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Abstract 

Methods coming from the theory of chaotic scattering are applied to the advection of passive particles in 
an open hydrodynamical flow. In a region of parameters where avon  Kfirmfin vortex street is present with a 
time periodic velocity field behind a cylinder in a channel, particles can temporarily be trapped in the wake. 
They exhibit chaotic motion there due to the presence of a nonattracting chaotic set. The experimentally well- 
known concept of strealdines is interpreted as a structure visualising asymptotically the unstable manifold of 
the full chaotic set. The evaluation of streaklines can also provide characteristic numbers of this invariant set, 
e.g. topological entropy, Lyapunov exponent, escape rate. The time delay distributions are also evaluated. We 
demonstrate these ideas with the aid of both computer simulations of the Navier-Stokes equations and analytical 
model computations. Properties that could be measured in a laboratory experiment are discussed. 

1. Introduction 

The passive advection of particles in hydrody- 
namical systems has attracted recent interest in 
both closed [ 1-14 ] and open flows [ 15-29 ], and 
lead to a mutual  interaction between the fields of  
fluid dynamics  and dynamical  systems. Passive 
advection has widespread applications in nature 
as, e.g., transport of  pollution in fluids, aerosols, 
solidified particles in melts and magmas, etc. It 
is also important  for the mixing of  particles in 
flows. 

Theoretical investigations have mainly con- 
centrated on two-dimensional  incompressible 
flows where the existence of  a s treamfunction 
~g (x, y, t) is maintained.  Since the velocity corn- 

ponents are obtained as spatial derivatives of  ~,, 
the equations of  mot ion of  a particle advected 
by the flow are 

d 0 
~-~x( t )  = - ~ ( x , y , t ) ,  (1) 

d y ( t )  - 0 

a x ~ ( X , y , t ) .  (2) 

The key observation is that  these equations have 
exactly the same structure as the canonical equa- 
tions of  motion for a particle moving along a 
1-dimensional position space without  any fric- 
t ion under  the influence of  an explicitly time- 
dependent  force. The following identifications 
can be made: x - ,  q where q is the position of  the 
particle, y -~ p where p is the canonically con- 
jugate m o m e n t u m  of  the particle, ~ (x, y,  t) -~ 
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H(q,p ,  t) where H is the Hamiltonian of the dy- 
namics. It is well known that driven Hamilto- 
nian systems with one degree of freedom can ex- 
hibit chaotic behaviour of essentially the same 
type as autonomous systems with 2 degrees of 
freedom. Therefore, the particle transport is typ- 
ically chaotic in time-dependent flows. 

An especially appealing property of this phe- 
nomenon is that the phase space of  the particle 
dynamics coincides with the configuration space. 
The phase space structures thus become observ- 
able by the naked eye. Since the Lagrangian 
equations of motion ( 1 ), (2) are independent of 
whether the flow is ideal or viscous, in the latter 
case laboratory experiments can be designed for 
the investigation of the tracer dynamics. For 
closed flows a series of experiments has already 
been carried out [3,4,9] and provided com- 
plete agreement with the results of  dynamical 
systems' theory. 

In this paper we concentrate on open flows 
around obstacles and show that the passive ad- 
vection in such cases is equally well suited for 
experimental investigations as in closed geome- 
tries. The nonstationarity of the flow is often 
restricted to a finite region around the obsta- 
cle (s), outside of which the velocity field is prac- 
tically stationary. In this asymptotic region the 
stream function is time-independent and the La- 
grangian dynamics is integrable. The openness 
of the system and the asymptotic simplicity of 
the motion makes then advection analogous to 
particle scattering. Nevertheless, particles may 
exhibit complicated motion in the vicinity of 
the obstacle(s), in the region in which the ve- 
locity field is strongly time-dependent. The be- 
haviour is typically chaotic here and the motion 
of particles is then a realization of chaotic scat- 
tering [24,27,29-33]. With modern techniques 
it seems to be possible to investigate particle tra- 
jectories in detail [15,17,69,71] and we think 
that the experimental investigation of passive 
particles in open flows behind obstacles might be 
the first detailed observation of classical chaotic 
scattering in an experiment. 

Based on numerical simulation, we give a 
qualitative description of the most important 
phenomena connected with the passive trans- 
port process and summarize those quantities 
which could be measured in laboratory experi- 
ments. 

For demonstration we choose the yon K~irm~in 
vortex street since it is one of the well known 
examples of coherent flow patterns, which has 
a parameter interval leading to a time periodic 
velocity field. For this system there exists a lot 
of  experimental data [16,34-38,57] and it also 
has various important applications. 

