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Abstract

The escape-rate formalism and the thermostating algorithm describe relaxation towards a decaying state with absorbing
boundaries and a steady state of periodic systems, respectively. It has been shown that the key features of the transpo
properties of both approaches, if modeled by low-dimensional dynamical systems, can conveniently be described in the
framework of multibaker maps. In the present paper we discuss in detail the steps required to reach a meaningful macroscopi
limit. The limit involves a sequence of coarser and coarser descriptions (projections) until one reaches the level of irreversible
macroscopic advection—diffusion equations. The influence of boundary conditions is studied in detail. Only a few of the chaos
characteristics possess a meaningful macroscopic limit, but none of these is sufficient to determine the entropy production in
a general non-equilibrium state.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The connection between non-equilibrium statistical physics and the underlying chaotic dynamics has recently
attracted great attentigd—45]. Central questions are how the microscopic reversible dynamics can appear as an
irreversible process on the macroscopic level, and how the macroscopic transport coefficients (like, e.g. diffusion
or drift coefficients) are related to microscopic characteristics of the underlying chaotic dynamics. Interestingly,
these problems can even be discussed in the framework of chaotic dynamical systems with only a few degrees
of freedom. Multibaker mapgL,4,8,30-45%urned out to be particularly suited for this purpose since they show
all generic features of spatially-extended, low-dimensional, hyperbolic dynamical systems, and are amenable to
analytical calculations. Depending on the choice of parameters and boundary conditions various approaches ftc
describe transport can be addressed:
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e Thermostating algorithm. An external force is used to invoke currents, and a constraint force acting on the particles
is introduced to avoid the growth of the kinetic energy without boj#)8,6,11,16—18,22]The constraint force
simulates the presence of an internal thermostat. It preserves time-reversibility, but makes the particle dynamics
dissipative on average. The systems are assumed to be periodic of large spatial extension, and the long-time
dynamics exhibitssustained chaos on an underlyingchaotic attractor. Once the dynamics collapsed to the
attractor the transport coefficients can be connected with the avgmasgespace contraction rate[2,5,6,11,12]

e Escape-rateformalism. Open systems of large spatial extensions are consifire8, 10,32—34]n such cases the
particle dynamics is chaotic in the senserafsient chaos, and there exists an underlying non-attracting chaotic
set, achaotic saddle in the phase space. The particle motion is a kind of scattering process, and the transport
coefficients are relatdd,10,30]to the chaotic saddle'sscape rate (hence the name escape-rate formalism).

An open system with fixed densities at the boundaries gives rise to a stationary flow of particles through the
system. These systems lie, however, beyond the scope of dynamical-systems theory, and the associated fracta
structures have been analyzed elsewhere in considerable[dgtajR6,31,35-37,41T herefore, such systems will
not further be discussed here.

We investigate a generalized multi-strip baker chain, and show how irreversibility arises in this system by applying
coarse graining. It is illustrated how, via a sequence of coarser and coarser observations (namely: projection of the
dynamics onto the transport direction, averaging over the motion inside cells, taking the limit of continuous time,
and of large linear scales) one reaches the level of macroscopic equations. One of the merits of multibaker maps
is that due to their straightforward chaotic dynamics these steps can explicitly be worked out—as opposed to the
classical discussions of taking these limits in the 19@0s-49]where the initial steps could only heuristically be
addressed. The influence of boundary conditions is studied in detail and we come to the conclusion that their effects
are important even in the large system limit.

The aim of the present paper is to show how far one can go in deriving macroscopic transport equations based
on a low-dimensional, dynamical system (which, by definition, is restricted to a finite phase space) as underly-
ing “microscopic” dynamics. Only models with periodic and with absorbing-boundary conditions correspond to
dynamical systems. They possess a natural measure, and we will hence be able to address the question whethe
the chaos characteristics associated with this measure can play a role in the macroscopic description of the related
transport processes. Most of the characteristics are ruled out by the observation that they are not well defined in the
macroscopic limit in which the coarse-grained dynamics gives rise to macroscopic transport equations compatible
with irreversible thermodynamics. The two major exceptions are the average phase-space contraction rate and the
escape rate. We point our, however, that none of these is sufficient to describe the thermodynamic entropy production
in a general macroscopically inhomogeneous state.

The paper is organized as follows Section Zhe multibaker chain is defined and the most important special cases
are identified. IrSection 3wve start from the microscopic chaotic dynamics of along chain and go through a sequence
of coarse-graining procedures to end up with the macroscopic advection—diffusion equation. Technical details of
determining the characteristics of the microscopic dynamics are relegadggpémdix A In Section 4we discuss
the effects of periodic and absorbing-boundary conditions used for the thermostating algorithm and the escape-rate
formalism.Section 5is devoted to a comparison of quantities with a well-defined macroscopic limit (decay and
phase-space contraction rates) in the periodic and open cases. The paper is concluded by a diseatisiof. (

2. Themultibaker chain

The single-particle phase space of a multibaker model is a rectangle of s [© [0, b]. It comprises a chain
of N identical cells of linear size coupled to each other along theaxis (Fig. 1a). Each cell possesses the same
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Fig. 1. The multibaker model (microscopic dynamics). (a) Geometry of the chain: every rectangle ofxsizeontains a baker map with
possible escape to and entering from its neighbors. The respective cells are labeled by thenmaexg from 1 toN. Boundary conditions
are implemented by appropriate choices of the dynamics in additionalrcetsO, N + 1 at the outer ends of the chain. (b) Action of the
multibaker map on a single cell in the case of a four-element partitien2. Four vertical columns in ceth — 1, m andm + 1, respectively,
are squeezed and stretched by the map such that the resulting horizontal strips fit imtoTdel height and width of the columns and strips
are indicated on the margin. (c) Generating partitionkfes 2. The 4V vertical strips of the chain form a generating partition for a symbolic
dynamics describing the chaotic dynamics. The symbols are given atop of the columns.

internal dynamics, carried out at integer multiples of a discrete timecumhis action is defined here in a pictorial
manner inFig. 1b. The total areab of the cell is divided intd + 2 vertical columns of widthta, s1a - - - sxa and
ra such that

k
I+r+> si=1 (2.1)
i=1

The presence of a bias is expressed by a difference in the areas mapped to thandftight ¢).

