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Abstract

We investigate the dynamics of tracer particles in time-dependent open 
ows. If the advection
is passive the tracer dynamics is shown to be typically transiently chaotic. This implies the
appearance of stable fractal patterns, so-called unstable manifolds, traced out by ensembles of
particles. Next, the advection of chemically or biologically active tracers is investigated. Since
the tracers spend a long time in the vicinity of a fractal curve, the unstable manifold, this
fractal structure serves as a catalyst for the active process. The permanent competition between
the enhanced activity along the unstable manifold and the escape due to advection results in a
steady state of constant production rate. This observation provides a possible solution for the
so-called “paradox of plankton”, that several competing plankton species are able to coexists in
spite of the competitive exclusion predicted by classical studies. We point out that the derivation
of the reaction (or population dynamics) equations is analog to that of the macroscopic transport
equations based on a microscopic kinetic theory whose support is a fractal subset of the full
phase space. c© 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

The advection of particles in time-dependent hydrodynamical 
ows is known to be
typically chaotic [1–33]. If the particle takes on the velocity of the 
ow very rapidly,
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i.e., inertial e�ects are negligible, we call the advection passive, and the particle a
passive tracer. Its equation of motion is then

ṙ = v(r; t) ; (1)

where v is the known velocity �eld. In stationary 
ows when the right-hand side is
independent of t, problem (1) is integrable and the particle trajectories coincide with
the streamlines of the 
ow. In time-dependent cases, however, streamlines and particle
trajectories are di�erent, and the latter ones can be much more complicated.

Here we consider passive advection in open 
ows [18–31], where the time-dependent
region of the 
ow is assumed to be restricted to a �nite domain, called the mixing
region. While the tracer trajectories are simple outside the mixing region, they are
typically chaotic inside of it.

It is worth emphasizing that a complicated 
ow �eld (turbulence) inside the mixing
region is not required for a complex tracer dynamics. Even simple forms of time
dependence, e.g. a periodic repetition of the velocity �eld in the mixing region is
su�cient. The 
ow model we use here is of this type: in a �nite domain the 
ow is
time periodic with a period T , and outside this domain it is stationary.

In the following Section we show that the chaotic advection by open 
ows is as-
sociated with the appearance of stable fractal patterns. Then in Section 3 we argue
that if the advected tracers are active in a chemical or biological sense, i.e. they can
either react with neighboring particles or are subjected to a growth dynamics, then
the activity mainly takes place along the same fractal set. This implies a new, novel
form of surface reaction, which includes the parameters of the chaotic advection. Fi-
nally, in the concluding Section 4 we point out some possible applications of these
results.

2. Advection of passive tracers in open 
ows

We consider open 
ows, where the 
ow is simple and stationary everywhere but in
the mixing region. In the in
ow and out
ow regions the particle’s motion is simple,
as they just follow the streamlines. In the mixing region, however, the particle paths
can be very complicated and typically chaotic. As this chaotic behavior is restricted to
a �nite region both in space and time, it is necessarily of transient type. This transient
chaos [34] is the most ubiquitous form of chaos which appears in open 
ows.

An important characteristic of such transiently chaotic systems is that tracers enter-
ing the mixing region are typically trapped there for long times. In fact, there is a
set of tracer trajectories never leaving the mixing region. Among these non-escaping
trajectories periodic orbits can be found with a period which is an integer multiple of
the 
ow’s period T . Such periodic orbits are best visualized on a stroboscopic map,
which is a series of snapshots taken at integer multiples of the 
ow’s period T . On
the stroboscopic map the periodic tracer orbits of period mT trace out a series of m
di�erent points.
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Of course, such permanently trapped orbits are quite exceptional, and they are all
unstable. This means that most typically the tracers having entered the mixing region
leave it after some — typically long — time. The non-escaping orbits, however, form
a fractal set (a fractal “cloud” of points on the stroboscopic map), called the chaotic
saddle. It is called “saddle” because, similar to a saddle-point, the unstable trajectories
forming it can be reached from a set of exceptional initial tracer positions that converge
to the non-escaping trajectories as time goes by. All other trajectories, however, are
escaping into the out
ow region sooner or later.

The union of all exceptional trajectories converging to the non-escaping orbits is
the stable manifold of the chaotic saddle. The tracers starting from the close vicin-
ity of the stable manifold are advected towards the chaotic saddle, and they follow
some of the non-escaping orbits for a while. Once repelled from a non-escaping or-
bit, they might be trapped again by the stable manifold of another non-escaping or-
bit, exhibiting a kind of random walk among them. Finally, they leave the chaotic
saddle along its unstable manifold. On the stroboscopic map, both the stable and un-
stable manifolds are complicatedly winding fractal curves [19–31] with some fractal
dimension D0.