It is well known that the solution to the Eu- 
ler problem, i.e., the velocity field of the Navier- 
Stokes equations can also be more complicated 
than periodic. In some cases chaotic behaviour 
has been observed (see e.g. [ 39 ] ), while for large 
Reynolds numbers turbulence sets in (see e.g. 
[40] in an experiment and [41,42] in computer 
simulations). It was even possible to do ana- 
lytical investigations leading to a description in 
terms of stochastic processes (see e.g. [43 ] ). 

We are interested to establish a connection of 
the advection problem to Hamiltonian dynam- 
ics which is clearly possible for 2-dimensional 
periodic flows. Therefore, we restrict our consid- 
erations to the case of small Reynolds numbers 
where it is well established that the flow is essen- 
tially 2-dimensional [34,38 ]. For our line of ar- 
gumentation it is useful that the 2-dimensional 
position space of the flow coincides with the 2- 
dimensional phase space of the related Hamil- 
tonian system. To maintain this coincidence, it 
is neccessary to restrict the kinematics to pas- 
sive advection of point particles. It would break 
down, howewer, if we allow for more general 
types of advection (extended particles, particles 
with excess inertia) which have already been 
treated in various investigations [25,44-46]. 

The passive advection in the wake of a cylin- 
der has also been investigated recently by Shariff, 
Pulliam, and Ottino [22 ]. They treated the prob- 
lem of a compressible fluid and concentrated on 
the determination of the invariant manifolds of 
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some singular points on the cylinder's surface 
and of a period-one orbit in the wake. These au- 
thors showed that the material lines of dye parti- 
cles (strealdines) converge to the unstable man- 
ifold emanating from the singular points on the 
surface. 

Our investigation is based on the analogy be- 
tween the Lagrangian dynamics and chaotic scat- 
tering. Because the assumed incompressiblity of 
the flow implies the Hamiltonian character of  
the particle dynamics, methods of classical scat- 
tering theory become applicable. We study par- 
ticle trajectories, periodic orbits, invariant man- 
ifolds, the chaotic set, time delay functions and 
time delay statistics. These investigations also 
enable us to quantitatively characterize chaos by 
computing the escape rate, topological entropy, 
Lyapunov exponents and the fractal dimension 
of the chaotic set. 

The paper is organized as follows. In Section 
2 we briefly summarize what chaotic scattering 
is. Next, the Eulerian problem studied in this pa- 
per is described, the flow behind a cylinder in 
a channel at Reynolds number where the veloc- 
ity field is periodic and a v o n  K~rm~n vortex 
street is present. (An analytical model flow used 
to obtain high resolution results, as a comple- 
mentary fit  to the solution of the direct numer- 
ical simulation of the Navier-Stokes equations, 
is presented in the Appendix.) The remaining 
part of the paper is devoted to the Lagrangian 
problem, to the passive advection of particles in 
this time-periodic velocity field. Section 4 dis- 
cusses the form of particle trajectories, as well 
as certain basic periodic orbits acting as a build- 
ing block for an infinity of other periodic or- 
bits present in the problem. It is also shown that 
periodic orbits can be shifted close to the sur- 
face of the cylinder with increasing period. This 
will be the source of an algebraic long time be- 
haviour observed in the time delays. The chaotic 
invariant set with fractal properties in which all 
of  these periodic orbits are embedded is treated 
in the Section 5, along with its invariant man- 
ifolds. We point out that those segments of the 

streaklines that remain in the wake of the cylin- 
der converge to the unstable manifold of the full 
chaotic set as time goes on. These are the cen- 
tral results of the paper and open the possibility 
for interpreting fractal structures appearing in 
streaklines visualizations of flows, in general, as 
signs of Lagrangian chaos. Since the convergence 
to the unstable manifold is exponentially fast, we 
approached this manifold by simply following 
streakline segments for a few periods of the flow. 
The stable manifold was obtained in an analo- 
gous manner from the time reversed Lagrangian 
dynamics. We then construct the chaotic set and 
show, in a series of pictures, how the chaotic 
set and its manifolds change with time. In Sec- 
tion 6 we describe how characteristic numbers 
of the chaotic dynamics around the strange set 
can be extracted by following the motion of line 
segments. Section 7 is devoted to the time de- 
lay statistics that is dominated asymptotically 
by trajectories remaining for a long time near to 
the surface of the cylinder. On short time scales, 
however, the effect of unstable periodic orbits 
can also be seen in the appearance of an exponen- 
tial decay. A quantity providing a more detailed 
description, the time delay function is discussed 
in Section 8. The most remarkable structures in 
it are also given by trajectories of particles di- 
rectly colliding with the cylinder, but the fine 
structures reveal information about the chaotic 
set. Eigenvalues of short periodic orbits can be 
extracted from scaling properties of this func- 
tion. The last section gives a summary of quan- 
titites that could be measured in a laboratory ex- 
periment. 

