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Abstract

The escape-rate formalism and the thermostating algorithm describe relaxation towards a decaying state with absorbing
boundaries and a steady state of periodic systems, respectively. It has been shown that the key features of the transport
properties of both approaches, if modeled by low-dimensional dynamical systems, can conveniently be described in the
framework of multibaker maps. In the present paper we discuss in detail the steps required to reach a meaningful macroscopic
limit. The limit involves a sequence of coarser and coarser descriptions (projections) until one reaches the level of irreversible
macroscopic advection–diffusion equations. The influence of boundary conditions is studied in detail. Only a few of the chaos
characteristics possess a meaningful macroscopic limit, but none of these is sufficient to determine the entropy production in
a general non-equilibrium state.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The connection between non-equilibrium statistical physics and the underlying chaotic dynamics has recently
attracted great attention[1–45]. Central questions are how the microscopic reversible dynamics can appear as an
irreversible process on the macroscopic level, and how the macroscopic transport coefficients (like, e.g. diffusion
or drift coefficients) are related to microscopic characteristics of the underlying chaotic dynamics. Interestingly,
these problems can even be discussed in the framework of chaotic dynamical systems with only a few degrees
of freedom. Multibaker maps[1,4,8,30–45]turned out to be particularly suited for this purpose since they show
all generic features of spatially-extended, low-dimensional, hyperbolic dynamical systems, and are amenable to
analytical calculations. Depending on the choice of parameters and boundary conditions various approaches to
describe transport can be addressed:
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• Thermostating algorithm. An external force is used to invoke currents, and a constraint force acting on the particles
is introduced to avoid the growth of the kinetic energy without bound[2,5,6,11,16–18,22]. The constraint force
simulates the presence of an internal thermostat. It preserves time-reversibility, but makes the particle dynamics
dissipative on average. The systems are assumed to be periodic of large spatial extension, and the long-time
dynamics exhibitssustained chaos on an underlyingchaotic attractor. Once the dynamics collapsed to the
attractor the transport coefficients can be connected with the averagephase-space contraction rate [2,5,6,11,12].

• Escape-rate formalism. Open systems of large spatial extensions are considered[3,4,8,10,32–34]. In such cases the
particle dynamics is chaotic in the sense oftransient chaos, and there exists an underlying non-attracting chaotic
set, achaotic saddle in the phase space. The particle motion is a kind of scattering process, and the transport
coefficients are related[4,10,30]to the chaotic saddle’sescape rate (hence the name escape-rate formalism).

An open system with fixed densities at the boundaries gives rise to a stationary flow of particles through the
system. These systems lie, however, beyond the scope of dynamical-systems theory, and the associated fractal
structures have been analyzed elsewhere in considerable detail[4,25,26,31,35–37,41]. Therefore, such systems will
not further be discussed here.

We investigate a generalized multi-strip baker chain, and show how irreversibility arises in this system by applying
coarse graining. It is illustrated how, via a sequence of coarser and coarser observations (namely: projection of the
dynamics onto the transport direction, averaging over the motion inside cells, taking the limit of continuous time,
and of large linear scales) one reaches the level of macroscopic equations. One of the merits of multibaker maps
is that due to their straightforward chaotic dynamics these steps can explicitly be worked out—as opposed to the
classical discussions of taking these limits in the 1960s[47–49]where the initial steps could only heuristically be
addressed. The influence of boundary conditions is studied in detail and we come to the conclusion that their effects
are important even in the large system limit.

The aim of the present paper is to show how far one can go in deriving macroscopic transport equations based
on a low-dimensional, dynamical system (which, by definition, is restricted to a finite phase space) as underly-
ing “microscopic” dynamics. Only models with periodic and with absorbing-boundary conditions correspond to
dynamical systems. They possess a natural measure, and we will hence be able to address the question whether
the chaos characteristics associated with this measure can play a role in the macroscopic description of the related
transport processes. Most of the characteristics are ruled out by the observation that they are not well defined in the
macroscopic limit in which the coarse-grained dynamics gives rise to macroscopic transport equations compatible
with irreversible thermodynamics. The two major exceptions are the average phase-space contraction rate and the
escape rate. We point our, however, that none of these is sufficient to describe the thermodynamic entropy production
in a general macroscopically inhomogeneous state.

The paper is organized as follows. InSection 2the multibaker chain is defined and the most important special cases
are identified. InSection 3we start from the microscopic chaotic dynamics of a long chain and go through a sequence
of coarse-graining procedures to end up with the macroscopic advection–diffusion equation. Technical details of
determining the characteristics of the microscopic dynamics are relegated toAppendix A. In Section 4we discuss
the effects of periodic and absorbing-boundary conditions used for the thermostating algorithm and the escape-rate
formalism.Section 5is devoted to a comparison of quantities with a well-defined macroscopic limit (decay and
phase-space contraction rates) in the periodic and open cases. The paper is concluded by a discussion (Section 6).

2. The multibaker chain

The single-particle phase space of a multibaker model is a rectangle of size [0,Na] × [0, b]. It comprises a chain
of N identical cells of linear sizea coupled to each other along thex-axis (Fig. 1a). Each cell possesses the same
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Fig. 1. The multibaker model (microscopic dynamics). (a) Geometry of the chain: every rectangle of sizea × b contains a baker map with
possible escape to and entering from its neighbors. The respective cells are labeled by the indexm running from 1 toN. Boundary conditions
are implemented by appropriate choices of the dynamics in additional cellsm = 0, N + 1 at the outer ends of the chain. (b) Action of the
multibaker map on a single cell in the case of a four-element partition,k = 2. Four vertical columns in cellm− 1,m andm+ 1, respectively,
are squeezed and stretched by the map such that the resulting horizontal strips fit into cellm. The height and width of the columns and strips
are indicated on the margin. (c) Generating partition fork = 2. The 4N vertical strips of the chain form a generating partition for a symbolic
dynamics describing the chaotic dynamics. The symbols are given atop of the columns.

internal dynamics, carried out at integer multiples of a discrete time unitτ. This action is defined here in a pictorial
manner inFig. 1b. The total areaab of the cell is divided intok + 2 vertical columns of widthsla, s1a · · · ska and
ra such that

l+ r +
k∑
i=1

si = 1. (2.1)

