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Gaussian fluctuations and first order fluctuation corrections to the deterministic solution are 
investigated in the framework of the generalized Ginzgurg-Landau type equation of motion 
exhibiting a hard mode transition leading to a homogeneous limit cycle state. It is shown that the 
stationary distribution of the fluctuations around the limit cycle is not of the form of a 
Ginzburg-Landau functional. The nature of the further instability in the post bifurcational region, 
resulting in the phase chaos in the deterministic problem, is found to be qualitatively changed by 
the presence of noise. 

I. Introduction and summary 

Hard mode instabilities in systems far from thermal equilibrium leading to 

the formation of homogeneous limit cycles 1'2) in the ordered phase are good 

examples demonstrating, besides the similarities, also the differences between 

equilibrium and non-equilibrium phase transitions. It is of particular interest, 
for example, whether in the asymptotic state, reached after a sufficiently long 
time, a stationary distribution exists in a frame of reference moving together 

with the limit cycle, and if so, how this probability distribution looks like. 
Another question of interest is how further instabilities occuring in the 
ordered phase are influenced by fluctuations. In order to answer such general 
questions the investigation of model systems is highly useful. 

As is well known, the time-dependent Ginzburg-Landau (TDGL) model 
played an essential role in understanding the dynamics near continuous phase 
transitions in systems close to thermal equilibrium3'4). Investigations of non- 

equilibrium phase transitions have shown that after an adiabatic elimination 
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procedure the equation of motion obtained near the instability point for the 
slowly relaxing modes (i.e. for the components of the order parameter field) 
are similar to a TDGL equation2). In particular, in the case of hard mode 
instabilities that represent a normal Hopf bifurcation (i.e. the order parameter 
grows out continuously as entering the post-bifurcational region) the equation 
of motion for the complex order parameter field is of the same form as that 
near equilibrium phase transitions. There is, however, an essential difference, 
namely now the parameters in the equation of motion turn out to be complex 
numbersS-7). This equation of motion including a Langevin type additive 
Gaussian white noise can naturally be called the generalized TDGL model. 
The model possesses typical properties of systems far from thermal equili- 
brium: the fluctuation-dissipation theorem does not hold and the equation of 
motion admits no potential. 

The investigations in this paper will be based on the generalized TDGL 
model and our aim is to study the nature and the consequences of the 
inhomogeneous fluctuations around the deterministic solution with emphasis 
on the behaviour in the ordered phase. In order to illustrate the most 
important points it will be sufficient to use a Gaussian approximation which 
makes also possible to evaluate first order fluctuation corrections to various 
quantities. Since the form of the distribution of the fluctuations does not 
follow from general arguments in this model, it had to be constructed directly 
from the equation of motion. One of the main results of the paper is the 
finding that the stationary distribution of the fluctuations around the limit 
cycle in the ordered phase is not of Ginzburg-Landau form and it exhibits a 
singular dependence on the wave-number and the amplitude of the limit cycle, 
which is a striking qualitative difference as compared to the equilibrium 
distribution near critical points at phase transitions. Assuming that this 
behaviour is not a pathology of the Gaussian approximation one can conclude 
that the existence of a Ginzburg-Landau type equation of motion in the 
general case does not involve a Ginzburg-Landau type functional for the 
distribution in the asymptotic state. 

By means of the stationary distribution obtained, we calculate corrections 
to the deterministic results for both the amplitude and the frequency of the 
limit cycle, which turn out to diverge below four dimensions as the instability 
point is approached. As contrasted to the case of the usual TDGL model, we 
find two Ginzburg-like criteria specifying the region where the corrections are 
small. It is pointed out that a Ginzburg-Landau type functional cannot lead to 
any correction for the frequency of the limit cycle, therefore the existence of 
a deviation of the limit cycle frequency from the result of the deterministic 
approach can be taken generally as a signal of the unusual form of the 
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stationary distribution. It is to be noted, on the other hand, that the absence of 
such a correction would not mean that the frequency of the limit cycle at the 
bifurcation point is not modified, since the fluctuations shift the bifurcation 
point itself in any case. 

Finally we turn to another question of interest, namely to the effect of 
fluctuations on the transition where the limit cycle state loses its stability. 
This instability was discovered within the framework of the deterministic 
TDGL model 7) and it was observed that the new phase emerging shows a type 
of chaotic behaviourg-l°), termed phase chaos. In the Gaussian approximation 
we find that due to the enhanced phase fluctuations the local fluctuations of 
the order parameter field are diverging at this instability point indicating that 
the zeroth order approximation loses its meaning there and that the nature of 
this instability may change qualitatively due to the presence of non-linear 
fluctuations. Indeed, taking into account first order fluctuation corrections a 
tendency is exhibited that the amplitude of the limit cycle decreases when 
approaching the instability point, which suggests that this instability in a noisy 
system might be correctly specified by the vanishing of the limit cycle 
amplitude. It is then found that fluctuations shrink the region of the stable 
limit cycle state and the shift of the instability point is scaled in d dimensions 
with the power 2/(4- d) of the strength of the noise correlations. 

All the calculations are carried out in the m-component version of the 
generalized TDGL model, i.e. when the order parameter field is an m- 
component complex vector. Though the most relevant case concerning ap- 
plications corresponds to m = 1, such an extension of the model is a useful 
theoretical device similarly as it has proved to be at equilibrium phase 
transitions'.a). 