2. Chaotic scattering: a brief survey 

In this section we summarize briefly the most 
important features of chaotic scattering. For 
more details we refer to the review papers [30- 
331. 

Because of the asymptotic simplicity of the 
motion, scattering trajectories can have compli- 
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cated shapes mainly in a finite region of  the con- 
figurational or phase space, in the so-called inter- 
action region. Consequently, chaos is restricted 
to finite time scales and chaotic scattering is, 
in fact, a special appearance of  transient chaos 
[32]. 

In chaotic scattering, just like in any other 
chaotic processes, there exists an infinity of un- 
stable periodic orbits. Unstability means that 
they are either hyperbolic with a positive maxi- 
mal local Lyapunov exponent or marginal with 
zero maximal Lyapunov exponent. In fact, the 
number of  periodic orbits increases with their 
period exponentially, and the topological entropy 
K0 tells us how rapid this increase is. Periodic 
orbits provide a backbone of  the scattering pro- 
cess in the sense that the particle might remain 
close to a periodic orbit for a while, then leaves 
it and comes to the vicinity of  another one, 
and so on. The motion can be considered as a 
random walk among periodic orbits. 

It is also known from earlier studies that some 
short basic periodic orbits play a fundamental 
role. More complicated ones turn out to be shad- 
owed by these basic ones which means that any 
periodic orbit can be built up from segments 
of  the basic periodic orbits. Long lived scatter- 
ing trajectories remain close to the periodic ones 
and, consequently, their segments inside the in- 
teraction region can also be shadowed by the ba- 
sic periodic orbits [47-49].  In investigations of  
chaotic scattering the determination of  the short- 
est and simplest periodic orbits is of  outstanding 
importance. 

In chaotic scattering processes there exists 
a nonattractive chaotic set, sometimes called 
chaotic saddle. It is an invariant set in phase 
space, and consists of all the unstable periodic 
orbits lying in the interaction region and their 
heteroclinic and homoclinic connections. 

The chaotic set possesses a stable manifold 
along which trajectories can reach the set itself. 
The stable manifold of  a given periodic orbit 
is practically indistinguishable from that of the 
complete set. The stable manifold has zero mea- 

sure and provides afractal foliation of  the phase 
space. This is why a particle has zero probability 
to be trapped forever by a periodic orbit, or by 
the entire chaotic set. 

Analogously, the chaotic set also has an unsta- 
ble manifold which is the stable manifold in the 
time reversed dynamics. The unstable manifold 
is also an infinitely long line that foliates certain 
regions of  the phase space in a fractal manner. 

The chaotic set itself is the common part of  its 
stable and unstable manifolds and exhibits thus 
a fractal structure along both the stable and the 
unstable direction. Because of the Hamiltonian 
character, the fractal dimension of  the chaotic 
set has the same value, D, along both directions 
[32]. The chaotic motion on the invariant set is 
characterized by an average Lyapunov exponent 
2 > 0 which can also be extracted from typical 
scattering trajectories of  particles that never hit 
the set exactly but come close to it. 

If  stable (elliptic) periodic orbits are also 
present, they are surrounded by elliptic islands 
containing quasiperiodic orbits, and can thus 
never be accessed by scattering trajectories. 
What is accessible is the surface of  the island, 
a KAM surface, that contains a lot of  periodic 
orbits which can be arbitrarily weakly unsta- 
ble. The presence of  a KAM surface or any 
marginally stable orbit leads to the appearance 
of  a so-called nonhyperbolic component of  the 
chaotic set that is responsible for an anoma- 
lous long time behaviour. It is also known that 
the partial fractal dimension D of the chaotic 
set is then approaching 1 with an ever refining 
resolution [50]. 

Incoming trajectories escape sooner or later 
the interaction region. The statistical behaviour 
of  the survivors is an important characteristics 
of  chaotic scattering. One is interested in the 
time delay statistics that tells us how the proba- 
bility for finding a trajectory in the interaction 
region decays with the time spent there. If  the 
chaotic set is hyperbolic, i.e. does not contain 
any marginally stable component, this decay 
is exponential. The number characterizing the 
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decay is the escape rate ~c, the reciprocal value 
of the avarage chaotic lifetime in the system. 
In nonhyperbolic situations the decay is much 
slower, of algebraic type. If  both hyperbolic 
and nonhyperbolic components are present, a 
crossover may be observed from an initial ex- 
ponential decay to an asymptotic power law 
behaviour [ 51 ]. 

Another central object in the theory of chaotic 
scattering [30-33] is the t ime delay function de- 
scribing how the time spent in the interaction re- 
gion depends on the initial conditions. This pro- 
vides a more detailed description than the time 
delay statistics. The time delay function takes on 
an infinite value whenever the initial condition 
falls on the stable manifold of the chaotic set. 
The infinities in the time delay function thus ap- 
pear in a fractal pattern that has the same dimen- 
sion D as the partial dimension of the chaotic 
set. A study of the time delay function also pro- 
vides the possibility to obtain any other impor- 
tant characteristics of  the chaotic set [ 52, 53 ]. 