The presence of a bias is expressed by a difference in the areas mapped to the left (l) and right (r).
Fig. 1b illustrates the action of the map fork = 2. The branches mapped into cellm are indicated by the labels

L, S1, S2, andR, respectively. The branchesL andR are mapped onto horizontal strips of widtha and of heights
l̃b andr̃b, respectively, in cells joint immediately to the right and left of the respective initial cells. The images of
the middle vertical columns remain inside the original cell and are all stretched to horizontal strips of widthsa and
heights̃1b · · · s̃kb. The parameterssi, s̃i specify the internal dynamics of the cells, whilel, l̃ andr, r̃ characterize the
coupling between neighboring cells. We are interested in cases where these horizontal strips fit into the neighboring
cells without overlapping with the images of the columns not leaving the cell. Thus, the dynamics isinjective on
the chain of cells. The sum of the twiggled quantities can be smaller than unity,

l̃+ r̃ +
k∑
i=1

s̃i ≤ 1, (2.2)

indicating the possibility of global phase-space contraction (the dynamics need not besurjective).
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For more than one strip staying inside a cell,k > 1, the transient dynamics of a single cell with open ends is
already chaotic. The full chain’s dynamics is, however, chaotic for anyk (includingk = 0,1) due to the coupling
of a large number of identical cells.

This multibaker map represents a rather broad class of dynamical systems, and we believe that the results not
depending on its specific features will be of general validity for hyperbolic dynamical systems with bias and transport.
Depending on the choice of the local phase-space contraction ratios (Jacobians)

JL = l̃

l
, JR = r̃

r
, Ji = s̃i

si
, i = 1, . . . , k, (2.3)

different classes of time-evolution equations can be modeled:

(a) Hamiltonian (i.e., area-preserving) dynamics:

JL = JR = Ji = 1, i = 1, . . . , k, (2.4a)

(b) homogeneous dissipation:

JL = JR = Ji ≡ J < 1, i = 1, . . . , k, (2.4b)

(c) thermostated dynamics:

JL = 1

JR
= r

l
, Ji = 1, i = 1, . . . , k. (2.4c)

The last choice is a model of thermostating since it reflects the following basic features:

(i) The dynamics is area-contracting (expanding) if the trajectory moves in the direction of (against) the bias. This
mimics the effect of a slowing down (acceleration) of particles moving parallel to (against) the external field
[2,3,5,8,34].

(ii) Volume elements that move away but finally come back to the original position pick up no net contribution to
phase-space contraction, i.e., the thermostat only acts when work is done on the system.

(iii) The mapping of the phase space is one-to-one so that the stationary distribution is supported by the full phase
space, on which the dynamics is ergodic.

3. Dynamics on different levels of coarse graining

3.1. Full microscopic dynamics

The basic dynamics on the phase space introduced in the previous section can be written as a map

M : (xn, yn) �→ (xn+1, yn+1)

acting at integer multiples of the microscopic time unitτ, i.e., in continuous time att = nτ. The explicit form of
M is easy to find from its action shown inFig. 1. From the point of view of statistical properties and transport, the
time evolution of the densities is of central importance. Let�n(x, y) denote a phase-space distribution at timenτ.
The Liouville operatorL connects�n with �n+1:

L : �n �→ �n+1. (3.1)
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In the present system it can be written as a transfer matrixT. To construct the matrix we observe that due to the
piecewise-linear character of the multibaker map a (piecewise) constant phase-space density�(x, y) remains piece-
wise constant under the time evolution. Moreover,any smooth initial condition converges to the same asymptotic
distribution (which is irregularly changing in they-direction, but is constant in each cell along thex-axis). Therefore,
in what follows we restrict ourselves to piecewise constant initial conditions. In order to find the constant-density
regions, a partitioning of the chain by the horizontal strips is considered, which are defined by the one-step backward
dynamics in overlap with the vertical columns. There are then, respectively,k + 2 strips and columns in each cell.
In cellm,m = 1,2, . . . , N, the symbols(k+ 2)m− (k− 1), (k+ 2)m− (k− 2), . . . , (k+ 2)m mark the columns,
and the strips are labeled by the same set of numbers running now from bottom to top (cf.Fig. 1c). This partition is
generating and Markovian[51,53]. Consequently, it specifies a symbolic dynamics of(k+ 2)N symbols. In such a
situation the transfer matrix plays the role of the Liouville operator[52]. In the present setting it takes the form

(3.2)

where—as indicated at the top and right of the matrix—the horizontal and vertical rules group togetherk + 2
columns comprising a given cell (cellm andm+ 1 are indicated). All elements that are not explicitly given in(3.2)
vanish. The other elementsTα,β of T represent non-vanishing probabilities to be mapped from a column of code
α into a column of codeβ, whereα andβ label the rows and columns ofT, respectively. The time evolution of
the piecewise constant phase-space density amounts to repeated application of this matrix on a vector representing
the initial condition. Consequently, the long-time properties of the dynamics will be connected with the largest
eigenvalues of the transfer matrixT.
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Since the entries in every block ofk + 2 columns are identical every left eigenvector consists of blocks ofk + 2
identical components. Consequently, eigenvector elements do not vary within thek+2 entries characterizing a cell.
This allows us to restrict our attention to transitions between neighboring cells only. A reduced transfer matrixT̄ of
sizeN×N (or possibly(N+2)× (N+2)when additional cells are needed to implement the boundary conditions,
cf. Section 4andAppendix A) can be defined with the transition probabilities from a cell of indexm to another one
asT̄m,m−1 = l, T̄m,m = ∑k

i=1 si ≡ s, andT̄m,m+1 = r. For the cells in the interior of the chain, all other transitions
are forbidden. Consequently,

T̄ ≡




. . .
. . .

. . .

l s r

l s r

l s r

. . .
. . .

. . .