The paper is organized as follows: After defining the generalized TDGL 
model (section 2) we consider a special case characterized by a certain 
relationship among the parameters in the equation of motion (section 3). 
Turning to the general case we derive in the Gaussian approximation the 
correlation functions in both the pre- and post-bifurcational regions (section 
4), as well as the stationary distribution the anomalous properties of which are 
discussed (section 5). Then, the corrections to the amplitude and the 
frequency of the limit cycle are determined (section 6) followed by the 
investigation of the effect of fluctuations near the border-line where the limit 
cycle state loses its stability (section 7). A generalization of the model 
describing a behaviour analogous with that near tricritical and higher order 
critical points of equilibrium phase transitions, as well as, some expressions 
of correlation and response functions, not treated in the main text, are given in 
the appendices. 
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2. The model  

A wide class of hard mode instabilities has turned out to be describable by 
a generalized t ime-dependent  Ginzburg-Landau (TDGL) model for a complex 
order parameter  field, the parameters of which are also complex numbersS-7). 
In order to simulate fluctuations and to study their effects a complex noise 
term is included into the equation of motion. We shall consider the m- 
component  version of this model which corresponds to a situation where m 
modes become simultaneously unstable at the bifurcation point and assume 
isotropy in the component  space. Let  4~i(x, t), j = 1, 2 . . . .  m denote the slowly 
relaxing complex order parameter  field (the critical mode) with momentum 
cut-off A in a d-dimensional system of volume unity. The equation of motion 
of tkj in the vicinity of the bifurcation point is the following 

where the coefficients a, u2 and u4 are complex numbers. We shall use the 
notation for complex numbers z: Re z --- z (1) and Im z -= z (2). The real part of u2 
is supposed to depend linearly on the control parameter,  )t. In suitable units 

u ~1)= ) to-  )t, (2.2) 

where )to is the value of the control parameter  at the instability point of the 
deterministic problem. All the other parameters of eq. (2.1) are taken to be 
independent  of X. To ensure the existence of a stable homogeneous stationary 
state a °) and u~41) should be positive. By using suitable units we set a (~) = 1. 

As the simplest possibility, we assume the complex noise ~ to be a 
Gaussian white noise (similarly as in references ~2-16) with zero mean value and 
correlation functions as 

(~i"(x, t )~ l ! ) (x  ', t ' ) )  = 2 r a ( x  - x ' ) a ( t  - t ' ) a j ,  j,, (2.3) 

(~2)(x, t)~)E)(x ', t ' ) )=  2F~(x  - x ' ) ~ ( t  - t')8~, r. (2.4) 

~I 1) and ~)2) a re  independent  random variables, F is a real constant. 
Note  the symmetry  of eqs. (2.1), (2.3) and (2.4): if we perform the gauge 

transformation 4~j(x, t)-~ d~i(x, t ) exp( - i to t )  for j = 1, 2 . . . . .  m, where to is a 
(real) constant,  we get a similar equation as (2.1) but now u2 is replaced by 
u2 - ito. 

The model defined above describes a noisy system exhibiting a normal 
Hopf  bifurcation: for control parameter  values )t <)to ()to is the value of the 
control parameter  at the bifurcation point) the system has a homogeneous 
steady state while for )t >)to a homogeneous limit cycle is approached 
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asymptotically. The amplitude of the limit cycle, ~,  is considered to be the 
order parameter which sets in continuously when h goes through its critical 
value, he. The order parameter, ~,  is in general a complex m-component  
vector. However,  by making use of the isotropy of the system in the 
component  space we can choose it to point in the direction of the j = 1 axis; 
furthermore, it can be always chosen to be real. In the asymptotic state, 
reached for t ~ 0% the average of ~bj(x, t) is obtained for h ~> hc then as 

(~bj(x, t)) = g' exp(-itol~(h)t)~j, ], (2.5) 

where tol¢(h) denotes the frequency of the limit cycle at control parameter 
value h, and • is real. 

A possible generalization of the model, the critical behaviour of which is 
analogous to that near higher order critical points, is given in the appendix A. 

3. A special case 

Before turning to the approximate evaluation of the effects of fluctuations it 
is worth discussing a special case in which considerable simplification occurs 
and some exact results can be obtained. This case is specified by the condition 

u~42~ a~2~ = u~4" (3.1) 

Writing down the Fokker-Planck equation associated with the process 
(2.1)-(2.4) and  using the condition (3.1) it can easily be shown that in the 
pre-bifurcational region (~, < he) a stationary distribution Pst{~bj} is reached for 
t ~ o¢ which is of the Ginzburg-Landau form defined by 

GL P st {o'j} ~ exp(-~:/F),  (3.2) 

~--½ ddx IWjl2+u~'~l~JlZ+½u~41~ I,~Jl 2 . (3.3) 

Note that ~ contains only the real parts of the parameters of the equation of 
motion. Furthermore, one can convince oneself that after performing the gauge 
transformation ~bj ~ thj exp(-itot) one obtains a stationary distribution of the 
same form as (3.2)-(3.3) for the transformed field for h < At. 

It is important for the following that, when (3.1) holds, there is a particular 
gauge transformation 

~bj(x, t) = ~bj(x, t) exp(-itoo(h)t), (3.4) 

to0(X) = u~ 2) - (u(42)lu~4t))u~ 1), (3.5) 
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which leads for tPi to the equation of motion 

~bj(x, t) = - L  -d~l)V2+ a~l)+ ti~4 l) I ,12 ~bi(x, t )+  ~j(x, t), (3.6) 

where the Coefficients with a hat denote the original ones divided by F and 

L = F(1 + iu~2)/u~l)). (3.7) 

This equation of motion corresponds to a well-known model in critical 
dynamics of equilibrium phase transitions~7'4), namely to the TDGL model 
with a complex kinetic coefficient (but otherwise with real parameters). Note 
that the noise is proportional to L ~ =  F. This connection of our problem with 
the equilibrium phase transition is especially useful in the post-bifurcational 
region, )~ > Ac. Namely, one can immediately conclude that there is a non-zero 
stationary value of ~i for )~ > Ac which by the usual convention can be chosen 
to be real and to point in the direction of the first axis: 

(~(x, t)) = (~j(x, t)) = ~Sj.,. (3.8) 

Here and in the following bar denotes complex conjugation and bracket 
stands for the average taken in the asymptotic state of the system. 