3. Flow behind a cylinder in a channel 

We investigate the Navier-Stokes flow in an in- 
finite channel of width w with a circular cylinder 
of radius R placed into the middle of the channel. 
An incompressible viscid fluid moves through 
the channel with an average velocity Uav from 
the left to the right. The flow is characterized 
by two free parameters: by the Reynolds num- 
ber Re = 2Ruav/V, where v is the viscosity, and 
by the aspect ratio r = R / w .  We will consider 
sufficiently small Reynolds numbers Re only, 
for which the flow is essentially 2-dimensional. 
We assume that the velocity of the fluid is suf- 
ficiently small such that far away in front and 
far away behind the cylinder a parabolic velocity 
profile is created. For Re below a critical value, 
which lies slightly below 80 in our case, the flow 
becomes stationary in the long time limit. In the 
following we concentrate on the next range of 
Reynolds numbers where an exactly t ime peri- 
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Fig. 1. Geometry of the channel and the cylinder within. 
The walls of the channel are at y = 0 and y = w = 0.2. 
The center of a cylinder of radius R = 0.05 is placed 
at (0.25, 0.1 ). The arrows inside the channel indicate the 
incoming parabolic velocity profile. 

odicflow of some period Tc occurs (see [74,73] ) 
Behind the cylinder vortices are created. Later 

they detach from the cylinder and drift along the 
channel. After some distance they are suppressed 
by viscosity. We obtain a typical vortex sequence 
of finite length. In a narrow channel (r is not very 
small compared to one) the vortex sequence is 
strongly damped and quite short. In our case we 
have at most two different vortices at one instant 
of time. 

Fig. 1 shows the geometry we use and the 
incoming parabolic velocity profile. It is valid 
rather close to the cylinder and so it was suf- 
ficient for the following to choose this profile 
as initial condition along the line x = 0.0. The 
results shown below are obtained for Re = 250 
and r -- 0.25 which lead to Tc = 1.107. Simi- 
lar numerical results for Re = 80 are given in 
[24,29]. 

Fig. 2 gives a plot of the instantaneous stream- 
lines of the Navier-Stokes flow at time t = 0 
mod Tc and at time t = Tel4 mod Tc where 
the zero of time has been chosen arbitrarily. Be- 
cause of the symmetry of the geometry we use, 
and because of the solution, the streamlines for 
t2 = tl + Tc/2 can be obtained by reflecting the 
streamlines plot belonging to time tl about the 
symmetry axis of Fig. 1. Thus, for example, the 
streamlines for t = Tc/2, 3Tc/4 can easily be 
generated from those shown in Fig. 2. 

We can thus imagine the time development 
of the velocity field. Behind the cylinder two 
vortices are created within any time interval of 
length Tc, one in the upper half and the other 
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Fig. 2. Streamlines obtained f rom a numerical solution of  
the Navier-Stokes equations for Re = 250, r = 0.25 at t ime 
t mod  Tc, where (a) t = 0 and (b) t = Tc/4. 

Because of  the restrictions in the computer re- 
sources and resolution, this method is not suit- 
able to investigate very fine details of  the dy- 
namics. For this purpuse, we constructed an an- 
alytical model, fit, of  the stream function [27] 
which contains useful qualitative features of the 
Navier-Stokes flow and provides the opportu- 
nity to have very good resolution. This model is 
presented in the Appendix. 

Where available, we shall give below the re- 
suits obtained from the Navier-Stokes flow, but 
in certain cases, when the required high preci- 
sion was not reachable by the direct simulation, 
the results of  the model will be shown (for details 
we refer to [27] ). In the figure captions we in- 
dicate how the results displayed were obtained. 

one in the lower half of the channel. These two 
vortices are delayed by a time Tc/2. The vor- 
tices first grow in size, then they separate from 
the cylinder and start to drift along the channel. 
Now the viscosity of  the fluid and the presence 
of the walls of  the channel become important for 
their destabilisation and destruction after a short 
length of  travel. 

The principal approach to the determination 
of  the velocity field or of  the stream function is 
a solution of  the Navier-Stokes equations. We 
used a method based on the one described in 
[ 54 ] and modified according to [ 55 ] (see [ 72 ] ). 
A grid of  size 42 x 202 in position space has been 
taken and the average temporal resolution pro- 
vided by the numerical procedure was 0.003 Tc. 
The relaxation to the asymptotic periodic be- 
haviour required a CPU time of  several hours 
on a CDC vector computer, Cyber 205. As in- 
put for the Lagrange dynamics this velocity field 
was stored over half a time period on an equidis- 
tant space-time grid where the time step 0.03 Tc 
has been chosen. Several tests have been carried 
out to check (both in space and time) the grid- 
independence of  the Navier-Stokes solution and 
the reliability of  the simulated particle dynam- 
ics. 