(3.3)

is tridiagonal, up to entries in the outermost rows or columns, which depend on the choice of boundary conditions.
The spectrum of the reduced transfer matrix is worked out inAppendix A. It fully characterizes all decay

rates of the forward dynamics. Moreover, the thermodynamic formalism of dynamical systems[53] implies that
structurallyidentical matrices describe the whole set of multifractal properties of the microscopic dynamics. The
various characteristics only differ by the choice of the non-vanishing matrix elements. Accordingly, inAppendix A
the spectrum of tridiagonal matrices is worked out for arbitrary positive values forr, s and l. We thus obtain a
description of all relevant dynamical and geometrical (fractal) properties of the invariant sets including Lyapunov
exponents, generalized dimensions along both the stable and the unstable directions, and Rényi entropies. Since
different boundary conditions lead to different positions of the non-vanishing matrix elements in the outermost
rows and columns, the exact form of the spectrum depends on the type of boundary conditions (cf.Eqs. (A.16) and
(A.11)).

3.2. Microscopic dynamics reduced to the direction of transport

Having started with the full microscopic treatment of the multibaker dynamics, we now take a successively more
macroscopic point of view of the description, and state compatibility conditions.

Due to the special form of the multibaker map, the density does not depend at any time on thex-coordinate
inside a cell. In other words, they-dependence is exactly the same for allx values inside a cell. We can therefore
easily integrate the phase-space density over they-coordinate, obtaining the time evolution of the projected density
(beware of the different symbolsρ and�):

ρn(x) =
∫ b

0
dy �n(x, y). (3.4)

As a consequence, thex dynamics can be described by aone-dimensional mapf(x) depicted inFig. 2. Since the
baker map is piecewise linear,f(x) is of the same character. The time evolution of its reduced density is described
by the Frobenius–Perron equation[51], which takes the general form

ρn+1(x
′) =

∑
x∈f−1(x′)

ρn(x)

|f ′(x)| . (3.5)
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Fig. 2. The one-dimensional mapf(x) obtained by projecting the multibaker dynamics to thex-axis (k = 2).

In the present case everyx′ in [0,Na] hask + 2 preimages:xL (xR) in the left (right) neighboring cell, andxi,
i = 1, . . . , k inside the same cell asx′. The corresponding slopesf ′(x) arer−1 (l−1) ands−1

i , respectively, such
that the Frobenius–Perron equation takes the form

ρn+1(x
′) = rρn(xL)+

k∑
i=i

siρn(xi)+ lρn(xR). (3.6)

It is worth noting that even if the original dynamics was invertible (like, for instance, in the Hamiltonian or ther-
mostated cases), the time evolution of the probabilities isirreversible due to the projection(3.4) on thex-axis. In
other words, the process becomes irreversible since a kind of coarse graining has been applied.Eq. (3.6)associates
the projected dynamics with a dissipative,1 one-dimensional map which has a unique attracting stationary solution
(possibly identically zero) in the space of theρ(x). Owing to the piecewise-linear character of the map and the
stretching property out of the elementary interval,ρn(x) is constant in each cell.2 Therefore, we can represent the
distribution at timen by a vector�ρn of N elementsρn;m, m = 1, . . . , N, and observe that for everyx in cell
m the terms appearing in(3.6) take the formrρn(xL) = rρn;m−1,

∑
siρn(xi) = sρn;m, andlρn(xR) = lρn;m+1.

Consequently, the Frobenius–Perron equation reads

�ρn+1 = H�ρn. (3.7)

A comparison of(3.6)with the definition of the reduced transfer matrix(3.3) leads to the observation

H = T̄+. (3.8)

1 The phase-space contraction rate of(3.6) is formally infinite, as for any one-dimensional map. After all, the phase-space contraction rate
diverges in the limit where a higher-dimensional map reduces to the one-dimensional dynamics.

2 We utilize at this point that any smooth initial density along the multibaker chain converges exponentially fast (on the time scale of the
reciprocal value of the average positive Lyapunov exponent) to a distribution which is constant in each cell. Disregarding these short transients,
we assume from here on that the density is constant within each cell.
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The Frobenius–Perron operatorH is the transpose of the reduced transfer matrix. Correspondingly, the left eigen-
vectors ofT̄ are the right eigenvectors ofH, among which the one belonging to the largest eigenvalue provides the
natural invariant density along thex-axis. It is worth noting that the application of the thermodynamic formalism
leads again to tridiagonal transfer matrices with the same structure asH but with different non-vanishing elements.
Therefore, on this level we are still in a position to recover dynamic characteristics of the motion along thex-axis,
but we have already lost information about the properties along they-axis. In particular, the correct phase-space
contraction rate can only be obtained from the full microscopic dynamics.

3.3. Inter-cell dynamics: the random-walk picture

From the point of view of modeling transport, a restriction of the attention to the average density in each cell
corresponds to the existence of a smallest resolutiona in the configuration space (here, thex-axis) below which no
spatial structure is resolved, and to an averaging over all the momenta in the respective regions. A reduction of the
dynamics in this spirit is unavoidable in order to obtain a thermodynamic description[46–50]. For the multibaker
map this amounts to a projection of the (deterministic) dynamical system onto a random walk: move left, right or
stay with given probabilities. This projection illustrates that a deterministic chaotic dynamics can lead to a fully
stochastic behavior after appropriate coarse graining (this was the basic assumption underlying, e.g.[49]). Note that
on this level of the description there are no partitions inside a cell any longer: the role of mixing of the microscopic
dynamics is taken over by the stochastic character of the random walk.

LetPn;m denote the probability to find a particle in cellm at discrete timen. According to the theory of Markov
chains[56], the conservation of probability requires that the net flux through the boundaries of each cell amounts
to the temporal change of the cell probability:

Pn+1;m = (1 − l− r)Pn;m + lPn;m+1 + rPn;m−1. (3.9)

Thus, the evolution of the vector�Pn ≡ (Pn;1, . . . , Pn;N) is governed by the matrix equation

�Pn+1 = A �Pn, (3.10)

where the matrix elements ofA are the transition probabilities between neighboring cells. Its non-vanishing entries
are

Am,m−1 = l, Am,m = 1 − l− r ≡ s, Am,m+1 = r. (3.11)

Due to the simple structure of the multibaker map the dynamics of the Markov chain and the projected 1D map
are described by the same transition matrix:A = T̄. However, the Markov chain dynamics is defined onlybetween
cells, notinside a given cell.