Substituting (3.8) into (3.4) we see that the average value of ~b oscillates in 
the asymptotic state, and comparing it with equation (2.5) we obtain for the 
frequency of the limit cycle 

£OIc(X ) = U~ 2) -  (U(42)/U(1))U~ 1), X /> )~. (3.9) 

Note that (3.9) is of the same form as the frequency of the limit cycle 
specified by the deterministic version of equation (2.1) obtained by disregard- 
ing the noise term. Since, however, due to the fluctuations there is a shift in 
the critical value of ~ from ~0 to some )~, the region of validity of (3.9) is 
different from that of the deterministic case  and there is also a shift in the 
frequency of the limit cycle at the bifurcation point. To exhibit it explicitly we 
can rewrite (3.9) as follows 

tol~(X ) = to~(~,c) + (u]2)/u~41))()t - )re), (3.10) 

where 

to~()~) = u~ 2~ + (u~42~/u~4~)(,X¢ - X0). (3.1 1) 

Concerning the stationary distribution in the post-bifurcational region (~ > 
Xc) it is again of the Ginzburg-Landau form (3.2)-(3.3) for ~j but, of course, 
there exists no stationary distribution for 4~j itself. It is more appropriate to 
consider the distribution not for tkj but for its deviation from the order 
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parameter, i.e. for to~ defined as 

toi(x, t ) =  to)(x, t )+  ~Sj. 1. (3.12) 

It can be obtained by substituting (3.12) into GL P st {tO/}, which we do not write 
down. For future reference, however, we give the stationary distribution in 
the Gaussian approximation keeping only the terms quadratic in to' 

p (0)GLI,/,p/ st ~'iJ ~ exp(--q~GL/F), (3.13) 

~GL= ~GL+ 4~L, (3.14) 

, p?L = ~ f dax(iVto; i  z + u  4, ,Zlto;i 2 + 1 (l)11-,2d, t2 A -  1 (l)l/-r2oT, t2 ~ ~1.~ 4 T or~ I . ] u  4 " r  W l  1 ,  (3.15) 

m 

~ L =  (1/'2) f dax IVto I z. (3.16) 

Our main interest in this paper will be in the general case when condition 
(3.1) does not hold. Then the situation is much more complicated. Firstly, it 
remains true only in the Gaussian approximation that the frequency of the 
limit cycle agrees with the deterministic result. Secondly, while the stationary 
distribution in the pre-bifurcational region in the Gaussian approximation is 
the quadratic part of the Ginzburg-Landau form (3.2)-(3.3), in the post- 
birfurcational region, already in the Gaussian approximation, we find a 
significant deviation from the expression given by (3.13). 

4. Correlation functions in the asymptotic state 

In order to describe the dynamical properties of the system we shall use the 
response field formalism18-22). Accordingly, the path probability distribution 
associated with a stochastic process can be written as 

W{~, ~b} ~ exp ~{~,  ~} = exp f dtA{~b, (k}, (4.1) 

where gj(x, t), j = 1, 2 . . . . .  m denotes the m-component complex response 
field and ~ is the action of the process. The correlation functions of the 
random variables (k and ~ in the asymptotic state are to be calculated by 
means of W taking the time integration in it between minus infinity and plus 
infinityZl). 

If we are interested in the Gaussian fluctuatiofis it is sufficient to keep terms 
of first order in the equation of motion. Consequently, ~/{~,&} will be a 
quadratic expression. 
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In particular, from eq. (2.1) we obtain 

~/{~, ~b}= f dt f d ~ x [ ~  {-Fl~,[2 + (i/2)[~,(~, + ( - a V 2 +  uz)~b,)+ c.c.]}], 

(4.2) 

in the pre-bifurcational region disregarding the non-linear coupling. In this 
approximation )~c = ~0. Evaluating the correlation function of 4~ in the Fourier 
space we find 

(~)j,k, to~)j,k, to) = 4Fl-ito + ak2 + u2[ -2, j = 1, 2 . . .  m,  (4.3) 

where ~bi, k ,~ denotes the Fourier transform of 4~i in space and time. 
In the post-bifurcational region we introduce new variables, Cs, through 

q,j(x, t) = ~bj(x, t) exp(itO,c(A)t), j = 1, 2 . . . . .  m, (4.4) 

where to~c(),) is the f requency of the limit cycle, and use the separation (3.12) 
where the real quantity, 9 ,  stands for the order parameter of the system, 
defined by (2.5). From the equation of motion obtained for tOl one finds in the 
linear approximation the following condition for a stationary solution 

~(u2 - iOJlc + u41/f2)  = 0. 

This can be considered as a complex "equation of state". 
determines the order parameter 

(4.5) 

Its real part 

= ,f+[(X - X0)/u~4~q ~j2, x/> X0, 
L0, A ~< A0, (4.6) 

while the imaginary part yields the frequency of the limit cycle 

~o?~(;~) = u~2'+ u~?~ ~= u~2~ + ( u ~ ? / u ~ ' ) ( x  - Xo), ;~ >i Xo, (4.7) 

agreeing with that of the deterministic problem. 
Making use of the "equation of state" (4.5) we obtain for the transverse 

components  the contribution to the action as 

(4.8) 

where the subscript T stands for any j~>2. The correlation function 
t - - t  

(0r, k,~t0r, k.~) will be a similar expression as (4.3) but u2 will be replaced by 
zero in it. 