4. Trajectories and periodic orbits 

The motion of particles inside the vortex 
sequence can qualitatively be understood as fol- 
lows: In time-independent velocity fields, the 
particle trajectories coincide with the stream- 
lines. Then it would be impossible for a particle 
ever to enter a vortex from outside or to leave 
it from inside. However, when the velocity field 
is time-dependent, the position of  the vortices 
changes relative to the particle and the particle 
can be overrun by a vortex and come inside of  
it. After a while the particle may be left behind 
the vortex again. If it leaves the vortex just at 
the appropriate time and at the right place, then 
it may be overrun by the next vortex and be 
trapped by it for a while, etc. So a particle can 
be handed over from one vortex to the next one 
and stay in the region behind the cylinder for a 
long time, even though each individual vortex 
leaves this region quite soon. For this effect to 
occur, it is necessary that the particle motion is 
synchronized to the vortex motion such that in- 
side the growing and moving vortex the particle 
is moved from the front, where it is captured, to 
the back of  the vortex, where it is released again. 

We followed the particle trajectories in contin- 
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Fig. 3. Two particle trajectories in position space based on 
Navier-Stokes data. (a) shows a scattering trajectory mov- 
ing along the wall of the cylinder in very close distance. (b) 
shows a trajectory which comes close to periodic orbits and 
is overshadowed by them in the vortex containing region. 

uous time to have the freedom to take a snapshot 
at any time. If one is interested just in a strobo- 
scopic map at one specific time mod T¢, then the 
simple method proposed in [56] could be used 
succesfully to locate e.g. the periodic points in 
the stroboscopic plane. 

Particle trajectories can be of different type. 
Some of them directly approach the wall of the 
cylinder where the velocity field goes to zero. 
Then the particle passes along the cylinder sur- 
face very slowly until it separates again on the 
back side. Such a trajectory is shown in Fig. 3a. 
With other initial conditions, the particle can be 
trapped by the vortices for a while and performs 
a complicated, chaotic looking motion (Fig. 3b). 
(For some particle trajectories in the wake of 
a rectangular cylinder see [18].) We note that 
complicated particle trajectories occur in spite 
of the fact that the streamlines are smooth (cf., 
Fig. 2). This is in analogy to complicated trajec- 
tories appearing in the phase space of Hamilto- 
nians of simple functional form. 

In order to understand the complicated be- 
haviour of long scattering trajectories, it is nec- 
essary to study the properties of periodic and lo- 
calized orbits in the system. The simplest truly 
periodic orbits are plotted in Fig. 4. Two asym- 
metric period-one orbits are plotted by dotted 
lines. For better distinction, a third period-one 
orbit which is of figure eight shape is plotted as 
a solid line. It is clear that the trajectory of Fig. 
3b is shadowed for a while by the asymmetric 
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~ . .  ° . . ° . . .  
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Fig. 4. Plot of the period one orbits (Navier-Stokes data). 
The two large orbits are drawn by dotted lines, where two 
consecutive points are separated by a time of Tc/lO0. The 
third small figure eight orbit is drawn by a solid line for 
better distinction. 

period-one orbits. It has to be emphasized that 
the period-one orbits are rather unstable. Their 
eigenvalues are on the order of 1000, much larger 
than in the paradigm examples of point mechan- 
ical chaos. 

Another basic feature, which can best be seen 
with the enhanced resolution of the model flow 
(given in the Appendix), is that a sequence of 
period 2,3, and 4 orbits, which have been found 
(Fig. 5a,b,c), are shifted with increasing period 
closer and closer to the wall. Their forms sug- 
gest that they are partially shadowed by a period- 
one orbit and partially also by segments lying 
close to the wall. Computing their eigenvalues 
2n, where n is the period, we found that In (2n)/n 
decreases with n. By taking into account that 
the cylinder surface is the union of degenerate 
parabolic points with Lyapunov exponent zero, 
we can conclude that the wall plays the role of 
a basic periodic orbit of marginal stability. In 
this respect it is similar to a KAM surface. The 
boundary of the latter is, however, a complicated 
fractal structure in contrast to the surface of the 
cylinder. 

