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General properties of maps associated with systems in which trajectories of the flow get close to a hyperbolic fixed point 
with a two-dimensional stable and a one-dimensional unstable manifold are examined in the chaotic region. 

Exponents characterizing power law singular behaviour of the Jacobian, of the shape of and of the stationary probability 
distribution on the chaotic attractor are expressed in terms of the ratios of the eigenvahtes of the linearized flow at the 
hyperbolic point. Emphasis is laid on the study of the limiting case of strong dissipation leading to a simple one-dimensional 
attractor but to a dynamics with interesting features. 

1. Introduction and summary 

The relation between the flow of a continuous 
dynamical system in phase space and the discrete 
map generated by it on a Poincare surface plays 
an essential role in the theory of dynamical sys- 
tems. It is a basic problem, however, that the 
recursion relations of the map cannot, in general, 
be deduced without solving the equations of mo- 
tion. By this reason, approximate maps have often 
been applied by assuming that the Jacobian of the 
map can be taken as constant [l, 21. In the present 
paper we show that this is not allowed in those 
cases when typical trajectories’go close to a hyper- 
bolic point, and investigate several properties of 
this type of maps in the region of parameter values 
where they exhibit chaotic iterations. 

A well-known example of such continuous sys- 
tems is the Lorenz model near the standard values 
of the parameters (u = 10, b = $, r = 28) [3]. The 
relation between the flow and the map has been 
extensively studied both near r = 28 [4-91 and at 
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much higher values of the control parameter [lo]. 
A special property of the strange attractor near 
r = 28 is the Cantor book structure [5,6,11] which 
means that the sheets of the attractor are bound 
together along the unstable invariant curve of the 
origin. Therefore, on an associated Poincare map 
the branches of the two-dimensional strange at- 
tractor are pinched at each point where the unsta- 
ble manifold of the origin intersects the surface 
[6-8, 121. The Cantor book structure is a conse- 
quence of the fact that the flow on the strange 
attractor approaches the origin which has a two- 
dimensional invariant stable manifold and, there- 
fore, trajectories depart in the direction of the 
unstable invariant curve. This is a topological 
effect. There is a dynamical consequence, too, as 
the motion slows down in the vicinity of the 
origin, thus, the hyperbolicity is not uniform, the 
attractor cannot be an axiom A one [13]. A third 
manifestation of the same fact is that the quasi 
one-dimensional map defined by the recursion of 
the amplitude maxima of one of the variables (e.g. 
Z(t)) has a singular form [3]. The exponent of the 

leading power appearing in it is related to two 
eigenvalues of the linearized motion around the 
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origin [14]. The mechanism of the onset of chaos 
has also peculiar properties owing to the singular 
nature of the flow [ll, 14-181. It has to be em- 
phasized that the feature that typical trajectories 
pass near a hyperbolic point can be characteristic 
for a whole class of dynamical systems [12, 1%181 
and thus, the investigations, not restricted to the 
Lorenz model, might have a broad relevance. 

In this paper we concentrate on the properties 
of the chaotic motion exhibited by such systems. 
Our main results can be summarized as follows. 
We show that the Jacobian of the map has a power 
law singularity when approaching the intersection 
line of the Poincare surface with the stable mani- 
fold of the hyperbolic point. The critical exponent 
characterizing this singularity is obtained as the 
divergence of the flow at the hyperbolic point 
divided by the positive eigenvalue. Furthermore, 
all the branches of the strange attractor on the 
Poincare plane are shown to approach a straight 
line at the backbone of the Cantor book according 
to a common power law behaviour the exponent of 
which is given by the ratio of the two negative 
eigenvalues. Consequently, the strange attractor 
ends with a sharp peak at the backbone point 
(whether it happens from one or from two sides 
depends also on the ratio of the two negative 
eigenvalues). Besides the local shape near the 
backbone point an approximate global form is 
obtained by means of a perturbative method start- 
ing from the one-dimensional case. Another conse- 
quence of the singular feature shows up in the 
stationary probability distribution at the backbone 
of the Cantor book. The density exhibits, along 
each of the branches, a power law behaviour 
specified now by the ratio of the larger negative 
eigenvalue and the positive one. The first correc- 
tion term after the leading one is also evaluated to 
the density. 

We have carried out detailed examinations at 
the parameter setting when the Jacobian of the 
map vanishes identically, which corresponds to the 
limit of strong dissipation. Then, the motion, after 
the first step, takes place on two straight lines with 
a coupled dynamics on them. The master equation 

for the stationary probability distribution is de- 
rived, and applied to obtain the singular part of 
the invariant density. When the system posses- 
ses the same symmetry property as the Lorenz 
model the master equation becomes equivalent 
with that of a suitable constructed continuous 1D 
map which is, in general, nonsymmetric. Our most 
remarkable findings are connected to the case when 
the value of the ratio of the two negative eigenval- 
ues is opposite to that of the Lorenz model exhibit- 
ing chaotic motion. Namely, then the 1D map has 
a quadratic maximum and at the backbone point a 
positive Schwarzian derivative or a vanishing slope. 
According to our numerical simulations a unique 
invariant probability distribution may exist for 
these maps in the situation when the maximum 
point is mapped in two steps to an unstable fixed 
point. 