Turning to the longitudinal (j = 1) component,  its equation of motion in the 
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linear approximation reads 

~b~(x, t)  = - s ÷~b~(x, t)  - s -  ~,~(x, t)  + ~l(X, t ), 

with 

s + - - aV2+/./41//2 = - -  o V 2 q  - (1 + iu~2)/u(41))(h - )to) 

and 

(4.9) 

(4.10) 

s-  -- u4~ 2 = (1 + iu~E)/u~l))(h - ho). (4.11) 

The corresponding action is given by 

M{~i, 01} = f d t  f ddx{-r l¢ , ;12+(i /E)[&i(4 ,~+ s÷g, i+ s - ~ ; )  + c.c.]}.  (4.12) 

The total action is obviously the sum of (4.12) and (4.8). The non-vanishing 
two-point correlation functions of 01, evaluated in the Fourier space, are 

obtained from (4.12) as 

(i]/~. k, o;~ / ~__ k, to) = 4F(to: + Is ~12 + is k[2  ..[_ 2tos ~(2))[Nk, (4.13) 

( ~ ,  k, ~b~,-k,-o,} = - 8Fs kS ~/Nk, (4.14) 

where the common denominator is 

Nk = (09 2 -  Is  ~l 2 + - I S k l 2 )  2 + 4o~2s k (')2 (4.15) 

and s~, Sk denote the spatial Fourier t ransform of s ÷ and s-, given by (4.10) 
and (4.11), respectively. The fact that in the post-bifurcational region ~b~,k.~ 
and ~b~,-k-~ become correlated is a manifestation of the symmetry  breaking. 

At the bifurcation point, ?~ = h0, the correlation function (lll~,k, tol]t~,-k,-to) 
- -  t r must vanish and (t~,k,~b~,k, to) and (~T,k,~bT, k,~) become identical with (4.3) 

with u2 = O. 
It is worth noting that the correlation functions determined in the Gaussian 

approximation can also be considered as the zeroth order propagators in a 
systematic perturbation expansion of the path probability W. In order to make 
the result more complete we give the expressions of some additional 
correlation functions in the appendix B where also the temporal  behaviour of 

the correlation functions will be discussed. 
From (4.13) and (4.14) we obtain the equal-time correlation functions of the 

asymptotic state 

2F (k~)'+ (k~)~llal2+ (1 + K~)/(4lal ~) 
(~b~,k~b~,k) ----- C~)(k  ) = -kr (4.16) 

((k~): + 112)((k~): + ~/I a 12) ' 

F (kO2[cr + i(K - a(2))] + (1 + K2)12 
(tk~, k~b~,-k) =- D~-)(k) = - ~-~ ((k~)2 + 1/2)((kO2 + c r / [ a [ 2 ) l a l  2 , (4.17) 
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where 

K =-- u(a2)/U~ 1), (4.18) 

or ~ 1 + a(2)K, (4.19) 

and a correlation length, ~, has been introduced 

~-2 = 2u(41)~2 = 2(A - A0), A > A0. (4.20) 

It is to be noted that in the special case specified by (3.1) the right-hand side 
of eqs. (4.14) and (4.17) are real. The property that this type of correlation 
function is complex reflects an essential feature of the model as will be seen 
in section 5. 

Finally, we should emphasize that (4.16) is meaningful only if its 
denominator  is positive which is fulfilled for any k only if or > 0. The singular 
behaviour of (4.16), (4.17) at (r = 0 indicates that an instability develops at this 
point the onset  of which will be discussed in section 7. In sections 5 and 6 we 
shall assume or to be of order unity. 

5. Stationary distribution in the Gaussian approximation 

In this section it is convenient  to use the Fourier  components  of the order 
parameter  field, ~bj, k(t) and @;,k(t), for )t < )% and ~, > )%, respectively. In order 
to calculate the stationary distribution, reached for t ~ 0% we consider the 
path probability P{~b} oc e x p ( - f L d ~ - )  23-25) which can be obtained by in- 
tegrating W{~, ~b}, given by (4.1), over ~. In the Gaussian approximation we 
can treat each component  separately. Let  us take first ;~ > 2,o and start with 
the longitudinal component .  The Lagrangian associated with the coupled 
stochastic equation (4.9) is given by 

, + , --7-;- 2 ' + Sk~l,-kl , (5.1) L(~b~, k(r), @t,k(r)) = (4r )  -1 6,,k + Sk61,k 

where s~ and s~ denote the Fourier  transforms of s + and s-  ((4.10) and (4.11)), 
respectively,  as in the previous section. Graham pointed o u P )  that for a linear 
process of a random variable q, the stationary probability distribution Pst(q) 
can be expressed as e x p ( - J %  L dr)  where the Lagrangian L(q, q) is to be 
integrated along the most  probable path with boundary condition q(T = t) = q. 
Applying this procedure in our case, where ~ t  k and ~ ,k  are considered as the 
basic variables we obtain for the Euler-Lagrange equation determining the 
most probable path 

~I.k(T)+(S~---~k)61,k(~)--(IS~I2+IS~I2)~,k(T):-2S~S~tpi , -k(*)=O. (5.2) 
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with the boundary condition ~O~.k(l-= t ) =  tO~.k. Since the stationary dis- 
tribution must not depend on the initial values at "r = -  ~, it is sufficient to 
consider instead of the solution of the second order equation (5.2) those of the 
equations 

+ , - - - 7  
= - SkqJl ,k  -- S k O 1 , - k ,  (5.3) 

~ , k =  + , - + + , S k + l , k  + ( S k S k / S k ) t P l , - k .  (5.4) 

It can be easily checked that the solutions of (5.3) and (5.4) are also 
solutions of (5.2). The solution of (5.3), however,  gives a vanishing Lagrangian 
which cannot  characterize the most probable path. Furthermore,  the Lagran- 
tian (5.1) along the most probable path specified by (5.4) turns out to be a 
" t ime"  derivative: 

• , 1 d~ l  
L(tOl,k(r), tP~,k(r)) = i f - d r  ' 

where 

. . . . .  )} sk i ,l,kl + ( 2 k \ 2S-~ 0t, kqJl,-k+C.C. 