The unstable manifold can be directly observed both in experiments [35] as well
as in environmental 
ows [36–38]. A droplet of tracers initially overlapping with the
stable manifold is advected towards the chaotic saddle where it gets trapped for a long
time.

The particles starting further away from the stable manifold are washed out quickly
by the background 
ow, and they do not exhibit the kind of random walk among
the orbits of the chaotic saddle. The tracers starting close to the stable manifold,
however, spend a long time in the mixing region, and �nally leave it along the unstable
manifold of the chaotic saddle. This means that it is the unstable manifold where the
tracers accumulate after su�ciently long time, as illustrated schematically in Fig. 1.
This observation implies that although the chaos is transient in the mixing region, the
particles trace out a permanent fractal pattern. If the unstable manifold is visualized
by placing a single droplet of dye into the 
ow, the unstable manifold will be faded
out as times goes by.

Indeed, the number of particles present in the mixing region decays exponentially in
time with the exponent �, which is called the escape rate [34]:

N (t) = N (0)e−�t : (2)

The reciprocal of � can be considered to be the average lifetime of transient chaos
[34], and 1=� is the average time a tracer spends in the mixing region.

As an illustrative example, we consider the 
ow of a viscous 
uid around a cylin-
der with a background velocity pointing along the x-axis. At intermediate background
velocities (whose dimensionless measure, the Reynolds number is of the order of 102)
no stationary velocity �eld is stable, instead, a strictly periodic behavior sets in with
period T , see Fig. 2. Two vortices are created behind the cylinder within each period,
one above and another one below the x-axis. These two vortices are delayed by a time
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Fig. 1. Schematic illustration of a droplet of dye converging to the unstable manifold of the chaotic saddle.
Point P illustrates a point of the saddle, while the two intersecting lines represent the stable and unstable
manifolds. The droplet overlapping with the stable manifold at t1 stretches as time goes on. The points on
the stable manifold move towards P, while the other points are repelled from it along the unstable manifold.

T=2. The vortices �rst grow in size, then detach from the cylinder and start to drift
downstream. This alternating separation of vortices from the upper and lower cylin-
der surface is called the von K�arm�an vortex street and is characterized by a strictly
periodic velocity �eld of period T [39].

After a short length of travel, the vortices are destabilized and destroyed due to the
viscosity of the 
uid. Far away from the cylinder upstream and downstream the 
ow
is practically stationary. The mixing region is thus located in the wake of the cylinder.

To obtain the velocity distribution one has to solve the two-dimensional viscous
Navier–Stokes equations with no-slip boundary condition along a circle [20–22]. For
simplicity we use here an analytic model for the streamfunction introduced in Ref. [22]
motivated by a direct numerical simulation of the Navier–Stokes 
ow carried out by
Jung and Ziemniak [21] at Reynolds number 250.

In Fig. 3 two particle trajectories are shown, with initial conditions deviating by an
amount on the order of 10−3R. The trajectories diverge from each other rapidly, one
leaves the wake at the top side, the other one at the bottom side of the cylinder. The
typically exponential growth of the distance between initially close particles is a unique
sign of the chaotic tracer motion, although the 
ow itself is strictly periodic, without
chaoticity.

Fig. 4 shows a snapshot of the chaotic saddle and its stable and unstable manifolds
in the wake of the cylinder. The chaotic saddle consist of a countable in�nite number
of periodic orbits and an uncountable number of non-periodic orbits. Tracers inserted
on any black dot in Fig. 4a stay in the wake forever.

Particles inserted exactly on the stable manifold (Fig. 4b) converge to trajectories
of the chaotic saddle after in�nitely long time. If a tracer is, however, inserted o� the
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Fig. 2. Snapshots taken at times t = 0 (mod T ) and t = T=4 (mod T ) on the streamlines of the von K�arm�an
vortex street. The 
uid 
ows from left to right. During the �rst half time period (T=2) a vortex is born at
the top side of the cylinder, while the vortex at the bottom side dies out due to viscosity. The streamlines
at times t = T=2 (mod T ) and t = 3T=4 (mod T ) are the mirror images of these �gures with respect to the
y = 0 axis.

Fig. 3. Two particles initially close to each other trace out completely di�erent paths. The cylinder is
elongated in the horizontal direction for better visualization.
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Fig. 4. The chaotic saddle (a) and its stable (b) and unstable (c) manifolds are shown on snapshots taken
at t = 0 (mod T ). While the chaotic saddle is a fractal cloud of points, its stable (unstable) manifold is
a complicated curve reaching in the far upstream (downstream) region. The cylinder is elongated in the
horizontal direction for better visualization.

stable manifold, but very close to it, it leaves the wake along the unstable manifold
(Fig. 4c).