The paper is organized as follows. In section 2 
we derive the local form of the Poincare map and 
determine the exponent of its Jacobian. Then, we 
investigate the dynamics in the limit of strong 
dissipation. Section 4 is devoted to the study of the 
shape of the strange attractor. The last section 
deals with the evaluation of the probability density 
along the fibres of the strange attractor at the 
backbone of the Cantor book. Appendix A con- 
tains an example where the stationary density can 
be calculated exactly in the limit of strong dissipa- 
tion. In appendix B we present a general class of 
maps in which singular Jacobian, Cantor book 
structure and singular probability density may ap- 
pear simultaneously. 

2. Two-dimensional retum map 

We consider a three-dimensional dynamical sys- 
tem with variables Xi, i = 1,2,3 the time evolution 
of which is governed by autonomous ordinary 
differential equations. Let the origin of the phase 
space XI, X2, X3 be a hyperbolic point with a 
two-dimensional stable manifold and a one- 
dimensional unstable manifold, W”(0). For the 
sake of simplicity, the variables Xi are chosen to 
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be the normal modes of the linearized equations 
around the origin with eigenvalues Xi, so that X, 
belongs to the unstable mode, i.e. Xi > 0 but X,, 
X, c 0. Consequently, a small volume of the phase 
space around the origin changes in time as 
exp (At ), where 

A= &Ii (2-l) 
i-l 

denotes the divergence of the flow at Xi = 0. Note, 
that the coordinate system X1, X2, X3 is, in gen- 
eral, not rectangular. 

The PoincarC surface is chosen as the X3 = z = 
const plane where z is adjusted in such a way that 
the unstable manifold of the hyperbolic point 
should intersect the plane several times. In a cer- 
tain reference frame on this plane the coordinates 
are denoted by x, y. We use the convention that 
only intersections from above belong to the map. 
The points D+ and D- will be of special impor- 
tance, where D+ (D-) represents the first intersec- 
tion point between the X3 = z plane and that 
branch of the unstable manifold W”(O) which 
emanates into the positive (negative) Xi direction 

(fig. 1). 
The standard procedure of obtaining the singu- 

lar features of the map consists of a linearization 
of the flow in the vicinity of the saddle point and 
of postulating a return mechanism in course of 
which typical trajectories do not pass close to any 
other singular point [19, 5, 7, 14, 8, 161. As the 
plane X3 = z is generally outside of the region 
where the motion can be well approximated by the 
linearized equations around the hyperbolic fixed 
point, we introduce an auxilary surface defined by 
X3 = Z, where Z is a suthciently small constant. 
The reference frame X, Y on this surface is chosen 
in such a way that the origin X = Y = 0 is the 
intersection point of the plane and the X3 axis, 
and the X (Y) axis is parallel with the X1 (X2) 
axis. 

The trajectory passing through P = (x, y) 
crosses the X3 = Z plane at a certain point (X, Y). 
More generally, the flow generates a map X= 

X(x, y), Y = Y(x, y) between the two surfaces, 

Fig. 1. The branch of the unstable manifold W”(O) which 
emanates in the positive XI direction, and a trajectory passing 

near the hyperbolic point at the origin. 

where X(x, y) and Y(x, y) are smooth functions 
of their variables since no singular point lies be- 
tween the planes X3 = z and X3 = Z. The actual 
form of these functions may depend on z and Z 
as parameters. It is to be noted that the line X = 0 
of the X3 = Z plane is by construction the inter- 
section line with the stable manifold of the hyper- 
bolic point. Consequently, the curve on the X3 = z 
plane defined by X(x, v) = 0 represents the inter- 
section curve between the Poincare surface and the 
stable manifold of the hyperbolic point. It is natu- 
ral to define the origin x = y = 0 on the Poincare 
plane as the preimage of the origin of the auxilary 
plane, i.e. by the requirement X(x, y) = Y(x, y) 
= 0. 

Trajectories passing close to the hyperbolic point 
must start from the neighbourhood of the stable 
manifold. As, however, the Y-axis points in a 
contracting direction, and the strange .attractor 
must be of finite size, an appropriate choice for Z 
always guarantees that both coordinates X, Y of 
the intersection with the auxilary plane will be 
small. The subsequent motion of the point 
(X,(x, y), Y(x, y), Z) is thus described by the 
solution of the linearized equations, i.e. by 

Xi(t) = XL Y)exp(VL 

X,(t) = Y(x, r) ew(U)9 (2.2) 

X,(t) = Zexp(h,t). 
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Consequently, a plane Xi = X, where x still be- 
longs to the linear region and has the same sign as 
X(x, Y), is reached at X, = &(x, Y), X, = 2(x, Y) 
where 

7(x, y) = Y(x, y>lX(x, YMI ‘X2”h1 
Z(x, y) = ZlX(x, y)/X( ‘x3”x1. 

(2.3) 

(See fig. 1; note, however, that for the sake of 
clarity the auxilary plane is not shown there.) 