( 5 . 5 )  

(5.6) 

B 
and 4)1 is considered as a function of the variables, O~.k and ¢i,k. Con- 
sequently, the stationary distribution associated with eq. (4.9) is obtained as 

p , st{q,1, k} ~ exp(-- (Ih/F). (5.7) 

It is to be noted that in the special case (3.1) we obtain 4)1 = (I)~ L in accordance 
with the results of section 3 where (b~ L is given by (3.15). In the general case, 
however ,  additional terms appear and one can rearrange (5.6) as 

~i(a(2)u (41) - U (42))k2~[ t2 ] 
(I)1 = ~1GL]- ~ [ 4(~kZ+ ~4~2) I[I],klll],-k "1" C.C.. (5.8) 

Using the same method we obtain for the stationary distribution of the 
transverse components  for h > h0 

' st{t//T,k} ~ ~ ~ (5.9) 

and for the stationary distribution in the pre-bifurcational region, ), < ),0, for 
the field +j, k 

Pst{4,j, k} ~ exp{-(2F)  -1 ~.j (k 2 + u ~))14~j, k [2}. (5.10) 

Both are expressions of the usual Ginzburg-Landau form in the Gaussian 
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approximation. The absence of the constant  term in the coefficient of [ I ] /~ ,k [  2 in 
(5.9) is a manifestation of Goldstone 's  theorem similarly as at equilibrium 
phase transitions. 

Le t  us turn to a discussion of the stationary distribution for the longitudinal 
component .  The most  striking property of (5.8) is its deviation from a Ginz- 
burg-Landau  functional due to the fact that the coefficient of ~b~, k~,-k cannot 
be considered as a constant. The strange behaviour of the stationary dis- 
tribution can be traced back to the fact that the equation of motion in the 
generalized T D G L  model does not have a potential i.e. it is not derivable from 
the stationary distribution itself. The deviation from the Ginzburg-Landau 
form makes the behaviour of the system in the asymptotic state much reacher 
than otherwise. First, it will be seen (section 6) that there is a correction to the 
f requency of the limit cycle coming from the imaginary part of D~ ) (see (6.6)). 
No Ginzburg-Landau form would lead to such a correction since D~ ) is 
necessarily real in this case. Furthermore,  the instability mentioned at the end 
of section 4 (and discussed in detail in section 7) can be considered as a 
consequence of the deviation from the Ginzburg-Landau form, too. Finally, 
we mention that in the special case (3.1) the anomalous term of (5.8) vanishes 
in accordance with the general results of section 3. 

6. Corrections to the amplitude and frequency of the limit cycle 

By means of the correlation functions obtained in the previous sections one 
can calculate corrections to the leading order terms. Here we shall be 
interested in the correct ion to the complex "equat ion of state" derived in 
section 4. 

We start by giving the equation of motion for the longitudinal field ~b~,k 
including the non-linear terms 

" !  __ 
t~  1, k - -  - -  ( / ~ 2  - -  iC01c -1- t /4X/~ '2)  ~/J '~k 0 - -  ( U 2  - -  i t O l c  -1- 2 U 4 ~ [ ~ ' 2  -1 - ,  ak 2 ) ~ J  l,  k ' 

_ ~,.k~l.k'-k - -u4~%~-k u4~/' ~ , -;7 + ~  , -7-r 

-[- t ~ l , k , t ] l l , k _  k, - -  I I  4 ~ l , k ' d ,~ j ,  k@j,k'÷k"-k + ~l,k. (6.1) 
j, " 

Then we take the average of (6.1) in the asymptotic state. According to the 
definitions (3.8), (3.12) (~b~.k) = 0 which in the k = 0 case provides the complex 
"equat ion of state". In calculating the right-hand side of eq. (6.1) two and 
three point equal-time correlation functions appear. We evaluate them by 
using the Gaussian approximation for the stationary distribution given in the 
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previous section; the three point term vanishes and we obtain 

0= + u, .2 + u4 ft(m-1)C )(k) + 2C~)(k) + D )(k)}ddkl(27r)a], 
k 

(6.2) 

where the correlation functions C~ ) and D~ ) are determined by (4.16) and 
(4.17), respectively, and the transverse one by 

C~)(k ) = F2/k z (6.3) 

as it follows from the distribution (5.9). It is convenient  to rearrange (6.2) by 
adding and substracting the quantity 

g 
F2u4~(m + 1) | k -2 dnk/(21r) d --- u4B~, (6.4) 

k 

where 

B =- F(m + 1)Kd2A~-2l(d - 2) (6.5) 

and Kd(27r) d denotes the area of the d-dimensional unit sphere, resulting 
finally in the "equat ion of state" 

0 = 1/I[//2--i001c + u4B + / / 4 ~ 2 +  u4 f{2(C )(k)-F2k-2) + D~)(k)} ddk/(2~r)d]. 
k 

(6.6) 

Since the correct ion to the deterministic result is assumed to be small one can 
use approximately hc = h0 in the term under the integral in (6.6). Con- 
sequently, this term vanishes at )~ = Xc, so does ~2, and one immediately 
obtains for the critical value of the control  parameter  and for the f requency of 
the limit cycle at the bifurcation point 

and 

Xc= ~o+u~)B (6.7) 

(6.8) 

respectively. 
Next ,  we turn to the evaluation of the corrections in the post-bifurcational 

region, h > At. Using the expressions (4.16) and (4.17), introducing ~ through 
(4.20), and making use of the fact  that around the bifurcation point A~ >> 1, we 
can replace the integral over  k by a dimensionless one running to infinity (and 
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being convergent for 2 < d < 4). So we arrive at the equation for )t > )tc 