Fig. 1b illustrates the action of the map fbr= 2. The branches mapped into cellare indicated by the labels
L, S1, S2, andR, respectively. The branchdsand R are mapped onto horizontal strips of widttand of heights
1b and7b, respectively, in cells joint immediately to the right and left of the respective initial cells. The images of
the middle vertical columns remain inside the original cell and are all stretched to horizontal strips ofanadths
heights1b - - - 5¢b. The parameters, 5; specify the internal dynamics of the cells, whiléandr, 7 characterize the
coupling between neighboring cells. We are interested in cases where these horizontal strips fit into the neighboring
cells without overlapping with the images of the columns not leaving the cell. Thus, the dynanmjestise on
the chain of cells. The sum of the twiggled quantities can be smaller than unity,

k
I+7+) 5i=<1, (2.2)
i=1

indicating the possibility of global phase-space contraction (the dynamics need sunjdotive).
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For more than one strip staying inside a cell- 1, the transient dynamics of a single cell with open ends is
already chaotic. The full chain’s dynamics is, however, chaotic forkafiiycludingk = 0, 1) due to the coupling
of a large number of identical cells.

This multibaker map represents a rather broad class of dynamical systems, and we believe that the results not
depending onits specific features will be of general validity for hyperbolic dynamical systems with bias and transport.
Depending on the choice of the local phase-space contraction ratios (Jacobians)

si
, Ji=—, i=1...k (2.3)

,
Si

~1 ~

N

JL=-, Jr=

different classes of time-evolution equations can be modeled:

(a) Hamiltonian (i.e., area-preserving) dynamics:

J=Jr=Ji=1 i=1...k (2.4a)
(b) homogeneous dissipation:

J=Jlr=Ji=J<1l i=1...k (2.4b)

(c) thermostated dynamics:

1

J = — =
L In

; Ji=1 i=1...,k (2.4¢)

The last choice is a model of thermostating since it reflects the following basic features:

(i) The dynamics is area-contracting (expanding) if the trajectory moves in the direction of (against) the bias. This
mimics the effect of a slowing down (acceleration) of particles moving parallel to (against) the external field
[2,3,5,8,34]

(i) Volume elements that move away but finally come back to the original position pick up no net contribution to
phase-space contraction, i.e., the thermostat only acts when work is done on the system.

(iii) The mapping of the phase space is one-to-one so that the stationary distribution is supported by the full phase
space, on which the dynamics is ergodic.

3. Dynamicson different levels of coarse graining
3.1. Full microscopic dynamics

The basic dynamics on the phase space introduced in the previous section can be written as a map

M (xp, yn) = (Xn41, Ynt1)

acting at integer multiples of the microscopic time unit.e., in continuous time at= nt. The explicit form of

M is easy to find from its action shown kig. 1. From the point of view of statistical properties and transport, the
time evolution of the densities is of central importance. &dtx, y) denote a phase-space distribution at time
The Liouville operatoi connects,, with g,,11:

L: On > On+1. (31)
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In the present system it can be written as a transfer matriko construct the matrix we observe that due to the
piecewise-linear character of the multibaker map a (piecewise) constant phase-space @ensitgmains piece-

wise constant under the time evolution. Moreoasty smooth initial condition converges to the same asymptotic
distribution (which is irregularly changing in thedirection, but is constant in each cell along thaxis). Therefore,

in what follows we restrict ourselves to piecewise constant initial conditions. In order to find the constant-density
regions, a partitioning of the chain by the horizontal strips is considered, which are defined by the one-step backward
dynamics in overlap with the vertical columns. There are then, respectiv! strips and columns in each cell.
Incellm,m=1,2,..., N,the symbolsk +2)ym — (k — 1), (k+2)m — (k — 2), ..., (k+ 2)m mark the columns,

and the strips are labeled by the same set of numbers running now from bottom to Eg.(&t). This partition is
generating and Markovig®1,53] Consequently, it specifies a symbolic dynamicgkof 2) N symbols. In such a
situation the transfer matrix plays the role of the Liouville oper§&@t. In the present setting it takes the form

(k+2)(m-1)
(k+2)m-(k-1)
(k+2)(m+1)-(k-1)
(k+2)(m+1)
(k+2)(m+2)-(k-1)

(k+2)m

0 T e T
l 0---0 (k+2)m-(k-1)
81 & (k+2)m-(k-2)
8'): ces 8k (k+2)m:1 (3-2)
0:.--0 roeee (k42)m
T=
I -1 0---0 (k+2)(me+1)-(k-1)
$1 -+ 8 (k+2)(m+1)-(k-2)
Sk~ Sk (k+3)(m+1)-1
0---0 T e (k+2)(m+1)
1 ---1 0

\ 0---0 )

where—as indicated at the top and right of the matrix—the horizontal and vertical rules group tdgetteer
columns comprising a given cell (cell andm + 1 are indicated). All elements that are not explicitly givetf3rR)

vanish. The other element§ g of T represent non-vanishing probabilities to be mapped from a column of code