As, after having left the surface Xi = x, the 
trajectory does not pass near any singular point, 
the deviation between the next intersection P’ = 
(x’, y’) with the Poincart surface and D+ (D-), if 
X(x, y) > 0 (if X(x, y) < 0), is an analytic func- 
tion of y and 2. For small values of X and Y it is 
sufficient to keep the first terms of the Taylor 
expansion only, apart from exceptional cases when 
their coefficients vanish. Thus, we find as a typical 
form of the map near X(x, y) = 0 

x’ = (u + ~lllX(x~ YV) w(X(x, Y)) 

+%yb9 Y>lNX9 YII” 

Y’=(v+a,,lX(x,Y)l~)sSn(X(x,Y)) 
(2.4) 

+a,,yh r)W(x9 YK 

where 

sgn (X) denotes the sign of X, the coefficients aij 
are constants, and u, u are the coordinates of the 
point D+; For the sake of simplicity we assumed 
by writing down (2.4) that the equations of motion 
are invariant under the transformation Xi 4 

-X1,X,+ - X,, X, + X, which is a well-known 
property of the Lorenz model. This assumption 
simplifies the presentation in the following but 
does not influence our main results except at the 
end of section 3 where the symmetry property is 
essential for the consideration as emphasized there. 

The Jacobian of the map on the Poincare surface, 
which is the area contracting ratio in non-rectan- 

gular coordinate systems as well, is obtained as 

J(X> Y> = GW22 - %*%,]G, Y)kw(X, YP9 

(2.6) 

with 

T)= -A/&=/3+6-1, (2.7) 

where (2.1) and (2.5) have been used. A(x, y) 
denotes here the Jacobian of the map generated by 
the flow between the planes X, = z and X, = Z: 

(2.8) 

where X.,(x, y) stands for the partial derivative of 
the function X with respect to x, etc. A(x, y) 
depends smoothly on the variables as it belongs to 
a nonsingular map. This is, however, not the case 
with J(x, y) itself. As we have seen, X(x, y) 
vanishes along the intersection line between the 
stable manifold of the hyperbolic point and the 
Poincare surface, which makes J(x, y) to be non- 
analytic. It follows from (2.7) that the nature of 
the nonanalytic behaviour is strongly related to the 
divergence of the flow near the origin. J(x, Y) 
vanishes as X(x, y) tends to zero if the flow is 
locally dissipative (A < 0) and diverges if the flow 
is locally expanding (A > 0) at the hyperbolic 
point. 

If one applies the general results for the example 
of the Lorenz model near r = 28, and uses the 
well-known expressions of the eigenvalues (see e.g. 
[14]), one obtains 

2(b + u + 1) 

9= [(1+a)*+40(r-1)]1’2-(1+o)’ (2.9) 

At the standard parameter values quoted above 
n = 1.1555 while the other two exponents given by 
(2.5) turn out to be /3 3 0.2255, 6 = 1.9300. It can 
be easily seen that the chaotic attractor appearing 
in the Lorenzian equation introduced by Rossler 
[12] is found at parameter values which yield, 
according to (2.7), TI < 0. 
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The form of the map (2.4) simplifies consider- 
ably if we consider the recursions only in a small 
region around the origin of the Poincare surface. 
The functions X(x, y) and Y(x, y) are then given 
as linear ‘combinations of x and y, and we may 
choose the reference frame such that X(x, y) is 
proportional to x and Y(x, y) to y in the new 
variables. After having appropriately resealed the 
length scales, one arrives at 

x’=(-l+glxl~)sgn(x)+cy(xl*, (2.10) 

v’=(d+ l~lq~g4x)+~Yl~l*, 

with an r-dependent Jacobian 

J(x) = (ab - c)/3lxl”, (2.11) 

where the exponents have been given by (2.5) and 
(2.7). The appearance of -1 in (2.10) indicates 
that the point D+ is supposed to lie below the 
v-axis of the Poincare surface (fig. 1). Note that the 
constants a, b, c, d are “ nonuniversal” parame- 
ters: they are connected with the nonlinear part of 
the equations of motion and may depend on the 
choice (the z coordinate) of the Poincare cross-seu 
tion, too. In the following the parameter region 
a > 0, b.2 0, ab r c will be investigated. 

The general form of the Poincare map contains, 
of course, additional terms, analytic or less singu- 
lar as those given already by eq. (2.10). In order to 
illustrate the c&sequences of the singular feature 
of the map, however, it is sufhcient to keep the 
most singular part. Therefore, we consider in 
the following the map obtained by extending the 
validity of eq. (2.10) to the whole plane. More 
precisely, we regard the map (2.10) as a model 
which is designed to simulate some essential fea- 
tures of a flow around a saddle point. In particu- 
lar, we will be interested in metric properties. 