The unstable manifold is traced out by an ensemble of trajectories initially over-
lapping with the stable manifold. This is illustrated in Fig. 5, where the tracers still
present in the mixing region are shown after some time. As tracers spending a long
time in the wake of the cylinder, that is, being trapped in the mixing region, �nally
leave it along the unstable manifold, it is natural to expect that any kind of transport
processes occurring mainly take place along this fractal set. This can indeed be seen
in laboratory experiments [15]. The above-mentioned property of the tracer dynamics
implies that classical 
ow visualization techniques based on dye evaporation or streak-
lines trace out fractal curves (unstable manifolds) which are di�erent from streamlines
or any other characteristics of the Eulerian velocity �eld (for several 
ow visualization
photographs of this type see Ref. [39]).
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Fig. 5. The unstable manifold of the chaotic saddle is traced out by the tracers injected into the 
ow in front
of the cylinder. The coverage is not perfect due to the �nite number of particles. Initially 300×300 particles
were inserted into the 
ow in the region x ∈ [ − 2:55;−2:45]; y ∈ [ − 0:1; 0:1], and, for computational
simplicity, their time-evolution was observed on a grid of size 1=300. The snapshot was taken at t = 2T ,
where T is the period of the 
ow.

3. Advection of active tracers in open 
ows

In this section we consider the e�ect of the chaotic advection on the active processes
on the 
ow’s surface described by kinetic reactions [40,41]. Tracers injected into the

ow are advected passively, they do not in
uence the 
ow. If, however, they come
closer to each other than a given reaction distance �, they interact with each other,
creating thus the product particles. For our discussions we consider the autocatalytic
reaction: A + B → 2B. We insert a tiny seed of reacting B tracers into the 
ow
covered with A particles. This way the reaction events occur on the surface between
the areas covered by A and B particles: the A-type tracers become B within a distance
�. This distance can be considered as a reaction range. For computational simplicity
the instantaneous reactions occur at integer multiples of a time lag �, during which
only advection occurs.

Fig. 6 shows the spreading of reagents B in the wake of the cylinder after a long
time. The initial position of the tracers is the same as in Fig. 5. After a short transient
(of about 4T ) a steady state is reached, which implies a constant production rate of B
tracers in the wake. Note that the active tracers also trace out the unstable manifold,
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Fig. 6. The unstable manifold of the chaotic saddle is traced out by the autocatalytic tracers (B, black) injected
into the 
ow in front of the cylinder. The coverage is much more e�cient than in Fig. 5 due to the reactions.
Initially 300×300 B particles were inserted into the 
ow in the region x ∈ [−2:55;−2:45]; y ∈ [−0:1; 0:1],
the rest of the 
uid surface was covered by A. For computational simplicity, the time evolution was observed
on a grid of size 1=300. The snapshot was taken at t = 20T , where T is the period of the 
ow. The model
parameters were � = 1=150, � = T=5.

but the coverage is much wider due to the autocatalytic reactions. This means that the
reactions occur on the surface of a fattened-up fractal.

Based on this observation, a simple theory [42,43] can give the area AB(t) covered
by the reacting tracers in the mixing region at time t. By taking the limit �→ 0; �→ 0
but keeping �=� �nite, a time continuous reaction equation can be obtained:

ȦB = −�AB + g��A
−�
B : (3)

Here g is a constant, and

� =
D0 − 1
2 − D0

(4)

is a nontrivial, positive exponent depending only on the fractal dimension D0 of the
unstable manifold. If the reactions occur along a simple line, that is, the surface between
the A and B particles is not a fractal, we have D0 = 1. This implies, via � = 0, that
(3) describes a classical surface reaction [44] with reaction front velocity �=� in the
presence of the escape (�) of the products.

The negative exponent −� in Eq. (3) implies that the reactions are enhanced due to
the fractal boundary between the di�erent reagents. In fact, the less reagent is present
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in the mixing region, the more e�ective the reactions become because of the larger
resolved surface. This leads to a balance between the escape due to advection (�rst
term) and the production due to reactions (second term in (3)). Since in our case the
long-time advection dynamics is concentrated on a fractal, the unstable manifold of
the passive 
ow, we obtain essential deviations from traditional chemical or population
dynamics theories derived for a well-stirred environment. These observations might
be of relevance for other applications of statistical physics where the support of the
underlying kinetic theory is not a smooth subset of the full phase space.