« into a column of codegs, wherea and g label the rows and columns @f, respectively. The time evolution of

the piecewise constant phase-space density amounts to repeated application of this matrix on a vector representir
the initial condition. Consequently, the long-time properties of the dynamics will be connected with the largest
eigenvalues of the transfer matiix
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Since the entries in every block bf+ 2 columns are identical every left eigenvector consists of blocksto?
identical components. Consequently, eigenvector elements do not vary witkin-thentries characterizing a cell.
This allows us to restrict our attention to transitions between neighboring cells only. A reduced transfeT rofatrix
sizeN x N (or possibly(N + 2) x (N + 2) when additional cells are needed to implement the boundary conditions,
cf. Section 4andAppendix A) can be defined with the transition probabilities from a cell of inael another one
asTym1=1Tum =Y+ si =s,andT,, 1 = r. For the cells in the interior of the chain, all other transitions
are forbidden. Consequently,

l s r
T= I s r (3.3)
I s r

is tridiagonal, up to entries in the outermost rows or columns, which depend on the choice of boundary conditions.
The spectrum of the reduced transfer matrix is worked oudppendix A It fully characterizes all decay
rates of the forward dynamics. Moreover, the thermodynamic formalism of dynamical sy{§t&nmsplies that
structurallyidentical matrices describe the whole set of multifractal properties of the microscopic dynamics. The
various characteristics only differ by the choice of the non-vanishing matrix elements. Accordirghpendix A
the spectrum of tridiagonal matrices is worked out for arbitrary positive values foand!. We thus obtain a
description of all relevant dynamical and geometrical (fractal) properties of the invariant sets including Lyapunov
exponents, generalized dimensions along both the stable and the unstable directions, and Rényi entropies. Since
different boundary conditions lead to different positions of the non-vanishing matrix elements in the outermost
rows and columns, the exact form of the spectrum depends on the type of boundary conditiegs. (&.16) and
(A.11)).

3.2. Microscopic dynamics reduced to the direction of transport

Having started with the full microscopic treatment of the multibaker dynamics, we now take a successively more
macroscopic point of view of the description, and state compatibility conditions.

Due to the special form of the multibaker map, the density does not depend at any timexeodheinate
inside a cell. In other words, thedependence is exactly the same forxallalues inside a cell. We can therefore
easily integrate the phase-space density oveyibmordinate, obtaining the time evolution of the projected density
(beware of the different symbo}sandp):

b
pn(x) = fo dy ou(x, y). (3.4)

As a consequence, thedynamics can be described bymae-dimensional map f(x) depicted inFig. 2 Since the
baker map is piecewise lineafix) is of the same character. The time evolution of its reduced density is described
by the Frobenius—Perron equati@1i], which takes the general form

prpax) = Y % (3.5)

xef7w)
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Fig. 2. The one-dimensional magfix) obtained by projecting the multibaker dynamics to thexis ¢ = 2).

In the present case evexyin [0, Na] hask + 2 preimagesx, (xgr) in the left (right) neighboring cell, ang;,
i = 1,...,kinside the same cell ag. The corresponding slopeg(x) arer—t (I"1) andsi‘l, respectively, such
that the Frobenius—Perron equation takes the form

k
1 () = roa(x1) + ) 5ion (i) + lon (XR). (36)

=1
It is worth noting that even if the original dynamics was invertible (like, for instance, in the Hamiltonian or ther-
mostated cases), the time evolution of the probabilitiesrésersible due to the projectioii3.4) on thex-axis. In
other words, the process becomes irreversible since a kind of coarse graining has beenEppBed)associates
the projected dynamics with a dissipativene-dimensional map which has a unique attracting stationary solution
(possibly identically zero) in the space of thér). Owing to the piecewise-linear character of the map and the
stretching property out of the elementary interyal(x) is constant in each cellTherefore, we can represent the
distribution at timen by a vectorp, of N elementsp,.,,, m = 1,..., N, and observe that for everyin cell
m the terms appearing i(8.6) take the formvp, (xL) = ronm—1, 2 SiPn(Xi) = $pn:m, NIy (XR) = lon:m+1-
Consequently, the Frobenius—Perron equation reads

Pn+1 = Hpn. 3.7)
A comparison of3.6) with the definition of the reduced transfer mat{83)leads to the observation
H=TT. (3.8)

1 The phase-space contraction ratg2i6) is formally infinite, as for any one-dimensional map. After all, the phase-space contraction rate
diverges in the limit where a higher-dimensional map reduces to the one-dimensional dynamics.

2 We utilize at this point that any smooth initial density along the multibaker chain converges exponentially fast (on the time scale of the
reciprocal value of the average positive Lyapunov exponent) to a distribution which is constant in each cell. Disregarding these short transients,
we assume from here on that the density is constant within each cell.
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The Frobenius—Perron operatdiis the transpose of the reduced transfer matrix. Correspondingly, the left eigen-
vectors ofT are the right eigenvectors bf, among which the one belonging to the largest eigenvalue provides the
natural invariant density along theaxis. It is worth noting that the application of the thermodynamic formalism
leads again to tridiagonal transfer matrices with the same structitdaswith different non-vanishing elements.
Therefore, on this level we are still in a position to recover dynamic characteristics of the motion alaraxike

but we have already lost information about the properties along-tivds. In particular, the correct phase-space
contraction rate can only be obtained from the full microscopic dynamics.

