optimization
hardness (thus capable of separately characterising individual
instances), while M/N is a static one only. (In the Sudoku
problem, which is also high-dimensional, this means that not
only the number of the preselected digits is important, but also
their positioning pattern.)

Equation (5) also implies that the scaling of the average
continuous-time (≈ 1/κ) is polynomial. Nonetheless, the
exponential scaling characteristic to NP-complete problems
does not disappear, but appears when measuring the num-
ber of integration steps needed (using adaptive Runge-Kutta
methods).

V. VOLCANIC ASH DISPERSION

The volcanic eruption of Eyjafjallajökull on Iceland in 2010
lead to concerns that volcanic ash would damage aircraft en-
gines, and the controlled airspace of many European countries
was closed resulting in the largest air-traffic shut-down since
World War II. The closures caused millions of passengers to
be stranded not only in Europe, but across the world. Not
much later, the Fukushima accident (2011) lead to increased
public concern regarding pollutant spreading from industrial
accidents. These recent events underlined the need for inves-
tigating pollutant dispersion in the atmosphere. Aerosol par-
ticles from different sources may be advected far away from
their initial position and may cause air pollution episodes at
distant locations.

Current numerical capacity enables us to monitor individ-
ual aerosol particles one by one. These trajectories turn out
to be chaotic, and an ensemble of trajectories can be used to
predict statistical properties, e.g. the average deposition dy-
namics.

In order to track individual aerosol particles with realistic
size and density, the equation of motion for the particle trajec-
tory r(t) is derived from Newton’s equation. Scale analysis
reveals that the horizontal velocity of a small aerosol parti-
cle takes over the actual local wind speed practically instanta-
neously, whereas vertically the terminal velocity w should be
added to the vertical velocity component of air [39, 40]. w de-
pends on the radius r and density ρp of the spherical particle,
as well as, on the density ρ and viscosity ν of the air at the
location of the particle:

ṙ = v(r(t), t) + wn, (6)

where v(r, t) is the wind field at point r and time t, and n is
the vertical unit vector pointing downwards. Realistic aerosol
particles not falling out within hours are of radius of at most
12 µm, and have a density of about ρp = 2000 kg/m3. For
them, Stokes’ law is valid during the full motion, and hence
the terminal velocity is w = 2ρpr

2/(9ρνg). As an input to
dispersion simulations, the reanalysis data of measured wind
fields can be used, which are accessible e.g., in the ERA-
Interim database [41]. The wind velocity at the actual loca-
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FIG. 6: Dispersion of volcanic ash consisting of r = 5 µm particles
of density ρp = 2000 kg/m3 from the eruption of Mount Merapi
(110.44◦ E, 7.54◦ S, black square) described in the text. The upper
panel shows the outfall integrated up to the 20th of November (brown
dots). Black dots represent the outfall during November 18. The
lower panel illustrates the spatial distribution of the aerosol particles
still in the air at 12 UTC on 18 November 2010. Colorbar indicates
the pressure level of the particles in hPa. It is worth noting that there
is hardly any material exchange between the two hemispheres over
the time scale of a few weeks. Courtesy of T. Haszpra.

tion of a particle is calculated using spline interpolations in
both space and time.

Mount Merapi in Indonesia had long-lasting eruption series
in 2010, from late October to November. As an example of the
outfall dynamics of aerosol particles, instead of a continuous
eruptions, we consider a single imagined volcanic ash puff. It
has an initially columnar shape of size 1◦ × 1◦ × 400 hPa
(in the vertical, pressure coordinates are used), containing
n0 = 2.16 × 105 particles of radius r = 5 µm centered at
Mount Merapi at the height of about 5 km (p0 = 500 hPa),
and is emitted at 00 UTC on 1 November 2010 [39]. The
particles spread and reach very different regions in the atmo-
sphere since, entering into different vertical levels, they be-
come subject to different horizontal winds. 20 days after the
hypothetical emission, the particles cover a huge area and are
well mixed in the midlatitudes of the Southern Hemisphere.

One measurable consequence of the aerosol dynamics (6)
is the outfall. The upper panel of Fig. 6 shows in brown
the location of all the deposited particles in the period 1-20
November 2010. There are large regions without any outfall,
and the overall pattern is filamentary.