3.4. Continuous-time dynamics: the master equation

On the next level of coarse graining we only consider slow “macroscopic” time evolutions with continuous timet

defined ast = nτ. We expect that the continuous-time macroscopic behavior differs from the microscopic one, and
inherits properties of the latter via transport coefficients only. Physically this implies a separation of time scales.
For a meaningful limit,Pn;m → Pm(t = nτ), of the probability distribution the jumping probabilities are required
to be of the order of the microscopic time unitτ. This induces the staying probabilitys = 1 − r − l to be of order
unity. Writing

l = µτ, r = λτ, (3.12)
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whereµ andλ are independent ofτ, we recover the master equation of a birth and death process[56]

dPm(t)

dt
= λPm−1(t)+ µPm+1(t)− (λ+ µ)Pm(t) (3.13)

with constant coefficientsλ andµ. The matrix governing this continuous-time dynamics has the same structure as
the reduced transition matrix̄T of the microscopic Liouville operator. Therefore, its full spectrum can easily be
obtained by the methods applied inAppendix A. The fact that according to(3.12)the jumping probabilitiesr andl
scale linearly inτ assures that the time evolution on macroscopic scales is slow as compared to the time unitτ.

3.5. Large-scale dynamics: the advection–diffusion equation

As a final step we consider the limit of large spatial extension realized by a chain of lengthL ≡ (N + 1)a � a

composed ofN � 1 cells. To this end we consider the space variablex ≡ ma to be continuous, i.e., we only resolve
spatial variations on scalesx � a. In order to have a meaningful limitPm(t) → P(x = ma, t) for m � 1, the sum
of the jumping probabilities must be much larger than their difference. Writing

λ+ µ = 2D

a2
, λ− µ = v

a
(3.14)

withD andv constant, and assuming weak spatial gradients|Pm−Pm−1| � Pm, the Fokker–Planck (or advection–
diffusion) equation

∂P(x, t)

∂t
= −v∂P(x, t)

∂x
+D

∂2P(x, t)

∂x2
(3.15)

is recovered from(3.13) [57]. In this pictureD andv are interpreted as diffusion coefficient and drift (or bias),
respectively. By this sequence of projections and limits, we thus have achieved an equation, which describes the
macroscopic time evolution of the system. For this reason we call[34] the limit themacroscopic limit.

From(3.12) and (3.14)we find that the original jump probabilities scale as

l = µτ = Dτ

a2

(
1 − va

2D

)
, (3.16a)

r = λτ = Dτ

a2

(
1 + va

2D

)
. (3.16b)

In order to be compatible with an advection–diffusion descriptionv andD must not depend on the time and space
unitsτ anda.

Although not related to the advection–diffusion equation, it is worth introducing the backward jumping ratesr̃

andl̃ as

l̃ = J
Dτ

a2

(
1 − ε

va

2D

)
, (3.17a)

r̃ = J
Dτ

a2

(
1 + ε

va

2D

)
. (3.17b)

Here,J denotes the global JacobianJ ≡ (r̃+ l̃)/(r+ l) on the strips contributing to transport, andε is a parameter
measuring the deviation from constant phase-space contraction. The form(3.17)of expressing the backward rates
is convenient for taking the macroscopic limit of the phase-space contraction rate. The three basic dynamics defined
in Section 2are recovered by the choices: (a)J = 1, ε = 1 (Hamiltonian case), (b)J < 1, ε = 1 (homogeneous
dissipation), and (c)J = 1, ε = −1 (thermostating).
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Fig. 3. Time evolution ofρn;m for N = 500,r = 0.052, andl = 0.048. The initial density is linear,ρ0;m = (1.5−m/N). (a) Decay for periodic
boundary conditions. The normalization

∑N
m=1 ρn;m = N of ρn;m, and hence the average number of particles in the system does not change. (b)

Decay for absorbing-boundary conditions. Asymptotically the overall density profile is constant in space and exponentially decaying in time.
For r > l a maximum appears close to the cells at the right boundary of the chain.

4. Effects of boundary conditions

The eigenvectorsρm of the tridiagonal matrices̄T+ are exponential functions of subscriptm, which in our case
coincides with the cell index. The actual form of the eigenvectors and the eigenvalues depends on the boundary
conditions defined by the action inboundary cells with indicesm = 0 andm = N + 1. The two cases of periodic
and absorbing-boundary conditions are considered in turn:

(i) Periodic boundary conditions: ρ0 = ρN , andρN+1 = ρ1. For the transfer matrices this implies that, besides
the tridiagonal structure described above, there are entries in the lower left and upper right corner chosen such
that the entries of every line and of every column add up tol + s + r. In this case, the eigenvector represents
a traveling wave (cf.Fig. 3a) of the form exp(i2πνm/(N + 1)).3 The largest eigenvalueχ0 is unity (χ0 = 1)
since a stable stationary solution (ρm = const.) exists. It corresponds to the homogeneous distribution along
the chain. Formally this is a consequence of the sum rule(2.1)which expresses the fact that the dynamics can
reach any point along thex-axis. The non-vanishing eigenvalues are complex and of the form (cf.Appendix A)

χ
(p)
ν = 1 − (r + l)

[
1 − cos

2πν

N + 1

]
− i(r − l) sin

2πν

N + 1
(4.1a)

with ν = 0, . . . , N. Their imaginary parts indicate that the relaxation towards the stationary state takes place via
temporal oscillations superimposed on an exponential decay, as shown inFig. 3a. For the long-time dynamics
the most relevant eigenvalue besides unity corresponds to the slowest decayν = 1.