3.3. Inter-cell dynamics: the random-walk picture

From the point of view of modeling transport, a restriction of the attention to the average density in each cell
corresponds to the existence of a smallest resolutiorthe configuration space (here, thaxis) below which no
spatial structure is resolved, and to an averaging over all the momenta in the respective regions. A reduction of the
dynamics in this spirit is unavoidable in order to obtain a thermodynamic descrjgeB0] For the multibaker
map this amounts to a projection of the (deterministic) dynamical system onto a random walk: move left, right or
stay with given probabilities. This projection illustrates that a deterministic chaotic dynamics can lead to a fully
stochastic behavior after appropriate coarse graining (this was the basic assumption underIy#8]).eNmpte that
on this level of the description there are no partitions inside a cell any longer: the role of mixing of the microscopic
dynamics is taken over by the stochastic character of the random walk.

Let P,.,, denote the probability to find a particle in cellat discrete time.. According to the theory of Markov
chains[56], the conservation of probability requires that the net flux through the boundaries of each cell amounts
to the temporal change of the cell probability:

Pn+1;m = (1 —1— V)Pn;m + IPn;m+1 + I’Pn;m—l- (39)
Thus, the evolution of the vectd},, = (Py:1, - - ., Pn:n) is governed by the matrix equation
Pyi1=AP,, (3.10)

where the matrix elements éfare the transition probabilities between neighboring cells. Its non-vanishing entries
are

Apom—1 =1, Apm=1l—1l—-r=s, Apmy1 =T (3.11)

Due to the simple structure of the muItibaker_map the dynamics of the Markov chain and the projected 1D map
are described by the same transition mathix= T. However, the Markov chain dynamics is defined dodfuween
cells, notinside a given cell.

3.4. Continuous-time dynamics. the master equation

On the next level of coarse graining we only consider slow “macroscopic” time evolutions with continuous time
defined as = nt. We expect that the continuous-time macroscopic behavior differs from the microscopic one, and
inherits properties of the latter via transport coefficients only. Physically this implies a separation of time scales.
For a meaningful limit,P,.,, — Py (t = nt), of the probability distribution the jumping probabilities are required
to be of the order of the microscopic time unitThis induces the staying probability= 1 — r — [ to be of order
unity. Writing

[ =pur, r = AT, (3.12)
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whereu anda are independent af, we recover the master equation of a birth and death pr¢66s

dPy (1)
dr

with constant coefficients and . The matrix governing this continuous-time dynamics has the same structure as
the reduced transition matrik of the microscopic Liouville operator. Therefore, its full spectrum can easily be
obtained by the methods appliedAppendix A The fact that according #3.12)the jumping probabilities and/

scale linearly int assures that the time evolution on macroscopic scales is slow as compared to the time unit

=APy_1() + uPpya(® — (A + 1) Py (1) (313)

3.5. Large-scale dynamics: the advection—diffusion equation

As a final step we consider the limit of large spatial extension realized by a chain of lergttV + 1)a > a
composed oV > 1 cells. To this end we consider the space variakiemato be continuous, i.e., we only resolve
spatial variations on scalas>> a. In order to have a meaningful limi,,(r) — P(x = ma, r) for m > 1, the sum
of the jumping probabilities must be much larger than their difference. Writing

2D
)\.—"_/./L:?, A—p=-— (314)

with D andv constant, and assuming weak spatial gradigPs— P,,—1| < P, the Fokker—Planck (or advection—
diffusion) equation

P(x, P(x, 92P(x, t
(x)z_v (x)+D (x, 1)
ot ax x2

is recovered fron{3.13) [57] In this pictureD andv are interpreted as diffusion coefficient and drift (or bias),
respectively. By this sequence of projections and limits, we thus have achieved an equation, which describes the
macroscopic time evolution of the system. For this reason wg3#lthe limit themacroscopic limit.

From(3.12) and (3.14yve find that the original jump probabilities scale as

(3.15)

Dt va
Dt va
pmir= DT (14 22 (3.16b)

In order to be compatible with an advection—diffusion descriptiamd D must not depend on the time and space
unitst anda.

Although not related to the advection—diffusion equation, it is worth introducing the backward jumping rates
and/ as

~ Dt va
== (1 - 85) , (3.17a)
- Dt va
F=i2 (1+85). (3.17b)

Here,J denotes the global Jacobidn= (7 4 1)/(r + I) on the strips contributing to transport, ani$ a parameter
measuring the deviation from constant phase-space contraction. Thé€Xdrmof expressing the backward rates

is convenient for taking the macroscopic limit of the phase-space contraction rate. The three basic dynamics definec
in Section 2are recovered by the choices: (A= 1, ¢ = 1 (Hamiltonian case), (bJ < 1, = 1 (homogeneous
dissipation), and (cJy = 1, ¢ = —1 (thermostating).
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Lom < e
0.5

(b)

Fig. 3. Time evolution op,.,, for N = 500,r = 0.052, and = 0.048. The initial density is lineapg.,, = (1.5— m/N). (a) Decay for periodic
boundary conditions. The normalizati{rjf;’:1 pn:m = N Of p,..y, @and hence the average number of particles in the system does not change. (b)
Decay for absorbing-boundary conditions. Asymptotically the overall density profile is constant in space and exponentially decaying in time.
Forr > [ a maximum appears close to the cells at the right boundary of the chain.

