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Two independent approaches, the box counting and the sand box methods are used for the 
determinatiov of the generalized dimensions (Dq) associated with, the geometrical structure of 
growing deterministic fractals. We find that the muitifractal nature of the geometry results in 
an unusually slow convergence of the numerically calculated Dq's to their true values. Our 
study demonstrates that the above-mentioned two methods are equivalent only if the sand 
box method is applied with an averaging over randomly selected centres. In this case the 
latter approach provides better estimates of the generalized dimensions. 

Fractal measures characterized by an infinite hierarchy of exponents have 
attracted considerable interest recently (for reviews see refs. [1-6]). Objects 
with such multifractal properties have been shown to be relevant to a variety of 
physical processes, including turbulence [7, 8], chaos [9], conduction in random 
resistor networks [10], and growth of aggregates [11-13]. 

In many cases physical processes generate singular distribution of the 
corresponding measure on a support which is a fractal. Here we will be 
. . . . . . . .  ,4 , ,:,k ,h.  is 1 , , . ; ¢ . , . , ~ h ,  distributed n,, the, I, vu~,,,,tttwu ¢~ltgi tu~ case  w h c n  ,1~,~ . i .  measure . . . . . . . . . . .  : . . . . . . .  
support, but the geometry of the latter exhibits multifractal behaviour. In fact, 
the question whether such multifractal structures exist in nature or lhey can be 
obtained only by mathematical methods has not been satisfactorily answered 
yet. A few very recent numerical results suggest that the mass distribution 
within clusters generated by growth models and laboratory experiments on 
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diffusion-limited growth corresponds to a "monofractal"  geometry rather than 
to a fractai measure [14]. On the other  hand, in an analysis of sedimentary rock 
[15] the distribution of mass was described in terms of multifractality and 
similar results were found for aggregation models from a small cell renormali- 
zation group approach [16]. Anomalous behaviour of the number of boxes of 
size r containing a given number  of particles was found in a study of the mass 
distribution within diffusion-limited aggregates [17]. Recent studies suggest, 
however, that the cluster sizes used in the numerical investigations were likely 
to be too small to see the true behaviour [18]. 

In order to clarify some of the controversial points about geometrical 
multifractality we shall study deterministic cluster growth models using the 
definitions and formalism published in ref. [19]. In ref. [19] we argued that 
anomalously large structures have to be generated to see the asymptotic 
regime. As an independent and quite surprising result we found that the fractal 
dimension of the above mentioned deterministic constructions determined 
from the usual expression M(R).--. R ° was inconsistent with the value obtained 
from self-similarity considerations. (Here M(R) is the number of particles 
within a circle of radius R centered at the origin of the construction, and D is 
the fractal dimension.) 

In general, two basic methods are used to determine fractal dimensions. For 
growing fractal structurcs the scaling of the mass ~ithin a rcgion of size L is 
investigated as a function of L. Here we study an extension of this approach 
which is sometimes called "sand box method". In the case of fractals with a 
fixed size and infinitely small details, the dimension of the objects is de- 
termined from the scaling of the number of non-empty boxes of decreasing 
size. In this "box counting" method the structure is covered by a grid with a 
mesh size equal to 1 and a box or lattice unit is considered as occupied if its 
intersection with the fractal is larger than zero. In this paper we address the 
question of equivalence of these approaches in the case of geometrical (often 
called also mass) multifractals. 

Let us define geometrical (mass) multifractality of growing clusters according 
to ref. [19]. We shall assurrz that the structure is defined on a lattice and its 
linear size and mass are L and M o respectively. Furthermore,  a denotes the 
diameter of the particles the clusters are made of (the unit of the lattice on 
which the cluster is growing) and i is the lattice spacing (box size) of the grid 
which is put onto the cluster to determine its fractal dimension. Then one can 
define M, as the mass (the number  of particles) of the ith box (i = 1, 2 . . . .  ). 
Knowing the set of M, values one can determine the quantity N(M) which is 
the number of boxes with mass M. Assume that we plot In N(M) versus 
In M/M~, for various 1. If these histograms fall onto the same universal (size 
indcpcndcnt) curve after rcscaling both coordinates by a factor ln(l/L) [4], the 
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structure is a geometrical multifractai [19]. Obviously, the above propcrty 
should hold if 

"- , ( 1 )  

and 

"~ , ( 2 )  

where a is the mass index, 

In M/M o 
a -  l n l / L  ' (3) 

N(a)  is the number of boxes with mass index c~, and (l/L)---~O. The Dq 

generalized dimensions [20] can be obtained from the scaling 

1)(q-l)Dq 
~ Mq~-. M q -~ (4) 

! 

in the limit l / L - - >  0 .  