The strange attractor found in numerical simu- 
lations of (2.10) possesses Cantor book structure 
(fig. 2). ‘Ihis remains valid even if the Jacobian 
diverges at x = 0 (q < 0). By varying the expo- 
nents /3 and 6 the shape of the strange attractor 
may change drastically. This goes back to a change 

-1 0 1 y -1 0 I y 

Fig. 2. The strange attractor of the map (2.10) obtained in a 
numerical simulation after 2000 steps. a) j9 = 0.3, S = 0.5, 
a = 1.7, b = 0.5, c = d = 0; b) J3 = 0.6, 6 = 0.2, a = 1.5, b = 0.7, 
c = 0.25, d = 0. 

of the local form at the backbone of the Cantor 
book, i.e. at D *. Numerical experience suggests 
that also some metric properties of the map de- 
pend strongly on the exponents fl,S. Fig. 2 il- 
lustrates that for sufIlciently small values of /3 or 6 
the density of dots is extremely low at the back- 
bone of the Cantor book, i.e. the invariant 
probability density seems to vanish at D*. A 
quantitative description of these observations will 
be given later in this paper. 

3. The limit of extremely strong dissipations 

Before studying the general properties of the 
two-dimensional map (2.10), it is worth starting 
with a discussion of the special case characterized 
by an identically vanishing Jacobian and, for this 
reason, by an attractor of fractal dimensionality 
not larger than 1. This is always the case ap- 
proximately if the underlying flow is strongly dis- 
sipative in the whole phase space. 

Thus, we choose in this section the parameters 
in such a way that c = ab is fulfilled. It follows 
then from (2.10) that any starting point jumps 
immediately on one of the straight lines x = uy T 
(1 + ad). The attractor is confined then by a seg- 
ment with -A s y - d 5 e on the lower branch 
and by another one with -e<y+d<A on the 
upper branch. The values of A and e follow from 
the dynamics along the two lines. 

Using the aforementioned relation between x 
and y as well as (2.10) we may express x’ in terms 
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ofx.Forx>Owelind 

(3.1) 

The y’ coordinate is then determined by x’ through 

y’=d+(x’+l)/a. (3.2) 

The equations for x < 0 can be obtained by tum- 
ing the signs of all variables into negative. Accord- 
ing to the original description + ( - ) is to be 
taken in (3.1) if the point (x, y) is on the lower 
(upper) branch. Once, however, a point is situated 
on the lower (upper) branch, the x-coordinate of 
its preimage had to be positive (negative). Thus, 
the sign in (3.1) is identical with that of the 
preimage of x. 

According to the definition of A and e as 
parameters characterizing the endpoints of the seg- 
ment containing the attractor, the domain of f, is 
given by 

f+: OIxIae-1, 

f_: Orx~l+aA. 

(3.3) 

(3.4) 

The quantity - 1 - ad should be the minimum of 
x’ for positive values of x. Therefore, if f_(x) 
possesses a negative minimum (e.g. for S < /I) 

A = -(f-)ti, otherwise A = 0. The point x = 1 
+ ad turns out to be mapped on the endpoint of 
the f_ branch, thus 

e = (1 + .A)‘+ b(A - d)(l + uA)~. (3.5) 

Let us consider a general dynamics of the type 
of (3.1) which is specified by the following func- 
tions: x’= @t(x) for 0 < x I 1, x’ =;P,(x) for - 1 
I x < 0 if the preimage of x is positive, while 
x’=+,(x)forO<xjlandx’=&,(x)for -1~ 
x < 0 if the preimage is negative (see fig. 3a). We 
assume that the map produces chaotic iterations 
for almost ah initial values and turn to the investi- 
gation of the stationary probability distribution. It 
is natural to divide the stationary density P(x) 

1 
X' 

a-l 

0 

l+aA 
1 

ae-1 

0 

La 
1 

x’ c X’ 

0 

1 
1 0 x 1 

d 

zYY!l 
1 

0 

1 

1 0 x 1 

Fig. 3. The map x,+1 =(-l+alx,IB)sgn(x,)+b(x, + 
s&9(x,-I))1 x,1’ at a) /3=0.5, 6=1.5, a-1.5, b-0.6; b) 
B = 1.5. 6 = 0.5, a = 1.3, b = 0.5. The signs along the branches 
henote ‘the sign of the preirnage of x. Pictures c) and d) show 
the reduced map (3.18) corresponding to the parameters of 

pictures a) and b), respectively. 

into two parts 

P(x) = P+(x) +P-(x), (3.6) 

where P+(_,(x)ldxJ is the measure of those points 
in 1 dxl the preimage of which is positive (nega- 
tive). As a given point x’ may have two positive 
preimages: xi, x2 and two negative ones x3, x4 
(figs. 3a,b) the master equation for the stationary 
distribution contains now two coupled equations. 
For Ix’ 1 I 1 they read 

f’+b’)ldx’l = J’+(x,W,l + P-(4lW, 
J’_(x’)ldx’l = P+(x,)ldx,l + ft(x,)ldx,l, 

(3.7) 

or, equivalently, 

P+(x’) = p+(xd p-b,) 
(#lb,) I + l4f-h) I ’ 

P-(x') = p+bd p-(x4) 

I~~;.(~,> I + It%b4) I ’ 

(3.8) 



258 P. Szepfaiusy and T. T&V/ Maps related tojlows around a saddle point 

where # denotes the derivative of (pi. In a situa- 
tion corresponding to fig. 3b one finds a region for 
x’ > 1 where both preimages of x’ belong to the 
branch x’ = &(x). In this region, therefore, 

p_(x’)= P+(xd + P+(xJ 
Ie4 I I+%,) I 

(3.9) 

is valid. Similarly, for x’ < - 1 

p-w p-w 
p+(x’) = (@4(x,) I+ (GA ( * 

(3.10) 

Appendix A contains a simple example where the 
stationary density and the Lyapunov number can 
be exactly calculated. 