4. Effectsof boundary conditions

The eigenvectorg,, of the tridiagonal matrice$* are exponential functions of subscript which in our case
coincides with the cell index. The actual form of the eigenvectors and the eigenvalues depends on the boundary
conditions defined by the action boundary cells with indicesn = 0 andm = N + 1. The two cases of periodic
and absorbing-boundary conditions are considered in turn:

(i)

(ii)

Periodic boundary conditions: pp = pn, andpy4+1 = p1. For the transfer matrices this implies that, besides

the tridiagonal structure described above, there are entries in the lower left and upper right corner chosen such
that the entries of every line and of every column add upta + r. In this case, the eigenvector represents

a traveling wave (cfFig. 3a) of the form exgi2zvm /(N + 1)).° The largest eigenvalugy is unity (xo = 1)

since a stable stationary solutiop,( = const) exists. It corresponds to the homogeneous distribution along

the chain. Formally this is a consequence of the sum(gull) which expresses the fact that the dynamics can
reach any point along theaxis. The non-vanishing eigenvalues are complex and of the forAgpendix A

) 2y . . 2y
=1- 11— cos —i(r—10sin 4.1a
K =1 4[1- 00 2 i - psin @12
withv =0, ..., N. Theirimaginary parts indicate that the relaxation towards the stationary state takes place via

temporal oscillations superimposed on an exponential decay, as sh&ign Ba. For the long-time dynamics

the most relevant eigenvalue besides unity corresponds to the slowestdechy

Absorbing-boundary conditions. pp = py+1 = 0. The choice for the boundary cells is determined by the fact

that only transitiongo these cells are allowed but there are no transitioors the boundary cells. Thus the
transfer matrices do not have additional entries besides those on and immediately next to the diagonal, and we
have to look for eigenfunctions with the propedy = py+1 = 0. In this case the eigenvectors are standing
waves of exponentially changing amplitude €ify. 3b) of the form(r/1)"/2 sin (imvm /(N +1)). The spectrum

is real and the non-vanishing eigenvalues are given by

@ _1_ 1)+ 2(n Y2 cos—~
Xy (r+D+2dr) NT1

(4.1b)

3 If we take the traveling wave form with a negative exponent the imaginary pgttiaf)changes sign. For simplicity we consider these cases
to be equivalent.
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withv =1,2, ..., N. Here the largest eigenvalue corresponds £o 1. It is smaller than unity, reflecting the
fact that no non-trivial (i.e., different from the empty staig,= O for all m) stationary state exists. In this case
(Fig. 3) the density decays exponentially.

The two spectra((vp) and Xf,a) are not identical, reflecting that the relaxation processes in open and in periodic

systems are, in general, different. On the other haode of the intracell parameters;j or characteristics along
the stable manifold (e.d, 7) appears in them. This indicates that the temporal scales in the random-walk picture
are independent of the microscopic motion inside cells. In our simple model this independence already holds for
the dynamics projected to the spatiatariable (cf.[29] for a heuristic discussion of more general cases).

Since the eigenvalues only depend on the jump probabilibeslr, we can follow now how the spectra change
when taking the macroscopic limit.

4.1. Spectrain the macroscopic limit

One can determine the spectra of the advection—diffusion equation by taking tHedjmit— 0 and using
conditions(3.14) By this we obtain

yP = ivk + DK = %+D(k+i%)2 (4.2a)
with wave numberg = 27v/L,v =0, 1, ..., N for the periodic case, and
@ _ v 2
7 = 2+ Dk (4.2b)
with k = nv/L,v =1, ..., N for the absorbing-boundary case. These results show that the macroscopic times are
on the order of the diffusion timé,?/ D or of the drift timeD/v?. Although the spectra are different, an interesting

relation appears: the transformatibr> (k —iv/D)/2 relategx,gf) to y,(na). The complex shift and the difference in

the range of available wave numbereflects the change of the character of the boundary condition.

5. Chaos characteristics with meaningful macroscopic limits

In this section, we investigate which characteristics of the chaotic dynamics possess a meaningful macroscopic
limit. They are of special importance since they are the only candidates possibly related to macroscopic transport
coefficients. After all the latter must not depend on microscopic details of the dynamics. In classical work (for
instancg50]) this independence is attributed to the vast separation of microscopic and macroscopic scales, which
also applies in the present setting. This is explicitly demonstrated now by writing the respective quantities in a
scaling form with a few scale variables composed of ratios of the microscopic and macroscopic length scales. The
macroscopic limit is then expressed as a limit where these scaling variables tend to zero.

5.1. Decay rates

An important example of a dynamical characteristics possessing a macroscopic limit is the spectrum of the decay
rates, in particular the slowest one. In a system with periodic boundary conditions it describes the relaxation to the
steady state, and for open systems amounts to the escape rate.

4 A more careful discussion of the limit, and justification of the present approach is gi@action 5
5 The largest wavelength compatible with absorbing and periodic boundary conditiohg2arendL /7, respectively.
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5.1.1. Scaling form
(P)

We write the eigenvalueg,” of the transfer matrix of the periodic case as

2D 2 v, 2 2
AP =1 1o cos T | —iZsin T =1 ZpP (£ 2. (5.1)
a? L a L D I,) L

Here H,fp) represents a complex-valued bivariate scaling function involving the ratios of the microscopie scale
with the system sizé = a(N + 1) and the characteristic length scale

l,=— (5.2)

of a biased diffusive system, respectively. For this length the time required to pass it with the drift velsay
the same order as the diffusional relaxation tidfa/d) (or, equivalentlyD/v?) for spatial inhomogeneities of this
size. Typically, the three length scales characterizing the system are arranged like

akly < L. (5.3)

This condition already implies a large system limit, which we defing/és a/L — O.
Similar to the case of periodic boundary conditions, the eigenvadﬁésf the transfer matrix for the absorbing-
boundary case can be written as

2D vay 27?2 TVa v? a a
6 =1-t {1_ [1‘ (35) } cos (=L A ("‘)’ c4

WhereHﬁa) again is a bivariate scaling function.

