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Abstract A method of visualizing structures in closed
chaotic flows out of homogenous particle distributions is
presented in the example of models of a meandering jet.
To this end, the system will be leaked or opened up by
defining a region of the flow, so that a particle is con-
sidered to be escaped if it leaves this region. By applying
this method to an ensemble of nonescaped tracers, we are
able to characterize mixing processes by visualizing the
converging and stretching filamentations (stable and
unstable manifolds) in the flow without using additional
mathematical tools. The possibility of applying the
algorithm to analyze buoy data, and a comparison with
the finite time manifolds are discussed.

Keywords Meandering jet � Chaos � Filamentation �
Stable and unstable manifolds

1 Introduction

Chaotic advection and the related mixing processes in
environmental flows have been widely studied in recent
years (Huppert et al. 1998; Ottino 1989; Farmer et al.
2002; Perugini et al. 2002). Advection in the Gulf Stream
has attracted special attention since mixing there can
change important features such as temperature and
salinity distributions (Flagg et al. 2002), or it can affect
distributions of nutrients (Alperin et al. 2002) or of
pollutants such as oil (deFatima et al. 2002). To describe
the basic dynamics of the Gulf Stream, Bower proposed
a two-dimensional kinematic model (Bower 1991), since

the Stream appears two-dimensional along isopycnal
surfaces. Samelson (1992) (see also Cencini et al. 1999)
introduced time dependence in this model to simulate
mixing processes. Dutkiewicz and Paldor (1994)
enhanced mixing via the interaction with a spatially fixed
eddy which perturbs the velocity field of the meander.
del Castillo-Negrete and Morisson (1994) (see also
Rogerson et al. 1999; Yuan et al. 2002) replaced the
models by a dynamically consistent one, compatible
with the quasigeostrophic equation, where chaotic
advection is due to Rossby waves in the Bickley jet. The
basic dynamical mechanism responsible for chaos is in
all the models the nontrivial time dependence of the
velocity field, which alone is sufficient to convert
advection to be chaotic (Ott 1993).

It is worth mentioning that, in spite of the barotropic
nature of these models, variations in their parameters
parametrize changes in the depth of the oceanic jet (see
Yuan et al. 2002); the models therefore reflect certain
baroclinic effects also.

Mixing, or Lagrangian dynamics in general, can be
made visible by tracer particles, which will be treated as
point-like particles with the same density as the sur-
rounding fluid (Knobloch and Weiss 1987). Such tracers
could be, for example, plankton or chemical substances
(for reactive flows see Toroczkai and Tél 2002) or buoys.
In environmental flows, chaotic mixing generates fila-
mental structures which give information about the
underlying dynamics. Gradients of the temperature field
(SST) and of the potential vorticity can be used to detect
these filaments.

In experiments, a simple method to obtain struc-
tures out of closed flows without any biological or
chemical reactions is to add dye particles (Rothstein
et al. 1999; Voth et al. 2002). In closed flows (flows in
closed basins) which are sufficiently chaotic, idealized
tracer particles will trace out structures of the flow for
a short period, but after a certain transient time, they
will be distributed homogeneously. The advection
dynamics is area- or volume-preserving due to the
incompressibility of the flow, and the asymptotic dis-
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tribution in such systems is uniform over the chaotic
region (Ott 1993).

The question which arises here is whether it is pos-
sible to obtain again some structure out of this hom-
ogenous distribution of particles in closed flows. Can we
extract some information from this state about the
complicated Lagrangian dynamics of the system, which
is completely described in the Eulerian sense by the set of
smooth streamlines? Here, we propose the method of
leaking (Schneider et al. 2002), which is shown to pro-
vide a kind of fingerprint of the closed system’s advec-
tion dynamics.