The terms appearing on the right hand side of 
P +(x’) or P_( x’) can be interpreted as contribu- 
tions from different branches or from different 
parts of the same branch. Thus, for example, 

p!‘)(x’) = p+(+;‘(x’)) 
l#l;(+?<x’>) I ’ 

(3.11) 

where ~$1’ denotes the inverse of +i, represents 
the contribution of the upper branch to P+( x’) 
(from the neighbourhood of xi). 

In the particular case of (2.10) with c = ub the 
functions &(x) are given by 

+2(x)= -l+&(x), x>o, 

+,(x)=1 --6(-x), 
(3.12) 

+,(x)=1 -M+(-x), x<O, 

where f*(x) is defined in (3.1). We assume that 
the densities extend over the whole segments (3.3), 
(3.4) which is the case according to our numerical 
simulations at parameter values Iike those of fig. 3. 
Our aim is now to calculate the asymptotic form 
of the stationary distribution for x’ + f 1, which 

corresponds to the description of the probability 
density around the points D * on the x, y plane. It 
follows from the symmetry properties of (2.10) 
that 

P+( -x) = P-(x), P-(-x) = P+(x), (3.13) 

consequently, P(x) = P( - x). Therefore, it is 
sufficient to consider the limit x’ --, - 1. This al- 
ways implies xi + 0 +, and P+( x1) can be replaced 
by P(O)/2 in (3.11). When solving the equation 
x’ = +i(xl) for x’+ -1 one finds qualitatively 
different forms depending on the ratio of the expo- 
nents p and 6. Accordingly, the leading behaviour 
of P y)(x’) depends also strongly on this ratio. 

For/3<6x,isgivenforx’+-lby 

x 1-~~(1+od) 
] 

( 1 +nxtj(‘-@/8]* 

Therefore, (3.11) yields 

(3.14) 

P(0) 1 +x’ (1-8)‘8 
P!“(x’)=Zap (I 

( 1 

. 

(3.15) 

This contribution is vanishingIy small for j3 -C 1 
and divergent for /3 > 1. The contribution of the 
branch x’ =+,(x) to P+(x’) is of the same form 
as (3.15) but b is replaced by (-b). 

For p = S the contribution of the upper branch 
is equal to 

P(O) - 
P!“(x’) = 2p( a + b(1 + ad)) 

( 1 +x’ 

1 

(1 -/V/8 

x u+b(i+ud) 
(3.16) 
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In the case of j3 > S (see fig. 3b), as long as 
x’ > - 1, one obtains from (3.11) 

which again vanishes or diverges depending on the 
sign of 1 - 6. For x’ < - 1 only the second branch 
plays a role. The singular contribution to the prob- 
ability distribution is then given by the right hand 
side of (3.17) with b replaced by (-b). 

The leading term in (3.15) is in accordance with 
the results obtained for a map z’ = 1 - alzlB ([20], 
see also [21]) and those of the Lorenz model (for 
fi < 1) on its branched manifold [22, 231. 

Two remarks are in order. First, it follows from 
(3.17) that the limit b + 0 (c + 0) cannot be taken 
there. A direct calculation then gives P$?(x’) = 
P(O)((l + x’)/a)(‘-~)‘~/2a/3. Second, the fact that 
P(xi) approaches, in general, P(0) linearly may 
influence the type of the next to leading terms. 
Relations (3.15), (3.17) are, therefore, valid for 
]&-PI <lonly.For l&-/31 >l thepowersofthe 
terms appearing in the square brackets of (3.15) 
and (3.17) are l/j3 and l/6, respectively. 

Alternatively, we can also give the invariant 
probability density p(x, JJ) on the two branches of 
the attractor on the x, y plane. Clearly, owing to 
the difference in the volume element, p(x, y) = 
P,( x)[l + a ‘1 -‘I*, where (I = + , - corresponds 
to the lower and the upper branch, respectively. 

By increasing the parameter a in (3.1), one 
typically reaches a value a, where f+( ae - 1) = e. 
Beyond this value the branch of f, crosses the 
diagonal and the motion is no more bounded. The 
critical case at a, represents a boundary crises 
[24]: an unstable fixed point collides with the basin 
of the chaotic attractor. Simultaneously, the situa- 
tion at a, can be considered as a state with fully 
developed chaos [20] in (3.1). 

Before proceeding, it is worth discussing at this 
point to which extent the assumed symmetry prop- 
erty of the system has influenced our results. It is 
obvious, that the basic feature of the dynamics, 
namely that it has a special two-step nature, re- 
main valid in the general case and so do eqs. 
(3.8)-(3.10). Concerning the asymptotic behaviour 
given by (3.15)-(3.17), the lack of symmetry 
influences the prefactors but the exponents remain 
unchanged. 