We thus conclude that short periodic orbits 
are not sufficient for carrying out the shadowing 
process. In addition, the wall of the obstacle con- 
sisting of a continuum of parabolic points has 
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Fig. 5. Simple periodic orbits of higher order. (a), (b), and 
(c) show periodic orbits of period 2, 3, and 4, respectively. 
These plots are based on the flow of the analytical model 
(for more details see [271 ). For better visualization, dif- 
ferent scales has been used on the axes. 

to be included as it acts like a further basic peri- 
odic orbit. In fact, very long periodic orbits can 
come arbitrarily close to the wall. So we can de- 
fine two components of the invariant set: a hy- 
perbolic component containing the short hyper- 
bolic orbits as well as the ones shadowed by them 
alone, and a nonhyperbolic component, contain- 
ing the wall as well as periodic orbits shadowed 
partially by the wall. In our numerical compu- 
tations we did not find KAM surfaces, but on 
general ground their existence is expected even- 
tually on extremely small scales. KAM surfaces 
also belong to the nonhyperbolic component. 

5. Streaklines, invariant manifolds and the 
chaotic saddle 

Let us imagine that we inject particles into 
the flow in front of  the cylinder. If the point 
of injection (Xin,Yin) is not close to the stable 
manifold of the front stagnation point or of the 
chaotic set, then the injected particles will not 
be trapped and will be advected away by the 
flow quite rapidly. If the point of injection is 
close to the stable manifold of the front stagna- 
tion point, particles will be sticked to the sur- 
face of the cylinder for a long time. If, however, 
the point of injection happens to lie close to the 
stable manifold of the chaotic set, the particle 
will be attracted, because of the stable foliation, 
to a vicinity of the set where it spends a finite 
amount of time, and escapes finally along the un- 
stable manifold of the chaotic set. Therefore, we 
conclude that dye particles remaining for a few 
periods behind the cylinder will draw out the un- 
stable manifold of the chaotic set. 

Consequently, the fractal structures seen in 
flows behind obstacles by means of dye visual- 
ization can, in general, be interpreted as unstable 
manifolds of chaotic sets. This is in analogy to 
the results of  Ottino and coworkers [4] obtained 
in closed flows showing that dye particles move 
asymptotically along unstable manifolds of peri- 
odic orbits embedded in the chaotic see. 
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Streaklines, often used in flow visualization 
[35,16,57], are the set of  points reached, at a 
given instant of  time, by a continuum of parti- 
cles injected at a given point into the flow at any 
previous time before. Consequently, our general 
observation is that those segments of the streak- 
lines which remain in the wake of an obstacle 
for a long time and exhibit fractal character co- 
incide with the unstable manifold of a chaotic set 
existing behind the obstacle. This is a slight con- 
ceptual extension of the result of  Shariff, Pul- 
liam and Ottino [22] who emphasized the im- 
portance of the stagnation points' unstable man- 
ifold. We claim that it is the complete chaotic 
set whose unstable manifold is relevant for the 
streaklines. In fact, the unstable manifold of the 
stagnation point (s) is expected to come arbitrar- 
ily close to that of  any periodic orbits. These 
manifolds together (more precisely, their clo- 
sure) form the unstable manifold of the chaotic 
set. Many streakline patterns found in differ- 
ent fluid mechanical problems before [ 35,57,16 ] 
provide thus evidence for the chaoticity of the 
passive advection in that system. 

We describe here a numerical method for 
computing streaklines that also enable us to ex- 
tract quantitative characteristics of  the chaotic 
set, like, e.g., topological entropy and Lyapunov 
exponents. As pointed out above, the chaotic 
set contains both hyperbolic and nonhyperbolic 
components. We expect that the crudest fractal 
structures of streaklines reflect the presence of  
the strongly unstable periodic orbits and the 
hyperbolic part. By intersecting the streaklines 
with smooth curves one should thus obtain a 
fractal dimension strickly less than unity. When 
increasing the resolution, one should see, how- 
ever, the nonhyperbolic part and a crossover of 
the fractal dimension to unity. In the numerical 
plots shown below we just see the large-scale 
structures corresponding to the hyperbolic in- 
fluence. 

The convergence along the stable foliation to- 
ward the unstable manifold is given on short 
time scales by the rule exp(22t) where ~2 is the 

131 

negative average Lyapunov exponent of the hy- 
perbolic component of the chaotic set. Because 
of  the Hamiltonian structure, however, 22 is just 
the negative of the positive average Lyapunov 
exponent 2. 

In order to determine the streaklines numeri- 
cally, we select a suitable point in position space 
and insert particles at this point into the flow 
with a constant rate which is on the order of  
1000 during a period Tc of the velocity field. The 
trajectories of all these particles are followed. 
At any instant of  time, if the distance between 
two adjecent particles increases above a thresh- 
old value of 5 x 10 -4 a new particle is inserted 
at the midpoint between the two already exist- 
ing ones. This is done in order to obtain numeri- 
cally a continuous appearance of  the streaklines. 
Thus, the number of  particles is proportional, on 
the average, to the length of the streakline. The 
chaotic properties of the dynamics are reflected 
in the appearance of an exponential growth of 
the length of the lines and, consequently, also 
of the number of the interpolated particles. This 
will allow us to extract qualitative characteristics 
of the saddle as will be discussed in the next sec- 
tion. The addition of interpolating particles in 
an experiment is neither possible nor necessary 
because of the macroscopically large number of 
dye particles. 