A careful study of the particle dynamics leads to the con-
clusion that long lived aerosol particles come close, much be-
fore deposition, to a global atmospheric chaotic saddle. The
escape rate is found in our example to be κ = 0.103 day−1

(in harmony with an average lifetime of about 10 days). The
existence of transient chaos is also supported by the fact that
topological entropies, as defined by (2), are measured to be
positive, on the order of 0.5 day−1 [42]. This atmospheric

saddle is an example for a case of aperiodic time-dependence.
The dynamical sysems’ view enables us to give a novel

interpretation of the outfall. The set of deposited particles
on the surface can be specified, in the language of transient
chaos theory, as the intersection of the unstable manifold of
the global atmospheric chaotic saddle with the surface. Con-
sidering a shorter period, a single day (black dots in Fig. 6, up-
per panel), the filamentary nature of the outfall pattern is more
pronounced (an exact fractal is expected for an instantaneous
outfall pattern only). The lower panel of Fig. 6 indicates the
location of the not yet deposited particles in a given time in-
stant: at noontime of the 18th day after the eruption (12 UTC
on 18 November 2010). Since the majority of these particles
are on their way towards the surface, they pratically trace out
the unstable manifold of the saddle. This figure thus corre-
sponds to Fig. 3 but in a three-dimensional setting, the color-
ing indicating the height, more precisely the pressure level of
the particles [79].

It is remarkable that the escape rate as a function of the
particle radius r is found to range over about two orders of
magnitude although the radii vary over one decade only. The
dependence is thus strongly nonlinear. The best approximate
fit up to r = 12 µm appears to be exponential [39]:

κ(r) ∼ exp(kr) (7)

with k ≈ 0.46 µ m−1, a very strong parameter-dependence in
this low-dimesional, but spatially extended dynamical prob-
lem.

VI. DOUBLY TRANSIENT CHAOS

After the appearance of our introductory textbook [43],
Adilson Motter came to me and asked why we had claimed
that the dynamics of magnetic pendula was chaotic. My naive
answer was a hint on the easily observable irregular motion
of the pendulum before settling down at some of the mag-
nets, and on the obvious fractality of the basin boundary dis-
played in many publications (for an example see Fig. 7). But
the point was well taken, in such dissipative systems without
any driving all motion must eventually cease because of the
monotonous decay of the energy. We decided to carry out a
systematic investigation of the problem which lead to the con-
clusion that transient chaos as presented in Section II. is only
one option, another class, termed doubly transient chaos [44],
also exists within which the dynamics is even more fragile
than in usual transient chaos.

A detailed investigation reveals that two trajectories in dif-
ferent basins tend to separate from each other over a relatively
short period of time but they do so exponentially fast, they
thus possess positive finite-time Lyapunov exponents. Fast
separation takes place when the speed of the pendulum is low,
as it would be expected when an orbit approaches an unstable
fixed point embedded in usual chaotic saddles. The dynamics,
however, does not have any periodic cycle, long-term instabil-
ity can only be due to a few fixed points (of saddle type). One
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FIG. 7: Part of the basin structure of a magnetic pendulum with three
magnets at the corner of a regular horizontal triangle of unit edge
length around the origin. A part of the plane of initial positions is
shown, where points with vanishing initial velocity are colored ac-
cording to the magnet in which neighborhood the pendulum settles
down. Most observer would consider this pattern to be fractal. Cour-
tesy of G. Károlyi.

observes, nevertheless, that during the period of rapid sepa-
ration the trajectories wander erratically in the vicinity of a
set that plays the role of a chaotic saddle. This set can be
estimated from the positions where the trajectories separate
exponentially from each other. However, this set consists of
only pieces of trajectories in the phase space and – in contrast
to usual saddles, like e.g., the one shown in Fig. 1 – is not an
invariant set of orbits. Moreover, this set manifests itself only
during the period of exponential separation, which motivates
us to refer to it as a transient chaotic saddle.

This view is supported by the observation of the individual
lifetimes spent far away from any attractor obtained for trajec-
tories which started on a straight line with zero initial velocity.
This function is higly irregular, and appears to exhibit a few
isolated infinitely high peaks only (in contrast to traditional
systems where infinities sit on a fractal set). In our case sub-
sequent magnifications indicate that the set of long lifetimes
becomes increasingly sparse at sufficiently small scales.