2 Visualizing Lagrangian filamentation

The method we propose is based on chaos theory (Tél
1990; Lai et al. 1993; Ott 1993) and its novelty lies in its
application to a hydrodynamical problem. The idea is to
make Lagrangian, i.e., tracer-related structures, visible,
which have definite dynamical meanings: lines of intense
stretching and lines of convergence. In the language of
dynamical system theory, these lines are tangent to the
eigenvectors corresponding to the positive and negative
Lyapunov exponents of the tracer dynamics, and provide
the unstable and the stable foliation, respectively (Alvarez
et al. 1998; Giona et al. 1999). These lines are present in
any flow generating chaotic advection, but in closed flows
both types of them are fully space-filling, and hence do not
appear as clearly visible spatial structures.

To visualize the Lagrangian filamentation, we pro-
pose to consider a finite preselected region obtained by
subtracting the leaked region from the full closed flow,
and specify trajectories out of an ensemble of tracers
which do not leave this region in a time interval
ðt0 < t < t0 þ sÞ, where t0 is an arbitrary initial moment
and s is a time span definitely longer than the natural
time scale of the flow (Schneider et al. 2002). The initial
ðt ¼ t0Þ positions of these trajectories define the location
of long lifetimes in the preselected region, and hence the
direction of converging motion (Lai et al. 1993) (see
the schematic Fig. 1). The final ðt ¼ t0 þ sÞ positions of
the same trajectories fall on curves along which trajec-
tories are about to escape the preselected region. Their
tangents correspond to the local stretching directions
(Lai et al. 1993). The midpoints ðt ¼ t0 þ s=2Þ of the
trajectories must be close to tracer positions which never
escape the region.

In terms of chaos theory, the set from which particles
never escape the system (both forward and backward in
time) is called the chaotic saddle. It consists of an infinite
number of hyperbolic points, each of them possessing a
stable and an unstable manifold. The stable manifold
(converging filament in Fig. 1) is the set of initial points
from which the given hyperbolic point can be reached.
The unstable manifold (stretching filament in Fig. 1) is
the curve along which points from a close neighborhood
of the hyperbolic points leave the point. Stable and

unstable manifolds and the chaotic saddle itself possess
fractal dimensions (Tél 1990).

A good guess at an appropriate value of s is the av-
erage lifetime of chaos in the leaked flow. Although this
might also depend on the precise form and location of
the leak (for a discussion see Schneider et al. 2002), a
typical estimate is �1= ln ð1� DÞ, with D as the area of
the leak divided by the area of the unleaked chaotic flow.
In particular, for small leaks the lifetime is approxi-
mately 1=D.

In strictly time-periodic flows the chaotic saddle and
its manifolds change with the period of the flow but are
invariant on a stroboscopic picture taken with the
period. In flows with nonperiodic (quasiperiodic or
chaotic) time dependence and with smooth space
dependence of the velocity field, recent theories (Jacobs
et al. 1997; Neufeld and Tél 1998) predict that the same
objects remain well defined (although not invariant on
any snapshot) and their fractal dimension is independent
of the time (t0 and s) of observation (provided the latter
is sufficiently long).

In any case, the actual shape (and dimension) of these
objects depend on the choice of the considered region
(the choice of the leak), but any filament of them is an
exact part of the closed system’s filamentation. Thus, by
selecting larger and larger regions (smaller and smaller
leaks), a convergence towards full filamentation can be
seen. So, for any sufficiently large region, a faithful
approximant of the closed system’s stretching and con-
verging directions can be obtained. These filaments
clearly define the stretching and converging directions
around a given point of the leaked flow, but the same
direction characterizes also the closed flow at the same
point.