Since the streaklines converge to the unstable 
manifold of the chaotic saddle, we approached 
the latter numerically by simply following a seg- 
ment of the streakline up to a sufficiently long 
time. In our case a duration of about 3Tc was 
sufficient. The stable manifold is obtained by ex- 
actly the same method using the time-reversed 
Lagrange dynamics. This is of  course not pos- 
sible in an experiment, but the stable manifold 
can also be obtained by distributing an ensem- 
ble of particles around the cylinder and plotting 
the initial position of only those particles that re- 
main in this region for a long time [58,51 ]. One 
might also speculate about interpreting the sta- 
ble manifold as a kind of fractal basin boundary 
[59] that would enable us to take over methods 
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vation would not modify the structure shown in (b) which 
coincides practically with the unstable manifold W u of the 
chaotic set. The frames show the region (0.26 < x < 0.6, 
0.035 < y < 0.165). 

Fig. 7. (Right) The chaotic set and its invariant manifolds. 
(a) gives a similar segment of the streakline as Fig. 6b but 
taken at time 2Tc + 0.6 injected in the time interval (0, Tc ). 
(b) gives the streakline of the time reversed Lagrangian 
dynamics. The part of the line which has been injected at 
(Xin,Yin) = (0.35,0.1) in the time interval t E [0, Tc] has 
evolved until time t = 3 Tc - 0.6 (the sum of forward and 
backward times must be an integer multiple of Tc in order 
to obtain matching pictures). It is a good representation 
of the stable manifold W s of the chaotic set. (c) gives the 
intersection of the manifolds W u and W s representing the 
chaotic set A at time t = 0.6 mod Tc. The region shown is 
(0.25 < x < 0.42, 0.035 < y < 0.165). 

(c) 

f r o m  this  b r a n c h  o f  n o n l i n e a r  d y n a m i c s .  

T h e  choice  o f  the  i n j e c t i o n  p o i n t  is conve-  

n i e n t l y  chosen,  in  case of  s t reak l ines  or  u n s t a b l e  

man i fo ld s ,  i f  it  l ies close to the  s table  man i fo ld .  

Na tu ra l ly ,  w h e n  c o n s t r u c t i n g  the s table  m a n i f o l d  

by  m e a n s  of  the t ime- reve r sed  Lagrange d y n a m -  

ics, the  i n j e c t i on  shou ld  take  place in  the v i c in i ty  

of  the  uns t ab l e  ma n i f o l d .  
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In Fig. 6 we demonstrate pictorially how parts 
of the streaklines converge towards the unstable 
manifold W u of the chaotic set. Starting from 
the time t = 0 particles are injected at the point 
(Xin,Yin) = (0.25,0.155). Fig. 6a shows the 
streakline thereby created at time t = 3 Tc + O. 1. 
That segments of the streakline which have 
been injected in the time intervals (Tc, 2Tc) ,  

(2Tc, 3Tc)  and (3T~,3Tc  + 0.1) are shown in 
blue, green and orange, respectively. The seg- 
ment injected in the time interval (O, Tc) is 
shown separately in Fig. 6b in red. We see that 
the red segment gives essentially the same struc- 
ture as the blue segment only filled in a little bit 
more densely. In this sense we can consider the 
red segment to represent within our numerical 
resolution already the limiting structure towards 
which the streaklines converge in the long run. 
This limiting structure is just the unstable man- 
ifold W u. In [29] we give for another value of  
the Reynolds number a comparison between the 
streaklines and a direct construction of  several 
thousand points of  W u and found good coinci- 
dence of  the structure. 

By running the Lagrangian dynamics back- 
ward in time (with the same velocity field of  
course) we can obtain in the same way a faith- 
ful representation of  the stable manifold W s of 
the chaotic set, when we inject the particles at 
a point behind the cylinder. For the numeri- 
cal computations we have chosen ( X i n , Y i n )  = 

(0.35, 0.1 ) for the reversed dynamics. 
In the knowledge of  the invariant manifold 

one can easily obtain the chaotic set A as their 
intersection. Alternatively, even if the manifolds 
are not known, the chaotic set could be con- 
structed by using an ensemble of  particles. This 
is obtained by monitoring, after discarding the 
transients, those trajectories only that remain for 
a long time, as described in [61,58,51 ]. 