This leads us to the conclusion that perhaps a time-
dependent escape rate would provide a proper characteriza-
tion of the dynamics. We define [44] this as the instantaneous
rate κ(t) of decay of the fraction p(t) of still unsettled trajec-
tories at time t

ṗ(t) = −κ(t)p(t). (8)

Numerical results indicate that κ(t) is an exponentially in-
creasing function in this example. The survival probabil-
ity thus decays superexponentially, i.e., the escape dynamics
speeds up as times goes on.

In harmony with the time-dependence of the escape rate,
we find that the fractality of the basin boundary is scale-
dependent. Considering smaller and smaller scales, the fractal

FIG. 8: Blowing up the basin structure. Left panel: magnification of
a small square from the most fractal-looking lower left quadrant of
Fig. 7. Right panel: magnification of a small square of the left panel.
The dilution of fractality can be seen by naked eye. Courtesy of G.
Károlyi.

dimension of the set separating the different colors is found to
decrease and tend to unity [44]. This can indeed be seen when
considering subsequent magnifications of Fig. 7 as illustarted
by Fig. 8.

It is interesting to observe that the character of chaos imme-
diately changes when driving is added. By moving the plate
of the magnets up and down in a sinusoidal manner, unstable
periodic orbits immediately appear, and the long term dynam-
ics is governed by a usual chaotic saddle (in coexistence with
periodic attractors). For small driving amplitudes, the time-
dependent escape rate (8) initially increases, but then levels
off at a finite constant value, and the crossover period shrinks
with the amplitude.

In summary, our principal results are that in undriven sys-
tems: (i) the measured dimension of the basin boundaries can
be noninteger and the finite-time Lyapunov exponents can be
positive over finite scales but neither holds true asymptoti-
cally; (ii) the basin boundaries have (asymptotic) integer frac-
tal dimensions; (iii) the survival probability outside the attrac-
tors changes dramatically, characterized by a time-dependent
escape rate; (iv) transient behavior is governed by a transient
chaotic saddle that is prominent over a specific energy inter-
val. This doubly transient chaos appears to be the generic
form of chaos in autonomous (nondriven) dissipative systems,
with the double pendulum and many every-day phenomena as
examples.

VII. DYNAMICAL SYSTEMS WITH
ABSORPTION/EXPLOSION

Certain physical problems related to wave dynamics in the
short wavelength limit can be represented by particles moving
along simple trajectories but carrying with them certain phys-
ical quantities which change in time according to some rule.
One example is the decay of sound intensity in hall acous-
tics, which can be understood by considering sound rays (par-
ticles) bouncing with constant velocity within a billiard (the
hall) which loose a portion of a quantity (the energy) carried
with them upon each collision with the wall. This loss of en-
ergy corresponds to sound attenuation, or absorption in gen-
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eral. In such systems it is not the particles (matter) what es-
capes rather the energy content, a quantity carried along with
the particles.

The usual dynamical systems’ approach should somewhat
be broadened for a proper description of such problems. Con-
sider a discrete-time representation ~xn+1 = f(~xn), a proper
Poincaré map of a time-continuous flow. One can fully recon-
struct the continuous-time dynamics if the return time distri-
bution τ(~x) [chosen as the time between ~x and ~x′ ≡ f(~x)]
is known and the sum of return times is followed along the
map trajectory [25]. The novel feature is that besides the re-
turn time, the evolution of an intensity-like quantity J should
also be monitored. This quantity can be represented to change
only upon intersections with the Poincaré surface, when its
value becomes suddenly smaller. The amount of this change
is specified by the distribution R(~x) of reflection coefficients,
a quantity assumed to be known on the Poincaré surface (just
like τ(~x)). Instead of the usual map f , one then follows an
extended map fext which implies extending the map’s phase
space ~xn by two further variables tn and Jn: the time at in-
tersection n with the surface, and the intensity just before this
intersection. The extended map thus reads as

fext :

 ~xn+1 = f(~xn),
tn+1 = tn + τ(~xn),
Jn+1 = JnR(~xn).