5.1.2. Macroscopic limit

It directly follows from(5.1) and (5.4}hat in the limitv?/D < 1, 7v/L < 1 the continuous-time decay rates
y» coincide with those of the advection—diffusion equation, ixg.—= exp(—y,1). In particular, in the periodic
case the first non-trivial eigenvaluép) of the transfer matrix approaches towards the slowest decay rate of the
advection—diffusion dynamics as

Iogx(p) 472 a\? . 2 a\2
® _ _ 1 _ b = —
v = . _DL2 1+O<lv> +IvL |:1+0(L) :| (5.5)

Similarly, the continuous-time escape rateoincides with the slowest ray.{a) of the dynamics:

T [Ho ((l_) (g)z)} 4 2 [Ho ((l_) (g)z)} | 56)

where we also dropped terms of ordev/L)(a/l,)? and (tv/L)(a/L)?, which are smaller than the indicated
higher-order terms by the small factev/L. These formulas show that the leading eigenvalues are related to
transport coefficients, but in the general case wiizeandv are non-zero, these eigenvalues alone do not determine
both transport coefficients uniquely.

5.2. Phase-space contraction rate

5.2.1. Saling form
Another quantity of interest is the average phase-space contractian thteaverage of the negative logarithms
of the local Jacobians divided hy At the same timeg is the negative sum of the average Lyapunov exponents
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o = —(A1 + A2). Itis interesting to observe that the average positive or negative Lyapunov exponent alone never
possesses a meaningful macroscopic limit Exf. (A.20). Their sum, however, can survive the limit. Using the
results ofAppendix Awe find for the periodic and open case of our multibaker model

Si 1 G
5P — — N yrin: In - 5.7a
ot (Z Si . + 7 +r o) ( )

1

and

S 7 T
@ = ekt In 2 an¥21n L cos 5.7b
o (Xi:Sl Si+() Ir " N+1)° (5.7b)

respectively. The average phase-space contraction ratéepdad on the microscopic (inter-cell) parametess:
5;, 1 and7 are all present in the expression.
Meaningful thermodynamic limits can only exist when we can get rid of the dependence on the microscopic
parameters. To that end the global Jacohlaon the strips contributing to transport (&q. (3.17) must be the
same as the local Jacobians on all the strips staying inside the cell in one time step, i.e.,

Yy fori=1,... .k (5.8)

8i
The three classes (a)—(c) introducedbiection 2obey this requirement.
With Eg. (5.8)we find that in the periodic case

_ D va l—eva/2D D va 1+ eva/2D
ot ¢ |:a2 ( 2D) 1—va/2D ' a2 ( 21)) 1+ va/2D
n 7+ ols® (¢ (5.92)
= — T— —_ .
D I

with S as a single variable scaling function.
Similarly, in the absorbing-boundary case

D vay 2142 1— (sva/2D)? ma v2 a a
5@ r=—InJ -1 |1-(=— In =—————— = cos— = —1In —s@ (= —=).
ot It aZ[ <2D> 1—(a/2D? "L A R V)
(5.9b)

The scaling functiors® is now bivariate due to the explicit dependencelorfFor J = 1, i.e., in the case where

the baker map is one-to-one on its phase spa,is an even function of the parameterConsequently, the
phase-space contraction rate on the saddle of the absorbing-boundary problem is the same in the thermostated ca
& = —1 as in the Hamiltonian cage= 1:

5@ =0. (5.10)
This result can be made plausible by observing that trajectories never escaping the (finite) system take approximately

the same number of steps towards and against the bias such that the dynamics is area preserving on the average (
discussion at the end &fection 2.

5.2.2. Macroscopic limit
Carrying out the macroscopic limit for the phase-space contraction rates, we find in the periodic case that

InJ v?(e—1)72 2
5® =L +%(€ 4) [1+0<l£) . (5.11a)
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In the case of absorbing boundaries on the other hand,

2 2
@ = 'nTJ + :—D(sz ~1 [1 +O ((;) : (%)2)} . (5.11b)

Notice that the leading order terms are in both cases proportiona} 0.

6. Discussion

For a simple dynamical model of large spatial extension, the multibaker map, we explicitly worked out a hierarchy
of coarse-graining processes reminiscent of the reduction of a microscopic dynamics to macroscopic time evolution
[47,48] Already the simplest kind of coarse graining (projection on the transport axis) makes the dynamics irre-
versible and compatible with a kind of random walk. A further coarsening accounting for a separation of microscopic
vs. thermodynamically relevant large temporal and spatial scales leads to a continuous-time master equation and
an advection—diffusion equation, respectively. The discussion clearly illustrates the relevance of an intermediate,
coarse-grained description in terms of Master equations for the description of transport procegd@sAgif.

This property is indispensable to obtain a meaningful description on the random walk level. The separation of time
and length scales required to end up with macroscopically meaningful equations, expresses that the microscopic
parametersd andt of the multibaker) are negligibly small as compared to the macroscopic scales. They do not
affect transport coefficients or particle densities.

We investigated transport in the framework of a thermostated system with periodic boundary conditions, and in the
escape-rate formalism. The microscopic dynamics is in both cases given by a well-defined dynamical system generat-
ing permanent and transient chaos, respectively. Interestingdt/pf the chaos characteristics (including the average
Lyapunov exponents, fractal dimensions, entropieg)adave a well-defined macroscopic limit. The only excep-
tions are the average phase-space contraction rate, i.e., the sum of all Lyapunov eXpoheatsd the escape rate.

They are therefore candidates for being related to transport coefficients and characteristics of thermodynamic steady
states. In the thermostated setting the average phase-space contraction rate can indeed coincide with the entrop
production, but only for a steady state, where the coarse-grained density is stationary and[@4ifdivmen, in the

spirit of the escape-rate formalism, tkeeme model is subjected to absorbing-boundary conditions the sum of aver-

age Lyapunov exponents vanishes, in spite of a non-zero thermodynamic entropy production due to the explicit time
evolution of the connected macroscopic densities. Consequently, the relation between phase-space contraction anc
the entropy-production rate must not be viewed as a fundamental property of dynamical systems, but can at best apply
in certain special cases like uniform stationary states of thermostated systems with absorbing-boundary conditions.