(ii) Absorbing-boundary conditions: ρ0 = ρN+1 = 0. The choice for the boundary cells is determined by the fact
that only transitionsto these cells are allowed but there are no transitionsfrom the boundary cells. Thus the
transfer matrices do not have additional entries besides those on and immediately next to the diagonal, and we
have to look for eigenfunctions with the propertyρ0 = ρN+1 = 0. In this case the eigenvectors are standing
waves of exponentially changing amplitude (cf.Fig. 3b) of the form(r/ l)m/2 sin(iπνm/(N+1)). The spectrum
is real and the non-vanishing eigenvalues are given by

χ(a)ν = 1 − (r + l)+ 2(lr)1/2 cos
πν

N + 1
(4.1b)

3 If we take the traveling wave form with a negative exponent the imaginary part of(4.1a)changes sign. For simplicity we consider these cases
to be equivalent.
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with ν = 1,2, . . . , N. Here the largest eigenvalue corresponds toν = 1. It is smaller than unity, reflecting the
fact that no non-trivial (i.e., different from the empty state,ρm = 0 for allm) stationary state exists. In this case
(Fig. 3b) the density decays exponentially.

The two spectraχ(p)ν andχ(a)ν are not identical, reflecting that the relaxation processes in open and in periodic
systems are, in general, different. On the other hand,none of the intracell parameters (si) or characteristics along
the stable manifold (e.g.l̃, r̃) appears in them. This indicates that the temporal scales in the random-walk picture
are independent of the microscopic motion inside cells. In our simple model this independence already holds for
the dynamics projected to the spatialx variable (cf.[29] for a heuristic discussion of more general cases).

Since the eigenvalues only depend on the jump probabilitiesl andr, we can follow now how the spectra change
when taking the macroscopic limit.

4.1. Spectra in the macroscopic limit

One can determine the spectra of the advection–diffusion equation by taking the limit4 a, τ → 0 and using
conditions(3.14). By this we obtain

γ
(p)
k = ivk + Dk2 ≡ v2

4D
+D

(
k + i

v

2D

)2
(4.2a)

with wave numbersk = 2πν/L, ν = 0,1, . . . , N for the periodic case, and

γ
(a)
k = v2

4D
+ Dk2 (4.2b)

with k = πν/L, ν = 1, . . . , N for the absorbing-boundary case. These results show that the macroscopic times are
on the order of the diffusion time,L2/D or of the drift timeD/v2. Although the spectra are different, an interesting
relation appears: the transformationk → (k− iv/D)/2 relatesγ(p)m to γ(a)m . The complex shift and the difference in
the range of available wave numbers5 reflects the change of the character of the boundary condition.

5. Chaos characteristics with meaningful macroscopic limits

In this section, we investigate which characteristics of the chaotic dynamics possess a meaningful macroscopic
limit. They are of special importance since they are the only candidates possibly related to macroscopic transport
coefficients. After all the latter must not depend on microscopic details of the dynamics. In classical work (for
instance[50]) this independence is attributed to the vast separation of microscopic and macroscopic scales, which
also applies in the present setting. This is explicitly demonstrated now by writing the respective quantities in a
scaling form with a few scale variables composed of ratios of the microscopic and macroscopic length scales. The
macroscopic limit is then expressed as a limit where these scaling variables tend to zero.

5.1. Decay rates

An important example of a dynamical characteristics possessing a macroscopic limit is the spectrum of the decay
rates, in particular the slowest one. In a system with periodic boundary conditions it describes the relaxation to the
steady state, and for open systems amounts to the escape rate.

4 A more careful discussion of the limit, and justification of the present approach is given inSection 5.
5 The largest wavelength compatible with absorbing and periodic boundary conditions areL/2π andL/π, respectively.



J. Vollmer et al. / Physica D 187 (2004) 108–127 119

5.1.1. Scaling form
We write the eigenvaluesχ(p)ν of the transfer matrix of the periodic case as

χ
(p)
ν = 1 − τ

2D

a2

[
1 − cos

2πνa

L

]
− i

τv

a
sin

2πνa

L
≡ 1 − τ

v2

D
H
(p)
ν

(
a

lv
,
a

L

)
. (5.1)

HereH(p)
ν represents a complex-valued bivariate scaling function involving the ratios of the microscopic scalea

with the system sizeL ≡ a(N + 1) and the characteristic length scale

lv ≡ D

v
(5.2)

of a biased diffusive system, respectively. For this length the time required to pass it with the drift velocityv is on
the same order as the diffusional relaxation timel2v/D (or, equivalentlyD/v2) for spatial inhomogeneities of this
size. Typically, the three length scales characterizing the system are arranged like

a � lv � L. (5.3)

This condition already implies a large system limit, which we define asa/lv, a/L → 0.
Similar to the case of periodic boundary conditions, the eigenvaluesχ

(a)
ν of the transfer matrix for the absorbing-

boundary case can be written as

χ(a)ν = 1 − τ
2D

a2

{
1 −

[
1 −

( va

2D

)2
]1/2

cos
πνa

L

}
≡ 1 − τ

v2

D
H(a)
ν

(
a

lv
,
a

L

)
, (5.4)

whereH(a)
ν again is a bivariate scaling function.

5.1.2. Macroscopic limit
It directly follows from(5.1) and (5.4)that in the limitτv2/D � 1, τv/L � 1 the continuous-time decay rates

γν coincide with those of the advection–diffusion equation, i.e.,χν = exp(−γντ). In particular, in the periodic
case the first non-trivial eigenvalueχ(p)1 of the transfer matrix approaches towards the slowest decay rate of the
advection–diffusion dynamics as

γ
(p)
1 ≡ − logχ(p)1

τ
= D

4π2

L2

[
1 +O

(
a

lv

)2
]

+ iv
2π

L

[
1 +O

( a
L

)2
]
. (5.5)

Similarly, the continuous-time escape rateκ coincides with the slowest rateγ(a)1 of the dynamics:

κ ≡ − logχ(a)1

τ
= v2

4D

[
1 +O

((
a

lv

)2

,
( a
L

)2
)]

+ Dπ2

L2

[
1 +O

((
a

lv

)2

,
( a
L

)2
)]

, (5.6)

where we also dropped terms of order(τv/L)(a/lv)2 and (τv/L)(a/L)2, which are smaller than the indicated
higher-order terms by the small factorτv/L. These formulas show that the leading eigenvalues are related to
transport coefficients, but in the general case whereD andv are non-zero, these eigenvalues alone do not determine
both transport coefficients uniquely.