The last part of this section, however, relies 
heavily on the symmetry property, making a refor- 
mulation of the master equation possible. For this 
purpose, let us now introduce an associated 1D 
map by the following convention: 

x’ = H(x), 

H(x) = 
i 

cp,w, x co; 
&(-XL x > 0, 

(3.18) 

(see fig. 3c,d). It can be easily seen that owing to 
the symmetry property (3.13), the probability den- 
sity P_(x) is invariant under the iteration (3.18) 
according to (3.8)-(3.10). The procedure is similar 
in spirit to Lanford’s treatment of the Lorenz 
model [6] by regarding as identical the points 
symmetric with respect to the symmetry transfor- 
mation of the model. This representation is well 
suited for discussing the basic questions of the 
existence of a unique stationary probability distri- 
bution with a density since this problem has exten- 
sively been studied in the case of such continuous 
1D maps. 

Four cases should be distinguished: a) /3 < 6, 
/3 < 1 (like in the standard Lorenz model); b) 
fi <S, p > 1; c) j3 > S, 6 < 1; d) /3 > 6, 6 > 1. In 
case a) the map has a cusp, while in cases b), c) 
and d) it has a smooth maximum. In the former 
case, if the map is everywhere expanding, well- 
known theorems apply and the existence of the 
unique probability density is ensured (see [25] and 
references therein). In the latter cases the map can 
produce chaotic iterations for typical initial condi- 
tions only at particular control parameter values. 
The situation when the maximum point is mapped 
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in two steps to an unstable fixed point, i.e., when 
fully developed chaos can exist, has been most 
extensively studied. Two basic conditions under 
which the existence of a unique absolutely con- 
tinuous invariant measure has been proven in this 
situation are that the first derivative of the map is 
nonzero except at the maximum point and that its 
Schwarzian derivative is negative [25, 261. Both 
can be valid in case b), but in cases c) and d) the 
second and the first condition is violated near 
x = 0, respectively. According to our numerical 
similations, the map possesses in the fully devel- 
oped chaos situation a unique probability distribu- 
tion which extends over the whole interval mapped 
onto itself, in all four cases, despite the facts 
mentioned above and that in case a) the map 
considered was not everywhere expanding. The 
problem certainly requires further investigations. 

4. The shape of the strange attractor 

Returning to the general case c + ab, we in- 
vestigate a parameter region where according to 
our numerical simulations a strange attractor of 
the type of fig. 2 exists, a necessary condition of 
which is that the crisis point (an extension of that 
found in the one-dimensional limit) is not yet 
arrived. Owing to the symmetry of (2.10) it is 
sufficient to study a half-plane only: we shall 
consider points with positive x coordinates. In this 
region the equations 

(ab-c)Ys=b(x’+l)-c(y’-d), 

(ab-c)yx*= -(x’+l)+a(y’-d) 

are equivalent with (2.10). 

(4.1) 

(4.2) 

First, we investigate the asymptotic shape of the 
strange attractor at the backbone of the Cantor 
book (at D’). Therefore, we take the limit x + 0 
(x’ + - 1, y’ -+ d) with the assumption that the 
point (x, y) belongs to the strange attractor. Here 
we use the fact supported by numerical simula- 
tions (see fig. 2) that the strange attractor consists 
of several branches crossing the y-axis at different 

points. In particular, we consider a branch with 
the intersection coordinate y, ( y,, assumes positive 
and negative values as well). This will be mapped 
into another branch joining D+. In other words, 
the branches at the backbone can be indexed by 
the y0 value of their immediate preimage. In what 
follows we shall speak always about such branches. 

Considering now the limit x --, 0 for points along 
a certain branch, one may set for the leading terms 
asymptotically y = y, in (4.2) resulting in 

b(x’+l)-c(y’-d) a 
ab - c 1 

a(y’-d)-(x’+l) 
(4.3) 

Eq. (4.3) yields the relation required between the 
coordinates on a branch of the strange attractor 
near the backbone of the Cantor book. The shape 
of these curves depend sensitively on the ratio 
S/p. Therefore, the following cases can be dis- 
tinguished: 

i) /3 < 6. Taking the limit x’ --, - 1, y’ + d, the 
right hand side dominates in (4.3), i.e. the curve 
x’(y’) touches the straight line x’ + 1 = a(y’ - d). 

The asymptotic form is given by 

x’+ 1 =a(~‘-d)-y&b-c)(y’-d)“’ (4.4) 

as it follows from (4.3) recursively. Eq. (4.4) has 
the consequence that the maximal value ymax of 
the intersection coordinates y, defines the lowest 
lying branch (remember ab > c), while -y,, the 
highest one. In other words, the outhermost lines 
of the strange attractor are given at D+ by x = - 1 
+a(~‘-d)fymax(ab-~)(y’-d)8’fl, y’>d. As 
a special case this implies that the strange attractor 
of the Lorenz model possesses a sharply peaked 
shape, without any loops, at the backbone of the 
Cantor book (as on fig. 2a). 

ii)fl=&Now 

a + CYO x’+l=- 1 +byo(Y’-d)* (4.5) 



P. S.&falusy and T. Til/ Maps related to flows around a saddle point 261 

iii) /3 > S. The left-hand side dominates (4.3), i.e. 
the branch is tangent to the straight line x’ + 1 = 