Modeling of transport with all aspects of irreversibility, including entropy production, is consequently a much
more complex task than the mere recovering of transport equations. In a general non-stationary situation none of
the macroscopically well-defined chaos characteristics can fully account for the entropy production since the latter
explicitly depends on the instantaneous density distribution in that case. Moreover, as show{3da3Be4 3] the
expression for the local entropy production corresponding to the continuous-time, large-scale dynamics (i.e., the
entropy production in the macroscopic limit) coincides with the one obtained from non-equilibrium thermodynamics
[46] including all contributions due to local density differences of the macroscopicSstate.

6 The entropy production per particled$™ (x, 1) = [v — Dayp(x, 1)/ p(x, H]?/ D, wherep(x, ©) denotes the macroscopic limit of projected
density(3.4). It corresponds to the continuous-time, large-scale thermostated dynamics#.&,.c = —1 in the present paper). In the periodic
case the average phase-space contractiorfFatea)turns out to b&s = v2/D, and thusr(™ (x, 1) — & = —2vd,p/p + D(dxp/p)2, which can
take a positive as well as a negative sign. In a spatial average with respect to the densjtyhowever, the first term on the right-hand side
vanishes so that the average is strictly positive except in the steady statedwher®. In the case of absorbing-boundary conditiéns 0 (cf.
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The discussion of multibaker maps clearly shows tloatstandard parameters of the dynamics are essential for
the modeling of transport processes. These parameters are the transition probapilitielsé multibaker) between
coarse-grained regions and the associated local Jacohiaig ¢ in the multibaker). The latter do not influence the
transport equations. It isand/, a very uncommon set of parameters from the point of view of dynamical systems,
which determine the transport coefficiemtand D.

Some descriptions of entropic aspects of dynamical-system models of transport emphasize the importance of the
SRB measure on the chaotic attractor in the thermostated algd6tBm 2] of Takagi-function type distributions
of area-preserving models with open boundd34s35,37] or of fractal structures of hydrodynamic mod28,42]

Our results show thatone of the usual asymptotic chaos characteristics of the microscopic dynamics appear in the
transport coefficients.

Based on these observations, we conclude that it is onljettiency of converging towards a microscopically
fractal state which is essential in modeling transport processes. In the spirit of statistical mechanics, coarse graining
has to be carried out on a mesoscopic level (on the cells ofi$izthe multibaker) which is large enough to carry a
meaningfully defined density. The coarse-grained distribution therefore settles down to a steady state much earliel
than the microscopic motion. The traditional chaos characteristics, which focus only on the asymptotic stationary
measure of thenicroscopic dynamics, are therefore inappropriate for the description of the transport process. Only
the presence of microscopic chaos and the resulting Markov property of the coarse-grained dynamics are essential
for macroscopic transport—its characteristic numbers are, however, not.
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Appendix A. Evaluating chaotic propertiesfrom thetransfer matrices
A.1. Bivariate thermodynamics

For a complete characterization of invariant chaotic sets of two-dimensional maps a bivariate thermodynamic
formalism is especially well suited. Among several versions existing in the literature, we choose one that contains
the length scales only. In the most general case the measures are also important but since our multibaker chain i
piecewise linear, the natural measure and length scales are proportional, and itis sufficientto consider the length scal
statistics. Letﬁ.") (?;.")) denote the length scales generated by the backward (forward) dynamics along the unstable
(stable) direction after applications of the map. Identical subscriptsaidl indicate that these length scales belong
to the same symbol sequence in the backward and forward dynamics. Consider then a weighted sum over all symbol
containing products of different powersl{;ff) andi(l.”) at a fixed iteration number. Such sums are shown in the ther-
modynamic theory53,54]to scale exponentially with. It defines a bivariate thermodynamic functiégss, 82) as

Z l§n>ﬂ17;n)-"2 ~ @ GhrpnT (A.1)
j

(5.11b), anda,p/p = 9, log p # 0 whenevep(x, t) is not identically vanishing (s€@5] for further details). Consequently, the local entropy
production typically differs from the average phase-space contraction rate.
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where 81 and B2 are the weighting factors for the length scales along the unstable and stable manifolds,

respectively.
A few properties ofG can be read off immediately. The topological entragy is for instance obtained as
Ko = —G(0, 0). Taking one of the weighting factors to be zero, we recover the free endrgiend F> (the
negative of which is also called the topological pressure) along the unstable and stable directions, respectively:
G(B.0) = F1(B), G0, —p) = F2(B). (A.2)
The average Lyapunov exponentis obtained as
d
=R (A3)
B p=1

The fractal dimensiondél), d(()z) of the invariant set along the unstable and stable directions are
F(B=d{’y=0 k=12 (A.4)
and the escape rate appears as
k= Fi(1). (A5)

The free energies contain information on the full spectrum of finite time Lyapunov exponents, Renyi entropies and
generalized dimensions, too. For the particular formulas describing how to extract them we refer to the literature
[53,55] Finally we note that the phase-space contractiororate— (A1 +A2) can directly be obtained as a derivative

of G:

o= %G(l -B.-B| - (A-6)
=0
For systems with Markov partitions the quantity éxi;7) appears as thkeading eigenvalue of a generalized
transition matrix. This matrix has the same structure as the traditional transition matrix just the entries are the same
as the length scales at levek= 1 raised to powergs, B2. Thus we have the generalized transition maftig1, B2)
for the baker chain also in a tridiagonal from with non-vanishing elements

Tnm—1(B1, B2) = 171172 =], (A.73)
Tum(B1. B2) = Y _sP5 7 =35, (A.7b)
Tnmi1(B1. po) = P17 P =1, (A.7c)