~e 

A1/2  + x 2 A 2  xd-3 
0 = U4--  itOIc()t) + unB +/./4 9 2 -  Fu4~2-dKa (X2+ ~)(X 2+ o-/]al% d x ,  

0 

(6.9) 

with 

31 =- [ - [ a l  2 +  o-(4[al 2-  2 -  o-)]/(atZ)lal) 2, (6.10) 

A2-- (21a[2 + o-)/[al2+ i(o- -]al2)/(a(Z)]al) 2, (6.11) 

where or is the combination defined by (4.18) and (4.19). 
The real part of (6.9) determines the order parameter 9.  We obtain 

• ~1)~.2 dr.. , -  2(z-e)/ZB(( d - 2)/2, (4 - d)/2) 
/.l(I)l/f2 = )t - - ) t c  "F " 4  g l X d l  1_ 2o-/lal z 

x [ 2  2o- {2o-'~ 'd ') '2 1 (1 o- ( 4 - 5 o - +  2o-2''\] (6.12) 

where )tc has been given by (6.7) and B stands for the beta function. Similarly 
as in the case of equilibrium phase transitions one finds a correction which is 
proportional to ~2-d. This reflects that the expansion goes in powers of • O)e4-d u 4 c  5 . 

Consequently, one obtains a small correction to the deterministic result if 

u(4t)~ :4-d <~ 1. (6.13) 

In the immediate vicinity of the bifurcation point this criterion, of course, 
cannot be fulfilled. Note, however, that at non-equilibrium phase transitions 
the critical region is extremely narrow and one can hope at best to reach the 
region where the first corrections, though small, become detectable. 

The frequency of the limit cycle is specified by the imaginary part of (6.9). 
Comparing this equation with (6.12) we obtain 

¢Olc()t) = 091c()tc) + K() t  --  ) tc ) - -  U(1)( ff -- a(Z))~Z-eF 1 + K 2 Kd 

× 2(2-a)12B((d - 2)•2, ( 4 -  d)12) ( 1 -  { 2= ~(d-2)/2~ 
1 - 2o - / la  12 _ ~ ~d]~] j ,  (6 .14)  

where K has been defined by (4.18). This shows that the correction to the 
deterministic result to}°)()t) = (u~2)+ K0t - )to)) = to~c()tc)+ K()t - )tc) is propor- 
tional to ~:2-e and suggests that the expansion of O~c()t) would go in powers of 
U(41)(K -- a (2) )~  4-d. A small correction will be found if 

u (41)(K - a ~2))~4-d ~ 1. (6.1 5) 

It is worth mentioning here that in the special case of K = a (2) the correction 
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in (6.12) goes over to that appearing in this context  at equilibrium phase 
transitions. At the same time no correct ion is obtained to the deterministic 
expression of the f requency of the limit cycle. All these are in full agreement 
with the general results obtained for the special case (section 3). If K ~ a ~2~ but 
IK- a~2~[ ~ 1 the correct ion to the f requency of the limit cycle is much less 
important  than the correction to its amplitude. In principle the opposite case 
[K -  a(2)[ >> 1 might also happen which implies that the quantity in which a 
deviation can be detected first is the f requency of the limit cycle. 

Concluding this section it is to be noted that for  finding a small departure in 
the asymptotic behaviour of the system from the predictions obtained in a 
Gaussian approximation not only the condition (6.13) (a straightforward 
generalization of the Ginzburg criterion of critical statics3'27)) is required but 

also (6.15) which is a novel feature of the generalized T D G L  model. 

7. The onset of an instability induced by phase fluctuations 

In this section we are going to investigate how the instability at or = 0, 
mentioned at the end of section 5, develops, i.e. we are interested in the 
regime where cr is a small positive number. It follows from (4.16) and (4.17) 
that the equal time correlation functions C~)(k), D~)(k) at or = 0 diverge a s  k -4 

for  k ~ 0  which would mean an infinite local fluctuation in $i(x) for any 
dimensions below four. Considering the stationary distribution (5.6), (5.7) one 
observes that the determinant of the quadratic form associated with a given 

value of k becomes proportional to k* at or = 0. 
The stationary distribution, (5.9), of the transverse components  does not 

depend on or, therefore  it is sufficient to concentrate  on the j = 1 component  
when treating the problem of the onset of this instability. Since the amplitude 
of the limit cycle is chosen to be real it follows from (3.12) that the imaginary 
part of tp~ can be written as O~(2)(x, t) = g O ( x ,  t) supposing O(x, t), the phase of 
the complex field tk~ = t~i + 9 ,  to be small. Consequently,  they are just the 
phase fluctuations which are described by ~I~2). The Fourier t ransform of Oi c2) 

reads 
g . t .  r ( 2 ) ' t  I - -  ~,1 )k,~ = (tkl,k,~ t0~.-k-~)/(2i). (7.1) 

First, we investigate its equal time correlation function. We are interested in 
the long wavelength fluctuations of qji(2) at a given value of )t(h >)to), 
therefore the region k~ ,~ 1 will be discussed (~ has been defined by (4.20)). In 
this region we obtain from (4.16), (4.17) 

e(lu411u~") 2 
((tOi(z))k(q,i(z))_k) = k4~Z(lal z + (k/c)_z), (7.2) 
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where a new correlat ion length 

lc = ~cr -1/2 (7.3) 

has been introduced which goes to infinity as t r y 0 .  As for  the other 
correlat ion functions,  we find that ((0~(1))k(tp~(2))-k) tends to a constant  as k ~ 0 
for  or > 0 and becomes  proport ional  to k -2 at cr = 0, while ((Ol(1))k(0~"))_k) is 

constant  for both cr > 0 and tr = 0 when k ~ 0, i.e. these correlation functions 
do not describe diverging local fluctuations. 