5.2. Phase-space contraction rate

5.2.1. Scaling form
Another quantity of interest is the average phase-space contraction rateσ̄, the average of the negative logarithms

of the local Jacobians divided byτ. At the same time,̄σ is the negative sum of the average Lyapunov exponents
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σ̄ ≡ −(λ1 + λ2). It is interesting to observe that the average positive or negative Lyapunov exponent alone never
possesses a meaningful macroscopic limit (cf.Eq. (A.20)). Their sum, however, can survive the limit. Using the
results ofAppendix Awe find for the periodic and open case of our multibaker model

σ̄(p)τ = −
(∑

i

si ln
s̃i

si
+ l ln

l̃

l
+ r ln

r̄

r

)
, (5.7a)

and

σ̄(a)τ = −eκτ
(∑

i

si ln
s̃i

si
+ (lr)1/2 ln

l̃r̃

lr
cos

π

N + 1

)
, (5.7b)

respectively. The average phase-space contraction rates dodepend on the microscopic (inter-cell) parameters:si,
s̃i, l̃ andr̃ are all present in the expression.

Meaningful thermodynamic limits can only exist when we can get rid of the dependence on the microscopic
parameters. To that end the global JacobianJ on the strips contributing to transport (cf.Eq. (3.17)) must be the
same as the local Jacobians on all the strips staying inside the cell in one time step, i.e.,

s̃i

si
= J for i = 1, . . . , k. (5.8)

The three classes (a)–(c) introduced inSection 2obey this requirement.
With Eq. (5.8)we find that in the periodic case

σ̄(p)τ = − ln J − τ

[
D

a2

(
1 − va

2D

)
ln

1 − εva/2D

1 − va/2D
+ D

a2

(
1 + va

2D

)
ln

1 + εva/2D

1 + va/2D

]

= − ln J + τ
v2

D
S(p)

(
a

lv

)
(5.9a)

with S(p) as a single variable scaling function.
Similarly, in the absorbing-boundary case

σ̄(a)τ = − ln J − τ eκτ
D

a2

[
1 −

( va

2D

)2
]1/2

ln
1 − (εva/2D)2

1 − (va/2D)2
cos

πa

L
= − ln J + τ

v2

D
S(a)

(
a

lv
,
a

L

)
.

(5.9b)

The scaling functionS(a) is now bivariate due to the explicit dependence onL. ForJ = 1, i.e., in the case where
the baker map is one-to-one on its phase space,σ̄(a) is an even function of the parameterε. Consequently, the
phase-space contraction rate on the saddle of the absorbing-boundary problem is the same in the thermostated case
ε = −1 as in the Hamiltonian caseε = 1:

σ̄(a)τ = 0. (5.10)

This result can be made plausible by observing that trajectories never escaping the (finite) system take approximately
the same number of steps towards and against the bias such that the dynamics is area preserving on the average (cf.
discussion at the end ofSection 2).

5.2.2. Macroscopic limit
Carrying out the macroscopic limit for the phase-space contraction rates, we find in the periodic case that

σ̄(p) = − ln J

τ
+ v2

D

(ε− 1)2

4

[
1 +O

(
a

lv

)2
]
. (5.11a)
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In the case of absorbing boundaries on the other hand,

σ̄(a) = − ln J

τ
+ v2

4D
(ε2 − 1)

[
1 +O

((
a

lv

)2

,
( a
L

)2
)]

. (5.11b)

Notice that the leading order terms are in both cases proportional tov2/D.

6. Discussion

For a simple dynamical model of large spatial extension, the multibaker map, we explicitly worked out a hierarchy
of coarse-graining processes reminiscent of the reduction of a microscopic dynamics to macroscopic time evolution
[47,48]. Already the simplest kind of coarse graining (projection on the transport axis) makes the dynamics irre-
versible and compatible with a kind of random walk. A further coarsening accounting for a separation of microscopic
vs. thermodynamically relevant large temporal and spatial scales leads to a continuous-time master equation and
an advection–diffusion equation, respectively. The discussion clearly illustrates the relevance of an intermediate,
coarse-grained description in terms of Master equations for the description of transport processes (cf.[47,49]).
This property is indispensable to obtain a meaningful description on the random walk level. The separation of time
and length scales required to end up with macroscopically meaningful equations, expresses that the microscopic
parameters (a andτ of the multibaker) are negligibly small as compared to the macroscopic scales. They do not
affect transport coefficients or particle densities.

We investigated transport in the framework of a thermostated system with periodic boundary conditions, and in the
escape-rate formalism. The microscopic dynamics is in both cases given by a well-defined dynamical system generat-
ing permanent and transient chaos, respectively. Interestingly,most of the chaos characteristics (including the average
Lyapunov exponents, fractal dimensions, entropies) donot have a well-defined macroscopic limit. The only excep-
tions are the average phase-space contraction rate, i.e., the sum of all Lyapunov exponents

∑
λi, and the escape rate.

They are therefore candidates for being related to transport coefficients and characteristics of thermodynamic steady
states. In the thermostated setting the average phase-space contraction rate can indeed coincide with the entropy
production, but only for a steady state, where the coarse-grained density is stationary and uniform[34]. When, in the
spirit of the escape-rate formalism, thesame model is subjected to absorbing-boundary conditions the sum of aver-
age Lyapunov exponents vanishes, in spite of a non-zero thermodynamic entropy production due to the explicit time
evolution of the connected macroscopic densities. Consequently, the relation between phase-space contraction and
the entropy-production rate must not be viewed as a fundamental property of dynamical systems, but can at best apply
in certain special cases like uniform stationary states of thermostated systems with absorbing-boundary conditions.