(c/b)(y’ - d). The leading contribution now 
reads: (b # 0) 

Branches characterized by a negative y, are now 
defined in the region y’ cd. Consequently, the 
deepest point of the strange attractor is never D+ 
itself. This is an extension of the property that 
A > 0 in the one-dimensional limit. The lower and 
upper boundary lines of the strange attractor near 
D + are now given by the curves with ym, and 
ymin, respectively, where y,, stands for the smal- 
lest positive y0 value. Two sharply peaked shapes, 
from opposite directions, are now joined at D+. 
One may speak in such situations about “open” 
Cantor books (see fig. 2b). Finally, we note that 
for b = 0 the asymptotic behaviour is given by 

x’+l=y,,c(y’-d)“‘+a(y’-d) (4.7) 

as one sees directly from (4.3). 
It is to be stressed that the formulas above are 

valid for any parameter values in a sufficiently 
small neighbourhood of the backbone of the 
Cantor book. 

The picture obtained so far may be completed 
by observing that a global description is also possi- 
ble, at least approximately, if the strength of the 
Jacobian (2.11) is small. As the shape is exactly 
known in the limit of an identically vanishing 
Jacobian, a perturbative method similar to that of 
Bridges and Rowlands [27] can be used. We con- 
sider E = ab - c as a small parameter. Then, in a 
first order calculation it is sufhcient to replace x 
and y in (4.1) or (4.2) by the formulas obtained in 
the one-dimensional limit. Recalling that y = (X f 
(1 + ad))/a and eliminating x through (3.1), (3.2) 
we find for the branches connected with D+ 

r’+l=a(y’-d)-;(f,‘(y’-d)f(l+ud)) 

x (f;‘(r’ - d))*, (4.8) 

-1 0 Y ’ -I 0 Y ’ 

Fig. 4. a) The strange attractor of the map (2.10) at j? = 0.8, 
S = 0.9, a = 1.5, 6 = 0.2, c = d = 0 as obtained in a numerical 
simulation. b) The approximate global shape given by (4.8) at 
the same parameter values. 

where f;’ denotes the inverse of f, (see fig. 3). 
The domain of the difIerent branches follows from 
the restrictions (3.3), (3.4). Thus, the endpoint of 
the - (+ ) branch of (4.8) turns out to be the y 
coordinate of the first (second) image of the maxi- 
mum point (1 + ad, - d + A). Fig. 4b shows the 
approximate shape obtained by this method for a 
case with /3 < S. In spite of the fact .that e is 
relatively large and (4.8) gives the first correction, 
only, the global agreement with the ndcal 

result is remarkable good. 
The exact calculation of the coordinates y0 ap- 

pearing in the asymptotic formulas (4.3)-(4.7) 
seems to be hopeless since the intersection Roints 
form a Cantor like set. The approximate global 
description, however, sketched above. make& ad 

approximate calculation of certain typical points 
(e.g. those of ymax or yti) possible. . 

5. Probability density around the backbone of the 
Cantor book 

Let us assume that the map possesses the prop- 
erty of hyperbolicity. Then, the attractor consists 
of unstable manifolds (see Sinai [28D. The in- 
variant distribution is obtained by averaging over 
any of these unstable manifolds provided the den- 
sity of the measure on them is suitable constructed 
[28]. We do not need this construction explicitly 
only its property as follows. Let us denote by 
p(x, y) the density of’ such a suitable constructed 
measure on the unstable manifold belonging to the 
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point P. Then, the image of p, 

Ph Y) I+‘9 Y') = h(xy)’ 
7 

(5 -1) 

where (x’, y’) is the image of (x, y), is the density 
of such a measure on the unstable manifold be- 
longing to the image point of P. Here 

(5.2) 

represents the coefficient of expansion [28]. In a 
more explicit form 

A(% Y> = ( (4,q + 421* + v*,q + d22J2 l’* 

1 +q* I ’ 

(5.3) 

where dij and q, both function- of x and y, 
denote the elements of the cl- ivative matrix of the 
map and the slope dx/d y, respectively. 

Hyperbolicity at D * requires min (&a) < 1 as it 
follows from (2.10) and (5.3). Less is known about 
the hyperbolicity property of the whole map. The 
hyperbolicity property for the Poincare section of 
the Lorenz model at a certain value of the parame- 
ters has been numerically proven in [9] and one 
may expect it to be valid in (2.10) for j3 < 6, p -C 1. 
Having in mind the possibility that the scheme 
above may be valid under less stringent conditions 
than that of hyperbolicity everywhere on the at- 
tractor, we apply it also for the other cases in 
order to make possible a comparison with the 
results obtained in the limit of strong dissipation. 