Turning to the time dependent  correlation function of tkl ~2), we obtain f rom 
(4.13)-(4.15) in the small f requency  limit (to~2 ~ 1) a Lorentzian form 

2 r  (l u,ll u 2 
((~bl(2))k,,o(~b~(2))-k,-,o) = to2 + y2(k ) , (7.4) 

with 

v(k)  = crk2+ la[2k4~ 2= k4~2(la12 + (kit) 2). (7.5) 

The expression (7.4) implies that the relaxation rate of the phase is 7(k). 
At this point we can make contact  with the work by  Kuramoto  and 

coworkers  7-1°) who treated the deterministic generalized T D G L  model. It was 

first pointed out by them that the limit cycle state becomes  unstable when 
cr ~ 0  (the control paramete r  cr corresponds  to v in their notation). As a 
matter  of fact  the phase relaxation rate obtained here in the Gaussian 

approximat ion for the correlation function (7.4) agrees with that of Kuramoto  
and YamadaS'l°). Treating the fluctuations in a more accurate  way,  however ,  
the agreement  with the deterministic result is expected to be lost. As for the 
region beyond this instability Kuramoto  and Yamada  found 8-~°) in the deter- 

ministic model that a chaotic behaviour  develops which comes f rom the 
irregular motion of the phase of the local oscillations. They called this type of 
behaviour  a phase chaos. 

Having calculated the correct ions to the deterministic expressions of the 
amplitude and the f requency  of the limit cycle (section 6) we can gain some 
information on how the inclusion of the interaction of the fluctuations of tkl 
may modify  the picture above.  We consider only the case 2 < d < 4. 

First we note that the correct ion to the f requency of the limit cycle remains 
finite even at tr = 0 (see (6.14)). This is not the case, however ,  concerning the 
amplitude of the limit cycle. As far as or is close to [a[ 2 (i.e. to the special case) 
the correct ion in (6.12) is positive but when tr is reducing we arrive at a point, 
cr = 6-, where the correct ion vanishes.  For ~ < ~ the correct ion becomes  
negative which results in a decrease in the amplitude of the limit cycle. To be 
explicit we give 6- for  a(2)-> 1 when its expression is simple 

6- = 2(d-6)/(4-d)(a(2)) (4-2d)/(4-d). (7.6) 
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As the simplest possibility let us assume that this tendency does not break 
down till the amplitude of the limit cycle vanishes which then defines a new 
instability point. This point is specified by a critical value g = crc. Although we 
cannot  calculate the shift, trc, exactly since the validity of our procedure is 
restricted to small corrections,  we can estimate it by equating the two terms 
on the right-hand side of (6.12) and keeping terms of leading order in u(4 s) only 

= 2)k [ U (1) 12](4-d) 
o'~ h [al F 2,(4 d ) K d B ( d  - ' 2  4-d)2a__~  j . (7.7, 

0 2 ' 2 

This shows that external fluctuations make the region of the limit cycle state 
smaller, and the strength of the noise correlation, F, is a measure of the shift. 
Fur thermore,  the instability at cr~ differs qualitatively, in this picture, from 
that described by Kuramoto 1°) in the deterministic model since in the present  
case the amplitude of the limit cycle vanishes at cr~ and, consequently,  the 
phase loses its meaning. 

It is an open question what type of behaviour will be found for or < cr~ in the 
noisy system. One cannot  exclude the possibility that not in the immediate 
vicinity of cr~ a phase chaos could be found by introducing the concept  of a kind 
of local value of the limit cycle amplitude. 

Appendix A 

We mention here a possible generalization of the model. Considering the 

equation of motion 

m o'-1 

(a.1) 
u~l) = X0- X, u ~  > 0, 

instead of (2.1) means that the situation around h = h0 is analogous to that of a 
critical point of order cr (o- = 2 ordinary critical point, tr = 3 tricritical, cr = 4 
fourth order critical point). Repeating the calculation in the Gaussian ap- 
proximation we find the only modification that the complex "equat ion of 
s tate" now reads 

~ ( u 2  - i~Olc + u2,,~ 2c'~-1)) = 0. (A.2) 

Consequently,  for ~,/-- h0 

= - [(h - ,~os~ ~ ~t, , ,  z~J(l)l I/t2~-1)1, (A.3) 

where 1/[2(cr- 1)] coincides with the exponent  /3 of a critical point of order 
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or27), and 

oJl°)(X) = u~2)+ u ~  2(~-') = u~2)+ ( u ~ / u ~ ) ( X  - )to), (A.4) 

(0) depends on ~, linearly for any or. Furthermore s + and s- are now to be i.e. OOlc 
replaced by 

S + = ( - - a ~ 7 2  + (or  - -  1)ttZ,~a/~2('~-l)),  (A.5) 

S -  = ( o r -  1 ) /~2~r~  2( 'r- l) .  (A.6) 

The correlation function, and the stationary distribution in the pre-bifur- 
cational region, just as the transverse correlation function and the cor- 
responding stationary distribution in the post-bifurcational region are given by 
the same expressions (by (4.3), (5.10), (6.3) and (5.9), respectively) for any or 
as in the case of the ordinary critical point. The longitudinal correlation and 
response functions, as well as the stationary distribution of the longitudinal 
component can be obtained by substituting s~ and s~ in (4.13)-(4.15), (B.1)- 
(B.6) and in (5.6) by the Fourier transform of (A.5) and (A.6), respectively. All 
the other results and conclusions of the paper can be straightforwardly 
generalized for the case of an arbitrary or. 