Modeling of transport with all aspects of irreversibility, including entropy production, is consequently a much
more complex task than the mere recovering of transport equations. In a general non-stationary situation none of
the macroscopically well-defined chaos characteristics can fully account for the entropy production since the latter
explicitly depends on the instantaneous density distribution in that case. Moreover, as shown earlier[34,39,43], the
expression for the local entropy production corresponding to the continuous-time, large-scale dynamics (i.e., the
entropy production in the macroscopic limit) coincides with the one obtained from non-equilibrium thermodynamics
[46] including all contributions due to local density differences of the macroscopic state.6

6 The entropy production per particle isσ(irr)(x, t) = [v −D∂xρ(x, t)/ρ(x, t)]2/D, whereρ(x, t) denotes the macroscopic limit of projected
density(3.4). It corresponds to the continuous-time, large-scale thermostated dynamics (i.e.,J = 1,ε = −1 in the present paper). In the periodic
case the average phase-space contraction rate(5.11a)turns out to bēσ = v2/D, and thusσ(irr)(x, t)− σ̄ = −2v∂xρ/ρ+D(∂xρ/ρ)

2, which can
take a positive as well as a negative sign. In a spatial average with respect to the densityρ(x, t), however, the first term on the right-hand side
vanishes so that the average is strictly positive except in the steady state where∂xρ = 0. In the case of absorbing-boundary conditionsσ̄ ≡ 0 (cf.
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The discussion of multibaker maps clearly shows thatnon-standard parameters of the dynamics are essential for
the modeling of transport processes. These parameters are the transition probabilities (l, r in the multibaker) between
coarse-grained regions and the associated local Jacobians (l̃/ l, r̃/r in the multibaker). The latter do not influence the
transport equations. It isr andl, a very uncommon set of parameters from the point of view of dynamical systems,
which determine the transport coefficientsv andD.

Some descriptions of entropic aspects of dynamical-system models of transport emphasize the importance of the
SRB measure on the chaotic attractor in the thermostated algorithm[6,9,12], of Takagi-function type distributions
of area-preserving models with open boundaries[31,35,37], or of fractal structures of hydrodynamic modes[26,42].
Our results show thatnone of the usual asymptotic chaos characteristics of the microscopic dynamics appear in the
transport coefficients.

Based on these observations, we conclude that it is only thetendency of converging towards a microscopically
fractal state which is essential in modeling transport processes. In the spirit of statistical mechanics, coarse graining
has to be carried out on a mesoscopic level (on the cells of sizea in the multibaker) which is large enough to carry a
meaningfully defined density. The coarse-grained distribution therefore settles down to a steady state much earlier
than the microscopic motion. The traditional chaos characteristics, which focus only on the asymptotic stationary
measure of themicroscopic dynamics, are therefore inappropriate for the description of the transport process. Only
thepresence of microscopic chaos and the resulting Markov property of the coarse-grained dynamics are essential
for macroscopic transport—its characteristic numbers are, however, not.
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Appendix A. Evaluating chaotic properties from the transfer matrices

A.1. Bivariate thermodynamics

For a complete characterization of invariant chaotic sets of two-dimensional maps a bivariate thermodynamic
formalism is especially well suited. Among several versions existing in the literature, we choose one that contains
the length scales only. In the most general case the measures are also important but since our multibaker chain is
piecewise linear, the natural measure and length scales are proportional, and it is sufficient to consider the length scale
statistics. Letl(n)j (l̃(n)j ) denote the length scales generated by the backward (forward) dynamics along the unstable

(stable) direction afternapplications of the map. Identical subscripts ofl andl̃ indicate that these length scales belong
to the same symbol sequence in the backward and forward dynamics. Consider then a weighted sum over all symbols
containing products of different powers ofl(n)j andl̃(n)j at a fixed iteration numbern. Such sums are shown in the ther-
modynamic theory[53,54]to scale exponentially withn. It defines a bivariate thermodynamic functionG(β1, β2) as∑

j

l
(n)β1

j l̃
(n)−β2

j ∼ e−G(β1,β2)nτ, (A.1)

(5.11b)), and∂xρ/ρ = ∂x logρ �= 0 wheneverρ(x, t) is not identically vanishing (see[45] for further details). Consequently, the local entropy
production typically differs from the average phase-space contraction rate.
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where β1 and β2 are the weighting factors for the length scales along the unstable and stable manifolds,
respectively.

A few properties ofG can be read off immediately. The topological entropyK0 is for instance obtained as
K0 = −G(0,0). Taking one of the weighting factors to be zero, we recover the free energiesF1 andF2 (the
negative of which is also called the topological pressure) along the unstable and stable directions, respectively:

G(β,0) = F1(β), G(0,−β) = F2(β). (A.2)

The average Lyapunov exponentλ1 is obtained as

λ1 = d

dβ
F1(β)

∣∣∣∣
β=1

. (A.3)

The fractal dimensionsd(1)0 , d(2)0 of the invariant set along the unstable and stable directions are

Fk(β = d
(k)
0 ) = 0, k = 1,2, (A.4)

and the escape rate appears as

κ = F1(1). (A.5)

The free energies contain information on the full spectrum of finite time Lyapunov exponents, Renyi entropies and
generalized dimensions, too. For the particular formulas describing how to extract them we refer to the literature
[53,55]. Finally we note that the phase-space contraction rateσ̄ ≡ −(λ1+λ2) can directly be obtained as a derivative
of G:

σ̄ = d

dβ
G(1 − β,−β)

∣∣∣∣
β=0

. (A.6)

For systems with Markov partitions the quantity exp(−Gτ) appears as theleading eigenvalue of a generalized
transition matrix. This matrix has the same structure as the traditional transition matrix just the entries are the same
as the length scales at leveln = 1 raised to powersβ1, β2. Thus we have the generalized transition matrixT̄(β1, β2)

for the baker chain also in a tridiagonal from with non-vanishing elements

T̄m,m−1(β1, β2) = lβ1 l̃−β2 ≡ l, (A.7a)

T̄m,m(β1, β2) =
∑
i

s
β1
i s̃

−β2
i ≡ s, (A.7b)

T̄m,m+1(β1, β2) = rβ1 r̃−β2 ≡ r. (A.7c)

A.2. The spectrum of tridiagonal matrices

Because tridiagonal matrices appear in several forms in our problem, let us consider the eigenvalue problem of a
generalN ×N matrix with diagonal elementss and off diagonal elementsr andl. The eigenvalue equation for the
non-vanishing eigenvaluesχ of T̄ is

rum−1 + sum + lum+1 = χum. (A.8)