Fig. 1 Filamentations due to a never-escaping (hyperbolic) orbit of
the advection dynamics. A trajectory can stay over a long time s in a
preselected region (rectangle) of the flow, if its initial (t ¼ t0) position
is in a narrow slab (gray region) around a line (the converging
filament) which leads to the never-escaping orbit (black dot). The
endpoint (t ¼ t0 þ s) of this trajectory is then necessarily in a narrow
slab (white region) around another curve (the stretching filament)
along which particles flow away from the never-escaping orbit (after
an infinitely long time). The midpoint (t ¼ t0 þ s=2) of the trajectory
must then be in any case around the never-escaping orbit itself. For
better visualization, the bands are magnified. Their real width is an
exponentially decreasing function of the time span s, and after a few
flow periods, the bands typically become narrower than the width
provided by the plotting device. In chaotic flows the situation is much
more complicated than the one shown here, since there is an infinity of
never-escaping orbits which form a fractal, and hence both the
converging/stable and stretching/unstable filamentations are fractal
objects
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3 Models and results

3.1 Time-periodic kinematic model

The model of Bower (1991) and Samelson (1992) de-
scribes a meandering jet flowing eastward (to the right)
whose velocity field is described in a frame comoving
with the jet:

Wðx;y; tÞ ¼W0 1� tanh
y�AcosðkxÞ

k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2A2 sin2ðkxÞ

q

2
64

3
75þ cy : ð1Þ

Here, A is the amplitude, k sets the jet’s width, k stands
for the wavenumber, and c is the phase speed. We
handle this model as a closed flow, by imposing periodic
boundary conditions in x. The velocity is highest in the
middle of the stream (jet) and decreases towards
the edges (corresponding to the decreasing density of the
streamlines). Idealized tracer particles, which are point-
like and adopt the velocity of the fluid at once, follow
exactly the instantaneous streamlines. In the comoving
frame used, the stream is clearly divided into three re-
gions: a central jet flowing to the right, an outer flow of
small negative average velocity, and closed recirculation
cells at the edges (see Fig. 2a).

The tracer’s equations of motion can be derived from
the streamfunction:

_yy ¼ vy ¼
oW
ox

; _xx ¼ vx ¼ � oW
oy

: ð2Þ

Introducing a simple time dependence, e.g., varying
the amplitude of the streamfunction periodically in time
with the period T ¼ 2p=x:

A ¼ A0½1þ r cosðxt þ hÞ� ; ð3Þ
where x is the perturbation frequency, r the perturba-
tion amplitude, and h a constant phase shift; tracer
particles do not move along the streamlines. This per-
turbation corresponds to a periodic change of the am-
plitude/width of the Gulf Stream (Samelson 1992).

For a perturbation amplitude of r ¼ 0:3 (x ¼ 0:4,
h ¼ p=2), the motion of tracer particles is already highly
chaotic. With the dimensionless parameters used, mod-
els (1) and (3) correspond to a jet of width 40 km, speed
1 m s�1, wavelength 260 km, and perturbation period of
8 days (see Cencini et al. 1999). The chaotic regime lies
between the lines jyj < y0, where y0 ¼ 3:5. After long
times, particles can move freely within the whole width
of the stream; no region of the flow is preferred. This can
be demonstrated by monitoring the motion of a droplet
in the chaotic flow (Fig. 2). Starting a droplet of dye
consisting of N = 10 000 particles, the droplet will be
deformed: it will be stretched and folded, as is charac-
teristic for chaotic motion. Asymptotically, all particles
are distributed homogeneously in the whole stream. Can
some local information be extracted from the homoge-
nous state?

To this end we apply the method of leaking described
in the previous section: two lines will be defined inside
the stream, parallel to the mean flow direction, for ex-
ample at y ¼ yc ¼ 2:7 and y ¼ �yc (for keeping the
symmetry of the stream). Particles which cross these
borders outwards will be treated as escaped, and are
taken out of the flow. Thus, the borders serve as a kind
of semipermeable walls which allow only the particles to
leave the stream. In this way, the formerly closed system
is opened up by leaking, and escape of particles is
possible.

Starting from a homogenous particle distribution,
particles which have not yet escaped over a certain time
will trace out filamental structures (see Fig. 3) if we
analyze these trajectories as described in Section 2.
Comparing the traced-out structures with the stream-
lines of the unperturbed flow (Fig. 2a) shows that they
still hold some similarity, even if the motion of particles
is highly chaotic: the central jet is clearly visible and the
structures on the edges somewhat resemble the recir-
culation cells.