(9)

Instead of indiviual trajectories in the extended phase space,
it is worth studying here also an ensemble of trajectories, and
their energy density ρ(~x, t). In analogy with the problem
of room acoustics, we consider closed chaotic maps f(~xn)
and find [45] that for any smooth initial intensity distribution
ρ(~x, t = 0) there is an overall exponential decay, multiplied
by a distribution ρc(~x) depending only on the spatial coordi-
nates so that for long times

ρ(~x, t) ∼ e−κtρc(~x). (10)

Exponent κ > 0 is called again the escape rate but, remember,
it is a measure of the energy escape since there is no particle
escape as map f is assumed to be closed [80]. Both κ and
ρc are found to be independent of initial conditions. Writing
(10) as ρc(~x) ∼ eκtρ(~x, t) shows that ρc is kind of a limit
distribution obtained by compensating for the energy loss by
homogeneously injecting energy exactly at the rate of κ. Den-
sity ρc is terefore called the conditionally invariant density
(c-measure) in analogy with a quantity introduced as the den-
sity of points conditioned to escape after a long stay only in
usual open systems with transient chaos [46]. c-ensity ρc can
be normalized to unity over the phase space of map f . The
c-density is found to be a complicated fractal measure with a
nontrivial information dimension, as illustrated by Fig. 9. The
filamentary pattern suggests that this density is concentrated
on the unstable manifold of the intensity dynamics (as in usual
transient chaos), and one can also find the underlying chaotic
saddle in the extended map.

Within this extended set-up one can even find a physical
interpretation for negative escape rates. Optical microcavi-
ties provide a repesentative example of such systems. Lasing

FIG. 9: Energy escape in a two-dimensional billiard. Left panel:
billiard with partial reflectivity, the width of the ray is proportional
to its intensity (J). The reflection coefficient R = R∗ = 0.1 in
the gray boundary interval, at other locations there is no absorption:
R = 1. Right panel: c-density with color coding. The corresponding
escape rate is κ = 0.058. Birkhoff coordinates ~x = (s, p = sin θ)
are used, where s is the arc length along the boundary and θ is the
collision angle. Courtesy of E.G. Altmann and J.S.E. Portela.

modes are induced by the gain medium present in the cavi-
ties and only long-living light rays are able to profit from this
gain. For strong enough gain, when the reflection coefficient
is larger than unity: R(~x) > 1, in certain regions at least, the
overall intensity ρ(~x, t) increases in time, in an exponential
fashion [47]. Eq. (10) remains thus valid, just with a negative
κ. Quantity −κ can be called the explosion rate. It is perhaps
a surprise that the c-density does not lose its fractal measure
property as Fig. 10 demonstrates.

FIG. 10: Energy explosion in the same billiard as in Fig. 9. Left
panel: billiard with a gain region in the middle (gray disc, marked
by g), the width of the ray is proportional to its intensity (J). The
reflection coefficient upon collision with the wall is R = eτg ≤ 1
where τg is the time the trajectory spends in the gain region. Right
panel: c-density with color coding. The corresponding explosion rate
is −κ = 0.215. Courtesy of E.G. Altmann and J.S.E. Portela.

It is instructive to see that there exists a unified framework
valid both for absorbing and exploding cases that also shows
how κ and the c-density are related. For invertible f -dynamics
this can be written as a discrete-time Perron-Frobenius-type
equation [45, 47] (see also [48]) acting on the density function
ρn of the extended map as

ρn+1(~x′) = eκτ(~x)
R(~x)ρn(~x)

| Df (~x) |
. (11)

Here Df (~x) is the Jacobian of the Poincaré map f at the
phase space coordinate ~x (in the billiard examples, of course,
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Df (~x) = 1). Iteration scheme (11) expresses, in a more ad-
vanced form, the compensation mechanism mentioned above
in relation to (10): when compensating escape (explosion) by
injecting (extracting) energy via a multiplication with eκτ(~x)

per iteration, a time-independent limit-distribution ρ∞(~x) is
reached. This only happens if κ is the valid escape rate,
and then the limit disribution is the corresponding c-density:
ρ∞(~x) = ρc(~x). Integrating (11) over ~x′ with the c-density
on both sides, and using the normalization of ρc, one finds

< eκτR >c= 1, (12)

where the average is taken with respect to the c-measure. This
expresses an intimate relation: κ and ρc are selfconsistently
adjusted so that the average of the compensated reflection co-
efficient eκτR should be unity (a sign of stationarity) when the
avarege is taken just with the c-measure. Quantities κ and ρc
can also be considered as the parameter making the eigenvalue
of the operator defined by (11) to be unity and the eigenfunc-
tion belonging to this largest eigenvalue, respectively. It is
immediate from (12) that for R > 1, in sufficiently extended
reagions at least (i.e., the case of explosion), κ must be nega-
tive.