Via direct substitution, one can check that the solution to Eq. (3) is

AB(t) =
(g�
��

− Ke−�=(2−D0)t
)2−D0

; (5)

where K is an integration constant, and it is related to the initial area AB(0) via

K =
g�
��

− [AB(0)]1=(2−D0) : (6)

One can see from solution (5) that in the long-time limit t → ∞, the area will be
expressed as (�∗)2−D0 , i.e., as a coverage of the fractal unstable manifold with stripes
of a non-zero average width �∗ = g�=��. In case of no chemical reactions (� = 0),
we obtain the usual exponential emptying dynamics with � being the escape rate,
just as expected. The appearance of a novel term in the chemical rate equation is a
macroscopic consequence of an underlying kinetic theory. In contrast to the classical
theory, however, the chemically active tracers occupy a fractal subset of the full phase
space (the unstable manifold) only.

The balance mentioned above can serve as a possible answer for a long-standing
question called the paradox of plankton [45]. In well-mixed environments, classical
studies [46,47] predict that all competing species die out except the most perfectly
adapted ones for all the limiting factors. As the number of di�erent limiting factors
is rather small (on the order of 10), it is quite surprising that the number of di�erent
competing plankton populations is quite large. The keyword in the above problem is
“well-mixed environment”. We have seen that in open 
ows the advected tracers are
not well-mixed, instead, they form a structured spatial distribution of tracers. It is
thus natural to expect that in open 
ows, when the activity (in this biological sense
the competition) is restricted to the surface of a fattened-up fractal, the number of
competing species can be larger than the number of limiting factors.

The competition in our case is modeled by two autocatalytic reactions A+ B→ 2B
and A + C → 2C using the same resource A, which is the only limiting factor. Both
species have di�erent replication abilities �B and �C , and mortality rates �B and �C .
The mortality rate is the probability that an organism dies out during the time lag �.
In a well-mixed environment, the traditional theory implies that only species B or C
survives the competition, the one with superior reproduction abilities. In open 
ows,
as illustrated in Fig. 7, the coexistence of the competing species B and C can be
observed. Both species are present in the wake of the cylinder, thus both of them
are pulled along the unstable manifold. Here their activity is enhanced, which leads to
increased access for both species to the background material A for which they compete.
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Fig. 7. The unstable manifold of the chaotic saddle is covered by the competing species B (light-grey) and
C (dark-grey) at time t=20T , after reaching the steady state. The background material A is shown in white.
Initially 300 × 300 B particles were inserted into the 
ow in the region x ∈ [ − 2:55;−2:45]; y ∈ [0; 0:1],
and 300 × 300 C particles in the region x ∈ [ − 2:55;−2:45]; y ∈ [ − 0:1; 0]. The grid size chosen was
1=300. The model parameters were �B = 1=150, �C = 1=300, �B = 0:5, �C = 0:0001, and � = 0:2T .

Thus, due to the fact that the mixing of the di�erent species is not perfect, coexistence
along the unstable manifold is ensured [48] in a wide range of parameter di�erences
characterizing the activity of the species.

4. Discussion

We have seen that particles advected by open 
ows trace out complicated fractal
patterns. The particles spend a long time here, and they possess a largely increased
surface to perform any kind of (chemical or biological) activity. Active tracers (chem-
ical reagents or biological species) thus fatten-up the unstable manifold, and the major
part of the activity takes place on a fractal set. Such processes have been observed
e.g. in atmospheric chemistry, like the ozone depletion at the polar vortex. Here the
�lamental spatial distribution of ClONO2 at the vortex edge [36,38] might be identi�ed
as the result of a reaction ClO + NO2 → ClONO2 along a fractal. Similarly, in aquatic
systems, the evolution of plankton populations was also reported to possess �lamental
spatial distribution [49–52].
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Although the environmental 
ows are often thought of as closed ones (in the sense
that there is no escape), they can still produce �lamental spatial distribution, cf. [53,54].
One reason for this is that on the time-scale of the active environmental processes, and
in a �xed frame of observation, these large-scale 
ows can be considered to be open
with a net current 
owing through the observation region. Additionally, there is no
signi�cant feedback into the region of observation on the time-scale of the active
processes.

When the activity takes place along a non-trivial fractal boundary, a new kind of
surface reaction equation (3) has been derived. It contains important chaos parameters,
like the escape rate � and the fractal dimension D0. These parameters, however, depend
uniquely on the parameters of the hydrodynamics, like the Reynolds number. This
equation, based on microscopic properties of the advection dynamics, gives a global,
macroscopic description of the product depending only measurable quantities. This can
lead to estimation of observable quantities that could provide a veri�cation of the
theory.
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