Due to the fact that the parameters are complex, there are other pos- 
sibilities, too, for finding instabilities analogous to higher order critical points. 
For the sake of simplicity we consider the case analogous to a tricritical point 
only. Let  us suppose that only the real part of u4 vanishes and u~l)> 0. In 
experimental situations this can be reached by fitting one parameter only 
which is much easier than eliminating the complex u4 corresponding to the 
case discussed above. The important consequence of having u(4 ~)= 0, u~42)~ 0 
lies in a qualitative change in the frequency of the limit cycle. It follows from 
the "equation of state" 

~ ( u 2 -  itOlc + u(42)~2 +/.16~/¢4) = 0 (A.7) 

that near ~,0 

O31c()k) = U~ 2) "4- /~ (2)/(U (61))1/2(}k - -  )k0) 1/2 (A.8) 

characterized by a stronger dependence on A than the usual linear one (4.7). 
Therefore one can hope that instabilities of this type are experimentally 
observable in systems exhibiting limit cycle behaviour. 

Appendix B 

First, we give the two-point correlations of the real and imaginary parts of 
q'i,k.~ for the post-bifurcational region in the Gaussian approximation. From 
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(4.12) it follows that 

(#i!~!:,o) ( 't''~2)2 " ~-I 2 ISkl 2+ 2oJs~(2~)/Nk, = .~.l ,k,~,)=2F(602+lS + 

i.,.,(1) .,.,~1) \ _  ,.~.,(2~ .... (2) \ _ 4 F ( S ; S D , ) / N k ,  \ t / ) l ,k ,~ot~ l  _k,_~o ! -  - - \ t / ) l , k , o ~ t / ) l  _k,_~o ! = 

/ .L~(1) .#,~(2) \ _ _  l . l . t ( 2 )  .#,t(l) \ 
\ t l ; I , k , o ~ W l , - k , - ~ o l  - -  \ t / ) l , k ,  t o ~ l .  k , - o ~ !  = - -  4F(SkS~)(2)/Nk, 
(.1,~ (1) .1,~ (2) / . I , t  (1) ./,t (2) \ ~,~.~.~,~,~,~) = =0 ,  \ t ~ l , - k , - ~ o t / ) l ,  k, to/ 

(B.1) 

(B.2) 

(B.3) 

(B.4) 

w h e r e  N k  has been determined by (4.15), furthermore, s{ and s ;  denote the 
Fourier transforms of (4.10) and (4.11), respectively. 

Next, we turn to the two-point correlations between ~ and the response 
field, t~], in the post-bifurcational region. From (4.12) we obtain 

(~l, "' --2isk 
' k,~Ot,k.~) = IS~I2_ iSkl2_ to2_ 2ions ~-(,~, (B.5) 

2i(--io~ + sD (B.6) 
(O,.~,~g,~,-~-~>-- is~l~ is;i ~ _ , o =  2i~os~(l~- 

The autocorrelation function of 01 vanishes. 
In the case of the usual TDGL model the correlation function of the order 

parameter and of the response fields is simply related to the response function 
of the system2~). It is natural to ask what is the corresponding relation for the 
generalized TDGL model. In order to answer this question in general let us 
consider eq. (2.1) and let us formally introduce an infinitesimal complex 
external field hs(x, t) on the right-hand side of the equation of motion of the 
j th component. After constructing the path probability distribution for this 
process and calculating the average of (hi(x, t) by means of it we obtain 

(~bj, k.~) = G ; ( k ,  09)hj,  k,,o + G ; ( k ,  ~o)hj, k, ~, (B.7) 

where hj.k,~ denote the Fourier transform of hi(x, t) and 

- - i  ~ 

-- i -~- 
G T (k, o~ ) = (-- f  ) (  dPi. k. ,oc~j.k, ,o) . (B.9) 

Next we discuss the Gaussian fluctuations of fields in the wave-number, 
time representation. For the longitudinal correlation functions we obtain for 
t/> 0(h/> h0) 

C ~ ( k ,  t) =- (~i.k(t)~i,k(0)) 

= exp(--s "~l)t)[C~)(k) ch ctkt - (D~(k)s--~ - i C ~ ( k ) s  ~-~2~)(sh akt)/ak],  
(B. 10) 



FLUCTUATIONS IN THE LIMIT CYCLE STATE 165 

D~)(k, t) ==- (~bi, -k( t )$i. k(0)) 

= exp(-s-~¢l)t)[D~)(k) ch akt - (C~)(k)s ~ + iD~)(k)s ~(2))(sh akt)/ak], 

(B.11) 

where 

= [Is  12- s (B.12) 

and the equal-time correlation functions C~)(k) and D~)(k) have been defined 
by (4.16) and (4.17), respectively. 

It is a peculiar feature of (B.10), (B.11) that it depends on the value of k 
(and A) whether C~)(k, t) and D~)(k, t) exhibit temporal oscillations or not. 
Oscillations appear only if ak is imaginary, i.e. if 

k2> (A - A 0 ) ( l u 4 l - / A ( 4 2 ) ) / ( u ~ l ) a ( 2 ) ) ,  A ~ )tO. (B.13) 

AS for the transverse correlation function it is most illuminating to consider 
its expression in the (x, t) representation. For a fixed space coordinate the 
correlation function falls off as a power law in time: in a d-dimensional 
system for t~oo ,  C$)(x, t ) - - , t  l-d12 which is a Goldstone-like singularity. In a 
higher order approximation also the longitudinal correlation function is 
expected to decay for large t according to a power law for a fixed value of x. 
(See for a discussion of these properties in context of equilibrium phase 
transitions ref. 28.) 

Finally we mention, as can be easily checked, that all the correlation 
functions discussed here and in the main text obey dynamical scaling hypo- 
thesis 29'3°) as generalized for hard mode instabilities 15) with classical 
exponents: r I = 0, z = 2. 
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