Before we discuss our results concerning the generalized dimensions of the 
growing asymmetric Cantor  set we briefly review the definitions of the methods 

which will be used. 

Box couniing 
As it was already mentioned, in this method the object is covered with a 

lattice of unit size 1 and the number of non-empty boxes N(I) is determined. 
The fractal dimension is obtained from N(e)'-- e -°'' for e--*0,  where e = I/L. 
Let us introduce the box counting dimension 

In N(e) (5) Db~te) = 
o ~ In 1/e 

for arbitrary t" < 1. Then we can investigate the conditions under which D b',, 

approximates the true Dr, well enough. Wc ~hall calculate the quaatiL~ D if '~ 
corresponding to the generalized dimensions Dq from 

b~(e ~ = In(E(M,/M,,)'; ) 1 (6) 
Dq . . l n e  q - 1  " 

The definition (4) is recovered in the ~ ~ 0 limit. 
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Sand box method 
The main quantity used in this approach is the mass M(R) (the number  of 

particles) within a region of radius R centered on the fractal (typically on its 
origin). It is widely accepted that for growing fractals in the R---> oo limit the 
expression M(R).-- R °° determines the fractal dimension, where R is the actual 
length of the fractal, R = L, M(L)= M 0. However,  as we shall show on a 
simple example, this statement does not hold, at least, for some geometrical 
multifractals. In fact, the generalized dimension defined by M(L)-- L ° exists, 
but its value is equal to D_a, different from D O if the centre is the origin of the 
fractal. 

If we chose an arbitrary point belonging to the fractal as the centre of the 
sandbox (instead of its origin), because of eq. (1) the quantity In(M/M(R)) for 
R ,~ L approaches the local mass index a characteristic for the position of the 
given centre. Both a and the actual form of the function In M(R) versus In R 
depend on the choice for the centre. In order to obtain well defined dimensions 
independent of the local behaviour, we shall study the average value of the 
masses M(R) and their powers over randomly distributed centres on the fractai. 
Thus, we are interested in the question how (Mq(R) )  scales with increasing R. 
Rewriting (4) we find 

Mt q-I ,.,, ( ~ )  )Dq 
Mo . (7) 

Since M,/M o can be considered as a probability distribution on an approximat- 
ing fractal, we get 

t (q-l)Oq 
(8) 

where the average is taken according to the distribution P, = M,/M o. When 
instead of a grid of lattice unit 1 one uses randomly centred sand boxes of 
radius R ~ L, it is expected that 

( M(R)~q-'\ [R~(q-')Dq 
M ] /-~\-L] (9) 

holds if the averaging is made according to the same distribution. This means 
that the centrcs on the approximating fractal have to be chosen with a uniform 
distribution on it. We note that because of (9) (M(R) ) . - -  R °2, and in general 
D 2 ~< D 0. Eq. (9) is a special case of a relation valid for fractal measures and 
often is used in connection with chaotic attractors [21]; up to our knowledge, 
howcvcr, it has not been applied to growing fractals. 
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We define the sand box dimension of order q as 

Dqb(R/L)  = In([M(R)/Mo] q- '  ) 1 
l n (R /L )  q - 1 ' (10) 

with the appropriate averaging discussed above, for any R between a and L. In 
the following we shall make use of a deterministic geometrical multifractal to 
investigate how D sb is related to D q and D bc q q • 

Let us define the growing asymmetric Cantor set as shown in fig. 1. In the 
first step the (seed) structure is made of three particles placed at the first, third 
and the fourth sites, respectively. In the next step the twice enlarged version of 
the first configuration is added to the seed between the 9th and 16th sites. 
After  the nth step of the construction the linear size of the structure is 4 n, and 
it is made of 3 n units. The fractal is obtained in the n---> ~ limit. 