The traced-out structures are not only filamental but
also have a fixed fractal dimension of less than 2.
Varying the width of the leak results in a change of the
fractal dimension: if the area of the leaks increases, i.e.,
if y0–yc increases, the fractal dimension of the system
decreases. Thus, the traced-out structures are more
rarified. On the other hand, by decreasing the width of
the leaks towards zero ðyc ! y0Þ, more particles remain
in the system and their traced-out structures fatten and
become denser. They reach a dimension of d ¼ 2 for a
leak of zero area, and the filamentation then becomes
space-filling.

According to a general result (Tél 1990; Ott 1993) the
deviation of the fractal dimension d of (any of) the
manifolds from unity is the ratio of the reciprocal value
of the average lifetime and the positive Lypunov expo-
nent k of the chaotic advection in the leaked system. By
using the estimate mentioned in the previous section, we
obtain the relation d � 2þ ln ð1� DÞ=k, where D is the
area ratio of the leak, which is proportional in our case
to y0–yc.

Measuring the residence time, i.e., how long it takes
for particles (initially homogeneously distributed in the
whole flow) to leave the flow through the leaks, results in
Fig. 4. In this figure, short residence times (dark blue
regions) stand for locations where particles escape rap-
idly from the flow. Positions with long residence times
(red colors) correspond to an approach towards one of
the never-escaping orbits. Points with long residence
times must therefore be close to the converging foliation,
i.e., to the stable manifold (cf. Fig. 3a).

A surprising application of leaking a flow is in con-
nection with the patterns traced out by reactions taking
place in the same flow. Such patterns may appear due to
strong concentration gradients in atmospheric chemis-
try, e.g., in ozone concentrations, or can be observed in
ocean plankton dynamics. The basic mechanisms to
generate them are the compression of the fluid elements
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towards the stable foliation of the flow, with the con-
sequence of increasing local gradients, and the stretching
of the fluid elements along the unstable filamentation of
the flow. The concentration is then smoothened out
along the unstable filamentation due to the experienced
stretching (Hernández-Garcia et al. 2002). Here, as an
example, we will consider a biological reaction by
superimposing a model of plankton dynamics on the
two-dimensional meandering jet described above.

Particles are assumed again to be point-like. They are
active, can react with each other, but do not modify the
flow. In the examined model, the temporal evolution of
the phytoplankton, its nutrient, and the zooplankton are

Fig. 2 Evolution of a droplet in the kinematic models (1)–(3) of a
meandering jet. A droplet of dye, consisting of 10 000 particles
uniformly distributed on the black rectangle shown in the first frame
(a) evolves in time as shown in frames b (t = 1/3), c (t ¼ 3=4),. . .j,
(t ¼ 120). The upper left panel a; (t ¼ 0) also shows the streamlines of
the unperturbed flow in the background. Stretching and folding
characteristic for chaotic motion can be seen (e.g., e; (t ¼ 2). At some
instant (e.g., f t ¼ 4) the dye traces out a filamental structure which is
smeared out after some more time. After t ¼ 120 periods, all dye
particles are distributed homogenously in the whole flow. Used
parameters are: W0 ¼ 1, A0 ¼ 1:2, c ¼ 0:12, k ¼ 1, k ¼ 2p=7:5,
r ¼ 0:3, h ¼ p=2, x ¼ 0:4. Time is measured here and in all the
following captions in units of the flow’s period 2p=x
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determined by advection–reaction–diffusion equations
(see Lopez et al. 2001 for details). Nutrients are dis-
tributed in the flow and are eaten up by phytoplankton,
which then grow in number. These biological reactions
make complex filamental structures appear, marked by
different phytoplankton concentrations, shown in
Fig. 5. Due to stretching, the concentration changes
smoothly along the unstable foliation, but not so along
the converging one. Therefore, directions corresponding
to low concentration gradients trace out a part of the
unstable foliation of the passive problem (cf. Fig. 5 with
the right panel of Fig. 3). Since the backbone for an
active process is, in general, the unstable filamentation
of the passive dynamics (Toroczkai et al. 1998), it is not
surprising that structures of the unstable manifold
obtained by leaking the reaction free flow show striking
similarities with those traced out by the active particles
in the closed flow. Thus, by leaking a closed flow and
studying the not yet escaped passive particles, we can
mimic structures similar to those which appear in active
processes. For a chemical model see Schneider et al.
(2002).