In the case of constant elements exponential solutions are expected for the eigenvectorsum,m = 1, . . . , N.
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Let us first assume a traveling wave form for the eigenvectors:

um = eimθ. (A.9)

Substitution of this into(A.8) yields a complex set of eigenvalues

χ = s + (r + l) cosθ − i(r − l) sinθ. (A.10)

These are consistent with periodicity required by the conditionu1 = uN+1 provided thatθν = 2πν/(N + 1) with
ν = 0,1, . . . , N. Thus the spectrum in the presence of periodic boundary conditions reads as

χ
(p)
ν = s + (r + l) cos

2πν

N + 1
− i(r − l) sin

2πν

N + 1
(A.11)

with ν = 0,1, . . . , N. Now the largest eigenvalue

χ
(p)
0 = s + (r + l) (A.12)

is the only real element of the spectrum (forr �= l) and isindependent of the system size.
A different type of solutions is found by looking for real solutions in the form

um = emα sin(mθ). (A.13)

A direct substitution into(A.8) then specifies the exponentα as

α = 1

2
ln

r
l

(A.14)

and yields for the eigenvalue

χ = s + 2
√

rl cosθ. (A.15)

This solution corresponds to a standing wave with anexponentially increasing amplitude in space and is only
compatible with an absorbing-boundary condition. By requiring free ends withu0 = uN+1 = 0 we find thatθ can
only take on valuesθν = νπ/(N + 1), ν = 1, . . . , N. Thus, the entire spectrum belonging to absorbing-boundary
conditions is (apart from degenerate zero eigenvalues)

χ(a)ν = s + 2
√

rl cos
νπ

N + 1
, ν = 1,2, . . . , N. (A.16)

The largest eigenvalue is that ofν = 1. Note that the size dependence is present in all the elements but a large
system limitN → ∞ exists. Note that the two spectra are qualitatively different, the largest eigenvalues coincide
not even in the largeN limit (cf. Fig. 4).

A.3. Characterizing the invariant sets

Substituting the non-vanishing matrix elements ofT(β1, β2) for the periodic and absorbing-boundary conditions
into the respective largest eigenvalues yields two different bivariate potentialsG(p) andG(a), viz.

e−G(p)(β1,β2)τ =
∑
i

s
β1
i s̃

−β2
i + lβ1 l̃−β2 + rβ1 r̃−β2, (A.17a)

e−G(a)(β1,β2)τ =
∑
i

s
β1
i s̃

−β2
i + 2(lr)β1/2(l̃r̃)−β2/2 cos

π

N + 1
. (A.17b)
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Fig. 4. TheN-dependence of different quantities characterizing the chaotic set for a system with absorbing-boundary conditions. The crosses
at the right border give the corresponding values for periodic boundary conditions (which do not depend onN). The symbols are explained in
the text, and time is measured in units ofτ (parameters—left:k = 2, s1 = 0.675,s2 = 0.225,r = 0.052,l = 0.048, as inFig. 3; right: k = 2,
s1 = 0.6, s2 = 0.2, r = 0.18, l = 0.02).

The corresponding free energies also depend on the boundary condition, and therefore, the spectra of local Lyapunov
exponents will typically be different for the open and periodic cases. Here, we just give some important chaos
characteristics explicitly. The topological entropies are obtained as

K
(p)
0 τ = ln(k + 2), (A.18a)

K
(a)
0 τ = ln

[
k + 2 cos

π

N + 1

]
, (A.18b)

which shows that the symbolic dynamics isnever complete in a finite, open system.7 Note also that even if the
single-cell dynamics is non-chaotic (i.e.,k = 0 or k = 1) the spatially-extended system, whereN � 1, is always
chaotic.

For the escape rate we find,

κτ = − ln

[
(1 − l− r)+ 2

√
lr cos

π

N + 1

]
. (A.19)

It is independent of the microscopic quantitiessi but contains the jump probabilitiesl, r related to the transport
coefficients.β1 = 1, β2 = 0 is the only “temperature” setting in the thermodynamic formalism where this can
happen.

The positive Lyapunov exponents for the respective boundary conditions are

λ
(p)
1 τ = −

∑
i

si ln si − l ln l− r ln r, (A.20a)

λ
(a)
1 τ = eκτ

[
−
∑
i

si ln si − (lr)1/2 ln(lr) cos
π

N + 1

]
. (A.20b)

7 The escape of particle trajectories characterized by certain symbol sequences introduces pruning in the symbolic dynamics. Since there is
less and less escape forN → ∞, however,K(a)

0 andK(p)
0 become identical in the largeN limit (cf. Fig. 4).
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These quantities, for instance, do not possess a macroscopic limit in the spirit ofSection 3.5because the depen-
dence of the termsl ln l andr ln r on the microscopic time and space unitsτ anda is not removed in the limit
(cf. Eq. (3.16)).

The metric entropies are

K
(p)
1 = λ

(p)
1 , K

(a)
1 = λ

(a)
1 − κ, (A.21)

and from the second derivative ofG (A.6) we obtain for the phase-space contraction rates

σ̄(p)τ = −
(∑

i

si ln
s̃i

si
+ l ln

l̃

l
+ r ln

r̃

r

)
, (A.22a)

σ̄(a)τ = −eκτ
[∑

i

si ln
s̃i

si
+ (lr)1/2 ln

l̃r̃

lr
cos

π

N + 1

]
. (A.22b)

The information dimension of the chaotic set’s unstable manifolds can be written as

D
(p)
1 = 1 + d

(2,p)
1 = 2 + σ(p)

|λ(p)2 |
, (A.23a)

D
(a)
1 = 1 + d

(2,a)
1 = 2 + σ(a) − κ

|λ(a)2 |
. (A.23b)

The denominator contains in both cases the Lyapunov exponent characterizing the stable manifold. Since the
Lyapunov exponent does not possess a macroscopic limit, neither does the information dimension. It is remarkable,
however, that the combination(2 −D1)λ2, which is the difference of the phase-space contraction and escape rate,
is macroscopically well defined for both boundary conditions considered (note thatκτ = 0 for periodic boundary
conditions).
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