T h e  D q spectrum can be determined for this fractal exactly. The general 
equation given in ref. [19] for our case can be solved explicitly leading to 

-1 +V~I + 4(3/4) ~ ) 
Dq = 1 In 

q - 1  q +  i'ffn2 " 
(!!) 

From here 

tn(2/3) 
Do = ln(X/51n 2 + 1) _ 1 =0.6942 , D~ = in(l /2) -0 .5849  

and (12) 

In(l /3)  
D_ ~ = - 0.7924. 

In(l /4)  

It is easy to check that Mo scales with L according to D_~. 
b c  s b  The results concerning D q and D q were obtained numerically for the 

asymmetric growing Cantor set. During the application of th,: box counting 
method we put a grid on the fractal and gradually decreased the grid size from 

n = l  OCO 

r~=2 0 C~ C~O 0 ~ 0  

Fig. 1. The first three steps in the construction of the growmg asymmetric Cantor set. 
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the largest possible size L to that of the particles. We determined the number 
of particles (Mi) in each box by an exact reeursion relation. In this way it was 
possible to study relatively large systems (corresponding to L = 4 s°) using a 
personal computer.  Figs. 2a and b show DbqC(e) as a function of the box size e. 
The q values were changed between - 8  and 8. The curves we obtained have a 
region where they approach the value corresponding to the t rue  D q calculated 
from (11). The length of this region strongly depends on both q and the size of 
the object. For larger q values the numerical results fit the exact one better. On 
the other hand, for q = - 8  there is only a relatively narrow region (between 
260 and 28°), where the box counting method gives reasonable results. Fig. 2b 
demonstrates that for smaller objects the convergence to the exact values is 
considerably worse. 

The sand box method was applied using many randomly chosen centres. In 
this case the number  of particles was determined within a region of length R, 
where R was incremented from one particle size (a = 1) to W, the latter 
denoting the distance between a given centre and the most distant point 
belonging to the fractal. To understand the results obtained after averaging 
over the centres we first studied the M(R) curves for a few fixed centre 
positions. In fig. 3, we plotted the quantity Mo/M(R ) versus L/R for n = 8. 
The small value of n is due to the fact that it was not possible to find a 
recursio, relation for M(R) similar to that we could use for the calculation of 
the M, values. 

(i) When the centre is at x = 0 the plot is made of two parts having different 
slopes (fig. 3a). On the interval (2", 22n) the slope is D~ which is just the mass 
index t~ corresponding to that point of the fractal. On the interval (2 ° 2") the 
slope is trivial (equals to 1). (ii) For the centre position x = L one obtains a 
stepwise function touching from above a straight line of slope D ~  (fig. 3b). 
(iii) For a single randomly selected centre the behaviour is more complex. For 
example, if the centre is at x = 3 x 22C"- ~1 we obtain a function which on the 
interval (2°,22~"-t~) is similar to the case shown in fig. 3a, while on 
(22t"-~, 22~) the plot becomes parallel to a straight line of slope D_~ (fig. 3d). 
In general, for a single randomly selected centre one obtains a behaviour which 
is a mixture of various regimes. 

As expected, averaging over many centres gives well defined scaling. In this 
case we plotted ((M,,/M(R)) q - ~ ) / ( q - 1 )  versus L/R for various q (fig. 4). 
Our numerical test suggests that the slope of these curves is in good agreement 
with the D q values given by (11). The error is less than +-3% even for _+q = 8 
and n = 8. Note that for a structure of the same size box counting gives worse 
results (fig. 2b). 

In conclusion, we have demonstrated that for geometrical multifractals the 
the standard methods of determininf, fractal dimensions have to be applied 
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with some precaution. In particular, the box counting algorithm gives reliable 
results only for cluster sizes much larger than those usually obtained in 
numerical simulations. During the application of the sand box algorithm it is 
essential to average over many randomly selected eentres. Our results indicate 
that for geometrical multifraetals the sand box method provides better esti- 
mates of the generalized dimensions, however, because of the necessary 
averaging this method requires considerably more computing time. 
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