3.2 A chaotically time-dependent flow

The temporal periodicity of the flow model used above
seems to be a strong restriction. Flows changing qua-
siperiodically or chaotically in time, but characterized by
smooth streamlines in space, form an interesting class of
flows which has received recent attention. Since on
snapshots taken with some sampling time, the velocity
field appears to be a random (but not necessary weak)
perturbation of the initial one, such flows are called
random flows (Pierrehumbert 1994; Jacobs et al. 1997;
Neufeld and Tél 1998). Two-dimensional random flows
can be considered as elementary models of two-dimen-
sional or geostrophic turbulence. A surprising feature of
random flows is that tracer patterns generated by them
are shown to exhibit – in spite of the randomness – clean
fractal structures which can be described by the theory
of random maps (Romeiras et al. 1990; Yu et al. 1991;
Sommerer and Ott 1993).

To test how a random perturbation changes the
stable and unstable filamentation in the meandering jet
model, we modify the amplitude of the sinusoidal
driving in Eq. (3) by adding a random shift to the
average amplitude �rr after each period 2p=x of time.

Fig. 3 Filamental structures in the leaked flow (Eqs. 1–3) traced out
by nonescaped particles after applying the analysis of Section 2. The
left panel shows the converging filamentation, i.e., the stable manifold
of the chaotic saddle: only those initial (t ¼ t0 ¼ 0) positions out of an
initially homogenous particle distribution (N0 = 50 000) on the region
½�7:5 : 0�½�2:7 : 2:7� are plotted which do not escape during s ¼ 20
periods. The right panel shows locations of the not yet escaped
particles after s ¼ 20 periods, which trace out the stretching
filamentation, i.e., the unstable manifold of the chaotic saddle. The
panel in the middle depicts the chaotic saddle itself, obtained from the
points taken at t ¼ s=2, and coincides with the intersection of its
stable and unstable foliations

Fig. 4 Residence times. Particles starting from the dark blue regions
need the shortest time to escape. Light blue denotes places where the
residence times are within 4 and 7 periods. Colors towards red
(residence time longer than 40, up to 99 periods) denote places with
increasing residence times. N0 = 600 800 particles were used, initially
distributed over a grid of mesh size d ¼ 0:01 in the same region as in
Fig. 3

Fig. 5 Structures traced out by phytoplankton in a plankton model
superimposed on the meandering jet. (Lopez et al. (2001). Note the
similarity with the stretching/unstable foliation shown in the right
panel of Fig. 3
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We thus take the streamfunction defined by Eqs. (1)
and (3) with

r ¼ �rr þ drn ; ð4Þ
where drn is a random number distributed uniformly in
the range ½�0:05; 0:05� and kept constant over the nth
period. The results obtained with the method of leaking
are shown in Fig. 6. In spite of the fact that the random
perturbation is not weak (its amplitude is one third of
the average value �rr ¼ 0:3), the filamentation remained
clean. The actual shape of all the patterns is similar to
what we see in the nonrandom case (Fig. 3), but minor
details can be different (like, e.g., the precise form of the
largest white tongues). Furthermore, all the patterns
depend on the actual snapshot taken (see Fig. 6d,e,f)
which is due to the fact that the flow is not periodic. (In
the periodic case the location of the points of the
nonescaped orbits is the same for t ¼ t0 and t ¼ t0 þ 1,
for t ¼ t0 þ s=2 and t ¼ t0 þ s=2þ 1, and for t ¼ t0 þ s
and t ¼ t0 þ s � 1.) The theory of random maps also
implies (Jacobs et al. 1997; Neufeld and Tél 1998) that
the fractal dimensions of the manifolds and the chaotic
saddle do not depend on the snapshot taken. The simi-
larity of the structures on subsequent snapshots indi-
cates that the filamentation remains qualitatively the
same as in a periodic flow. Thus, the method of leaking