A.2. The spectrum of tridiagonal matrices

Because tridiagonal matrices appear in several forms in our problem, let us consider the eigenvalue problem of a
generalV x N matrix with diagonal elementsand off diagonal elementsandl. The eigenvalue equation for the
non-vanishing eigenvaluesof T is

MU —1 + Sty + 1 = Y. (A.8)

In the case of constant elements exponential solutions are expected for the eigemygoioes 1, ..., N.
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Let us first assume a traveling wave form for the eigenvectors:
— L (A.9)

Substitution of this intdA.8) yields a complex set of eigenvalues

X =S+ (r+1)cosh —i(r—1)sind. (A.10)
These are consistent with periodicity required by the conditipa= u 1 provided that, = 27v/(N + 1) with
v=0,1,..., N. Thus the spectrum in the presence of periodic boundary conditions reads as

® 2y . . 2mv
=S+ (r+1)cos —i(r—=1sin A.11

Xv + @+ Nrl (r—=10 N1l ( )
withv=0,1,..., N. Now the largest eigenvalue

D =s+ @+ (A.12)

is the only real element of the spectrum (fo£ 1) and isindependent of the system size.
A different type of solutions is found by looking for real solutions in the form

U, = €" sin(mo). (A.13)

A direct substitution intqA.8) then specifies the exponantis
1 r
=—=1In- A.14
a=5lny (A.14)

and yields for the eigenvalue
x =S + 27/l cosb. (A.15)

This solution corresponds to a standing wave withegponentially increasing amplitude in space and is only
compatible with an absorbing-boundary condition. By requiring free endsiyith uy+1 = 0 we find that can

only take on values, = vir/(N + 1), v =1,..., N. Thus, the entire spectrum belonging to absorbing-boundary
conditions is (apart from degenerate zero eigenvalues)

X@ =s+ zdﬁcosNV—J’:l, v=1,2...,N. (A.16)

The largest eigenvalue is that of= 1. Note that the size dependence is present in all the elements but a large
system limitN — oo exists. Note that the two spectra are qualitatively different, the largest eigenvalues coincide
not even in the larg®y limit (cf. Fig. 4).

A.3. Characterizing the invariant sets

Substituting the non-vanishing matrix element3 ¢81, 82) for the periodic and absorbing-boundary conditions
into the respective largest eigenvalues yields two different bivariate pote@itfllandG@, viz.

eGP (BrpaT _ P Y N ) (A.17a)

i

eGP BLAIT > sl P2 4 23nP2 ) el cosN7_tF 7 (A.17D)

1
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Fig. 4. TheN-dependence of different quantities characterizing the chaotic set for a system with absorbing-boundary conditions. The crosses
at the right border give the corresponding values for periodic boundary conditions (which do not depéndba symbols are explained in

the text, and time is measured in unitstafparameters—Ileftt = 2,57 = 0.675,5, = 0.225,r = 0.052,/ = 0.048, as irFig. 3 right: k = 2,

s1 =0.6,s20 = 0.2,r = 0.18,/ = 0.02).

The corresponding free energies also depend on the boundary condition, and therefore, the spectra of local Lyapunov
exponents will typically be different for the open and periodic cases. Here, we just give some important chaos
characteristics explicitly. The topological entropies are obtained as

kPt =Ink +2), (A.18a)

@ T
K =In |k 4+ 2cos
0 [ * N+1

} , (A.18Db)
which shows that the symbolic dynamicsnever complete in a finite, open systeimNote also that even if the
single-cell dynamics is non-chaotic (i.&.= 0 ork = 1) the spatially-extended system, whéfes 1, is always
chaaotic.

For the escape rate we find,

T
kT = —1In [(1—1—r)+2ﬁcosN+l]. (A.19)

It is independent of the microscopic quantitigdut contains the jump probabilitidsr related to the transport
coefficients.1 = 1, B2 = 0 is the only “temperature” setting in the thermodynamic formalism where this can

happen.
The positive Lyapunov exponents for the respective boundary conditions are
Wr=->silnsi—iIni-rinr (A.203)
i

@_ _ t 1/2 T
A =€ —E i Ins; — (Ir In(Ir) cos
1 T |: : si Ins; —(Ir) an N+1

} . (A.20b)

1

7 The escape of particle trajectories characterized by certain symbol sequences introduces pruning in the symbolic dynamics. Since there is
less and less escape fr— oo, however,Kéa) anng’) become identical in the largg limit (cf. Fig. 4).
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These quantities, for instance, do not possess a macroscopic limit in the sgiatidn 3.5ecause the depen-
dence of the terms&in [ andr In r on the microscopic time and space unitanda is not removed in the limit
(cf. Eq. (3.16)).

The metric entropies are

KPP, KP = @2

and from the second derivative 6f(A.6) we obtain for the phase-space contraction rates

5 1 F
7P = — T In - A.22a
oVt (ZI: Si 5 + ] +r R ( )
S IF b4
7@ = g7 N2 L anY2n L cos A.22b
ot Xi:s’ si+() Ir " TN+1 ( )
The information dimension of the chaotic set’s unstable manifolds can be written as
P
1227
@ _
(@ (2,a) o K
Dy =1+dl” =2+W (A.23b)
2

The denominator contains in both cases the Lyapunov exponent characterizing the stable manifold. Since the
Lyapunov exponent does not possess a macroscopic limit, neither does the information dimension. It is remarkable,
however, that the combinatig@ — D1)A2, which is the difference of the phase-space contraction and escape rate,

is macroscopically well defined for both boundary conditions considered (notetrthat) for periodic boundary
conditions).
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