Xl_ 1-6a I ( _;+Lp)L( ~)@-“‘“]. 
6 

(5.6) 

If c = 0 it follows from (4.2) and (4.6) that 

1 + xf 

i 1 
(l-O/8 

PC+ 7 

x l- 
[ 

1-“6+/3_$ ,,,.)(J+Q/@]_ 

(5.7) 

(If b also vanishes (5.5) is valid.) 
We proceed by assuming that p(x, y) remains For 16 - fi 1 > 1 the linear corrections to the 

finite in the limit x ---) 0 along any fibres, which is prefactors (e.g. q = q. + q,x in (5.3)) dominates 
supported by the numerical observations. The par- the terms in the square brackets of (5.4)-(5.7), 
ticular branch of the unstable manifold we in- therefore, the next to leading terms are then char- 
vestigate crosses the y-axis at a certain coordinate acterized by other power laws which can also be 
y0 under the slope qO. In the limit x + 0 d,, and easily calculated. By setting c = ub and taking into 
d,, dominate (5.3) as it follows from (2.10), and y consideration that the intersection point with the 
can be replaced by ya. positive x axis is then y, = (1 + ad)/a, the for- 

The particular behaviour depends again strongly 
on the ratio of a and 6, therefore, the following 
cases are to be distinguished: 

i) p < 6. Expressing x in terms of x’ and y’ by 
(4.1) and using (4.4) for the asymptotic shape we 
find for the density as a function of the coordinate 
x’ along the fibre 

p(x’) _ ( 1 +ax’)(l-B)‘B 

x 1_ l-g~+b+acs 

[ i 
_ 

B a 
__)“( !A$)(8-fi)‘“8’/8]. 

(5.4) 

ii) j3 = 6. From (4.1) and (4.5) one obtains 

p(x’) - (1 + xr)cl-B)‘B. (5.5) 

iii) p > 6. Using now (4.2) and (4.6) we find for 
c#O 
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mulas (5.4) and (5.6) are equivalent with (3.15) 
and (3.17), respectively. 
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Appendix A 

We consider the dynamics 

X>O, 

64.1) 

x co, 

where the sign in front of the last terms are 
identical with that of the preimage of x, and I, 
and I, are positive constants less than 1. At any 
choice of I, and I, a fully developed chaos case is 
realized. 

+ln [(l + 1,)(1+ 1,)] . 
i 

(A-6) 

For 1, = 1, = 1 the Bernoulli shift is recovered. 

As now Appendix B 

91= - 1 + x(1 + 1,)/l,, e2= -1+x(1+/,), 

$+=1+x(1+&), l#Q=l+x(1+12)/12, 

(A-2) 

one finds by observing (3.8) that a piecewise con- 
stant solution exists: 

,-;;=p 
1 , 

64.3) 

p-(x)= 
i 

;’ 
-12<x<1, 

, _l<x< -1 
2' 

Thus 

P(x)=P+(x)+P_(x) 

i 

P9 -1 <x-= -I, and Ii<x<l, 

= 2P, -12<x<lI, 

(A.4) 

with l/p = 2 + I, + I,. 

The expression of the Lyapunov number is given 

by 

x =Jd’~+(x)lnl$,(x)ldx 

+ /‘P-(x)hM;(x)ldx 
0 

+ 
/ 
' J’+64M%b)ldx 
-1 

+ 
J 
' P_(x)lnl&(x)ldx. 64.5) 
-11 

After substitution one obtains 

x= l 1 + I, 1 + I, 
2 

+ I, 
+ 

I, 
i 1, In 7 

1 
+I,hlI 

2 

In this appendix we discuss shortly the phenom- 
enological question how can the map (2.10) be 
generalized so that its most important properties 
remain unchanged. First, we note that by introduo 
ing 

2 = (cy - bx)/(b + cd) 

(2.10) may be rewritten as 

(A-7) 

x’ = (-1+ alxI@ + blxlb+‘) 

xsgn(x)+z(b+cd)~x~*, (A.8) 

z’=(l- Ixl@(ub-c)/(b+cd))sgn(x). 
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A straightforward extension of (A.8) is then 

x’=f(lxl)sgn(x)+zg(lxI), 

r’ = +I) w(x), 
(A-9) 

where f, g and h are independent functions. In 
order to find Cantor book structure we require 
that g vanishes at the origin. The branches of the 
strange attractor are then pinched together at 
(f(O), h(0)). The Jacobian is now J(x) = 

-g(lxI)WlxIV44. 
We concentrate again on a neighbourhood at 

the backbone of the Cantor book supposed to be 
situated at (r 1, f d). The local forms of the 
functions f, g, h are chosen for x + O+ as 

f(x) = -1+axk, g(x)=cxS, 

h(x) = xp+d, 
(A.lO) 

where k, 6, /3 > 0. The main difference between 
the present case and map (2.10) is that k now 
need not coincide with j3. Since z’ is a function of 
x only, the asymptotic shape of a branch of the 
strange attractor at (- 1, d) reads 

x’+l=a(z’-d)k’B+cz,,(z’-d)S’p, (A.11) 

where z0 denotes the intersection coordinate of the 
preimage branch with the z-axis. Whether the 
Cantor book is open depends on the ratios of 
the exponents. 

From (5.3) and the elements of the derivative 
matrix of (A.9) follows that d,, and d,, dominate 
again (5.3). One obtains for z’ + d 

P(Z’) - k &( z’ _ d)(k-l)/B 

+c6zo(z’- d)(a-1)“)2 

+jj2(z’ - d)*-*” 1 
-l/2 

. (A.12) 

A new type of behaviour arises for k < /3,6 with a 
leading exponent (1 - k)/B. 
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