the flow for visualizing its stable and unstable filamen-
tation is applicable to random flows as well. Note that
the shape of the stable foliation does not depend on the
observed time span s, but does depend on the instant (t0)
of the initialization of particles. The shape of the un-
stable foliation and the chaotic saddle both depend on s
and t0.

3.3 A dynamically consistent model with barriers

Instead of the kinematic model, we consider now a
dynamically consistent (nonrandom) model of the jet
derived by del Castillo-Negrete and Morrison (1993),
which takes into account the conservation of potential
vorticity in leading order. The flow is defined in a frame
comoving with the slower wave of wavenumber k2 by the
stream-function:

w ¼ � tanh y þ c2y þ �1 cosh
�2 y cos ðk1x� XtÞ

þ e2 cosh
�2 y cos k ; ð5Þ

where X ¼ 2k1=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3b=2

p
with b as the beta parame-

ter, and k21;2 ¼ 2ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3b=2

p
Þ, c2 ¼ 1=3ð1�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 3b=2
p

Þ. With these parameters, the model exhibits
bounded chaos interwoven with integrable regions
(KAM-,,Kolmogorov-Arnold-Moser‘‘-tori).

The new feature of this flow is the appearance of a
transport barrier around the jet which is a kind of co-
herent structure. Due to this barrier, there is no need to
leak the flow on both sides, since there is in any case no
communication between the lower and the upper part of
the jet. Therefore, the filamentations are independent of
each other in these two regimes. We apply an escape
condition across the line y ¼ �yc ¼ �1:7 only, and carry
out the same procedure as in the first subsection in order
to visualize the filamentation in the lower part. For

Fig. 6 Filamental structures in the random flow model of the
meandering jet (Eqs. 1–4) opened up by leaking. The average driving
amplitude is �rr ¼ 0:3, as in Fig. 3, but there is a random variance
around it of half-width 0:05 (see Eq. 4). The panels show the points of
the orbits not escaping over s ¼ 20 periods at times t ¼ 0, t ¼ 10,
t ¼ 20 and t ¼ 1, t ¼ 11, t ¼ 19. The left, middle, and right columns
correspond to the stable foliation, the chaotic saddle, and the unstable
foliation, respectively. Note that the plots above each other are
not the same due to the aperiodic time dependence of the flow.
Initial conditions (apart from the number of particles started:
N0 = 100 000) and leak are as in Fig. 3

69



simplicity, we show only the endpoints of the none-
scaped orbits in Fig. 7, corresponding to the unstable
foliation. The pattern seen is somewhat different from
the previous cases because of the central barrier. Note
that the visualized structures of the eddies correspond to
the spirals that Yuan et al. (2002) found in their
patchiness plots. Now we can see that these structures
(unstable manifold) are indeed created by the underlying
motion, composed of the rotation in the eddies, and of
the motion of the comoving frame.

The leaking method proposed here for visualizing
structures in the flow is applicable for all parameter
ranges and implies also an applicability in three-dimen-
sional systems.

4 Discussion

The method proposed here is based on the following
tracer trajectories. The models used were chosen to be

close to realistic flows in the oceans or atmosphere. In
particular, parameters are taken to roughly correspond
to those of the Gulf Stream. Our method can thus be
applied to oceanic flows in which the motion of floats is
monitored over a long period of time: by selecting a
region of observation smaller than the full region ac-
cessible to the tracers, and keeping only those trajecto-
ries which stay within this region over a long period, the
spaghetti diagrams (Fig. 8) are cleaned and a filamen-
tation appears by plotting the initial and the final posi-
tions of the not yet escaped tracers. The basic limitation
in practice is set by the number of tracers used. We
carried out simulations to check what the smallest
number of tracers is at which the first signs of filamen-
tation optically appear. In our first model, this number
was found to be on the order of 1200 (see Fig. 9). There
is therefore hope for applying this method to visualizing
Lagrangian patterns in the ocean if the number of
tracers available grows on the order of 1000. The visi-
bility of the structures depends somewhat on the initial
particle distribution (see Fig. 9, right panel).