One can also find [45, 47] a general relation between the
fractality of ρc, the distributions τ(~x), R(~x), and properties
of the extended map. The information dimension D(1)

1 of the
chaotic saddle along the unstable foliation of two-dimensional
extended maps can be expressed as

D
(1)
1 = 1− κτ̄ + lnR

λ̄
, (13)

where the averages denoted by overbars are taken over the
chaotic saddle of this map. It is remarkable that the dimension
can be expressed in such a simple way. Besides the escape
rate κ and the positive average Lyapunov exponent λ̄ only the
averages τ̄ of the return times and lnR of the logarithm of
the reflection coefficients appear[81]. This result is an exten-
sion of the Kantz-Grassberger formula D(1)

1 = 1−κ/λ̄, valid
for the partial dimension in usual transient chaos. The beauty
of this generic and simple relation connecting fragile (since
D

(1)
1 < 1) fractality and dynamics, which I first saw during

that 1985 Dynamics Days, certainly contributed to my contin-
uous attraction towards transient chaos.

VIII. OUTLOOK

I would like to end with a brief summary of further
transient-chaos related subjects, which might be at least as
interesting as the ones just presented in some detail above.
Leaky dynamical systems arise when artificial holes are in-
troduced into closed dynamics, and the study of the resulting

transient dynamics reveals relevant features of the closed dy-
namics, including Poincaré recurrences [48]. Almost invari-
ant sets are subsets of larger systems points of which remain
bound to this subset for a long time. They are thus natural
candidates for characterizing Lagrangian coherent structures
[19], and other environment-related phenomena [49]. Tran-
sient chaos theory can also be used to understand the origin of
transients and extreme events in excitable systems [50, 51],
long spatio-temporal transients in chimera states [52, 53],
memory effects in particle dispersion in open flows [54], and
to gain a deeper insight into the nature of turbulence [55].
Recent developments in classical chaotic scattering include
the investigation of the ray dynamics in optical metamaterials
[56], of escape in celestial mechanics [57, 58] and in medi-
cally relevant fluid flows [59, 60], and a basic understanding
of the structure of chaotic saddles in higher dimensions [61–
64].

Snapshot chaotic saddles and attractors exist in aperiodi-
cally driven system [65], and represent instantaneous states of
ensembles of trajectories. A novel observation of recent years
is that they are uniquely defined not only in noisy systems [66]
but also in the presence of smooth driving that might even be
a one-sided temporal shift of some parameters. This prop-
erty makes the concept very well suited for an application in
climate dynamics [67–69]. The observed robust existence of
chaotic snapshot attractors over a wide range is a consequence
of the presence of transient chaos in the undriven system:
the dynamics on snapshot attractors might thus be considered
driving-induced-chaos (in analogy with noise-induced-chaos).

Quantum aspects cannot be left without a very short men-
tion. Features related to open channels in quantum systems
appear in properties such as, e.g., the fractal distribution of
eigenstates [70], the fractal Weyl’s law [71, 72], and quan-
tum transport [73], including transport in graphene [74]. The
investigation of these quantum properties is also subject of ac-
tive recent research (see e.g., [48, 75, 76]).

My final conclusion can only be: Keep an eye on the poten-
tial appearance of transient chaos since this phenomenon is
an inexhaustible source of challenge and inspiration.
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[44] A.E. Motter, M. Gruiz, G. Károlyi, and T. Tél, Phys. Rev. Lett.

111, 194101 (2013)
[45] E.G. Altmann, J.S.E. Portela, and T. Tél, Phys. Rev. Lett. 111

144101 (2013).
[46] G. Pianigiani and J. A. Yorke, Trans. Amer. Math. Soc. 252,

351 (1979).
[47] E.G. Altmann, J.S.E. Portela, and T. Tél, Europhys. Lett. 109,

30003 (2015)
[48] E.G. Altmann, J.S.E. Portela, and T. Tél, Rev. Mod. Phys. 85

869 (2013)
[49] G. Froyland, R.M. Stuart, and E. van Sebille, Chaos 24, 033126

(2014)
[50] H.-L. Zou, M.-L. Li, C. H. Lai, and Y.-C. Lai, Phys. Rev. E 86,

066214 (2012)
[51] R. Karnatak, G. Ansmann, U. Feudel, and K. Lehnertz, Phys.

Rev. E 90, 022917 (2014)
[52] M. Wolfrum and O.E. Omelchenko, Phys. Rev. E. 84,

015201(R) (2011)
[53] D.P. Rosin, D. Rontani, N.D. Haynes, E. Schöll, and D.J. Gau-
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