Next, we compare our method with another 1 aiming
to determine the so-called finite time or effective mani-
folds (Miller et al. 1997; Haller and Poje 1998; Haller
and Yuan 2000; Sandstede et al. 2000; Kuznetsov et al.
2002; Poje et al. 2002; Jones and Winkler (in press);
Yuan et al. 2002). The latter can be applied to any
aperiodic flow, also to flows which become stationary
after some time. The purpose is to identify the analogues
of saddle (hyperbolic) points in these flows and, after
finding some of them, to determine a finite segment of
their stable and unstable manifolds. In the knowledge of
these, the lobe dynamics (Beigie et al. 1990; Rom-Kedar
et al. 1990; Wiggins 1992) can be applied to quantify
fluid transport over a finite period of time. The appli-
cability of our method, in contrast, requires that the flow
does not change its basic character over a longer period
of time (it does not die out), although its temporal be-
havior can also be chaotic. What we gain by the exis-
tence of such a fluid dynamical ‘‘steady state’’ is the
applicability of the theory of chaotic systems, which
implies that not only a few, but a large number (an in-
finite number in principle) of hyperbolic never-escaping
orbits can be present. All the midpoints (taken at time
t ¼ t0 þ s=2) are of this type, and form the chaotic sad-
dle of the leaked flow. The fractal foliations related to
times t0 and t0 þ s can be considered as stable and

Fig. 7 Filamentation in the dynamically consistent model (Eq. 5) of
the jet. The endpoints of orbits which do not cross the line y ¼ �1:7
over a time period of 3 2p=X trace out the unstable filamentation
below the centerline of the jet. The leaking of the system affects only
the lower part of the jet due to the transport barrier in the middle; no
structures become visible in the middle and upper parts. The initial
condition was a uniform distribution of N0 = 50 000 particles in the
slab �1:7 � y � 2:5 over the spatial period 3 2p=k2. Parameters:
e1 ¼ 0:1, e2 ¼ 0:3, b ¼ 0:614 (k1 ¼ 1:6, k2 ¼ 1:2, c2 ¼ 0:24, X ¼ 0:3)

Fig. 8 Left panel: Spaghetti diagram. Time-continuous trajectories of
N0 = 1200 tracers in models (1)–(3), started homogenously distrib-
uted in the region ½�7:5 : 0�½�2:5 : 2:5�, depicted over a time interval
of s = five periods. Right panel: Same as left panel, but now only
plotting trajectories staying in the leaked region jyj � 2:5 over five
time units. The kinematic model is taken with the same parameters as
in Figs. 2–5
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unstable manifolds, respectively; however, they do not
belong to a few isolated fixed points, but to the full
chaotic set. Thus, we obtain a better characterization of
the main transport/stretching directions of the system,
and by means of a much simpler and faster method than
needed by the one reconstructing the finite time mani-
folds of only a few hyperbolic points. Our method thus
always provides a fractal foliation. In cases of decaying
fluid activity, it cannot be applied, and then the effective
manifolds are necessarily nonfractal objects.

In conclusion, by leaking, i.e., by cutting out a finite
region of a closed chaotic flow, and thus making an
escape of particles possible, we can visualize fractal fil-
amental patterns out of a formerly homogenous tracer
distribution. As pointed out, by visualizing the unstable
manifold, we are also able to reconstruct or mimic
structures which will be traced out by active processes,
e.g., by phytoplankton or pollutants in the flow.
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