Fig. 7 shows a comparison of  W u, W s and A 
at the time t = 3Tc + 0.6. Part (a) of  the fig- 
ure displays again a similar Structure as Fig. 6b, 
only in a smaller frame in order to magnify the 
most interesting parts. Fig. 7b exhibits the cor- 

responding stable manifold. In Fig. 7c the inter- 
section points between W u and W s are marked 
to represent the invariant set A itself. 

Because the Lagrangian dynamicsis  explicitly 
time-dependent, also the positions of  W u, W s 

and A are explicitly time-dependent and are pe- 
riodic with the period T¢ of the velocity field. 
Fig. 8 gives the positions of  W u and W s for times 
t = 0.6 + k x 0.1 mod Tc where k = 0,...,5 
in parts (a) . . . .  , (f), respectively. W u and W s 

are shown in red and blue, respectively. It is suf- 
ficient to show the time evolution of  these sets 
over half of  a period, because at time t2 = tl + 
Tc/2  all these sets are just the mirror images of  
the corresponing sets taken at time t~ where the 
line of  reflection is the symmetry axis along the 
channel. In Fig. 9 we display in a smaller frame 
the invariant set A, i.e. the intersection between 
W u and W s where the positions of  the periodic 
orbits shown in Fig. 4 are also marked. Again 
parts (a) .... , (f) belong to times t = 0.6 + k x 0.1 
mod Tc for k = 0 ..... 5, respectively. As Fig. 9 
suggests, the points of  the chaotic set a c c u m u l a t e  
on the surface of the cylinder. Since the chaotic 
set has to be closed, we conjecture that the entire 
cyl inder  surface between the two unstable stag- 
nation points, including these stagnation points 
themselves, belongs to the chaotic set. 

6. Characteristic numbers 

As mentioned in the previous section, the nu- 
meric procedure used to plot the streaklines has 
been carried out by adding interpolating parti- 
cles. This is not only a useful way for keeping the 
density of  particles constant along streaklines, 
but the rate at which particles have to be added 
expresses an essential property of  chaos: expo- 
nential stretching and folding. The growth rate of  
the particle number can thus be connected with 
basic chaotic characteristics. 

To see this, take any finite two-dimensional re- 
gion A behind the cylinder that contains parts of  
the invariant set. The total number of  particles 
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Fig. 8. Time development of invariant manifolds (Navier-Stokes data): W u (red) and W s (blue). Parts (a ) - ( f )  correspond 
to times t = 0.6 + k x 0.1 mod Tc where k = 0 ..... 5. It is easy to imagine the continuation of this series by using the 
symmetry property mentioned in the text. 
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Fig. 9. Time development of  the chaotic set A. ( a ) - ( f )  correspond again to times t = 0.6 + k x 0.1 mod Tc (k = 0 , . . , 5 ) .  
A is obtained as the intersection between W u and W s (see also the black dots in Fig. 8.) The frames correspond to the 
region (0.25 < x < 0.36, 0.05 < y < 0.15). Here circles mark the position of the figure eight orbit (shown in Fig. 4 with 
continuous line). The location of the upper and lower period-one orbits (dotted lines in Fig. 4) are denoted by crosses. 
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inside, as well as the total length and the num- 
ber of connected components, all grow with the 
same exponent. It is well-known that the folding 
property of chaos is quantified by the topologi- 
cal entropy being the growth rate of  how rapidly 
the number of  foldings increases when time goes 
on (cf., e.g, how rapidly the number of branches 
in an n-fold iterated map increases with n ), see 
also [60]. Therefore, we conclude that the com- 
mon growth rate of  all the exponentially increas- 
ing quantities related with region A is the topo- 
logical entropy of  the saddle. In particular, let 
M (t) denote the number of  particles used in the 
creation of the streakline inside the selected re- 
gion at time t. The topological entropy K0 of the 
chaotic saddle can then be extracted from M (t) 
via the relation 

M ( t )  ,,~ exp(Kot/Tc), (3) 

which holds for sufficiently large time. We found 
nice scaling for t > 2 Te. Note that K0 as defined 
above is the topological entropy of  the strobo- 
scopic map since time is measured in units of  Te. 

The value of K0 obtained by this method is 
completely independent of the choice of the re- 
gion A since the rate of  folding is the same in 
the vicinity of  any point. We choose for A the 
section of  the channel lying between x = 0.25 
and x = 1.0. In Fig. 10 the logarithm of the to- 
tal number of  particles inside A is plotted ver- 
sus time obtained from Navier-Stokes data. This 
plot has some periodic oscillations with a period 
of  Tc/2 around a straight line of  slope 1.7. So we 
obtain the value K0 = 1.7 from the dynamics of  
the streaklines. 

Another quantity characterising stretching 
rather than folding can be obtained by following 
two neighbouring particles in a streakline over a 
short time At. Let li denote the distance between 
two neighbouring particles on the streakline at 
time t. The growth rate of  the distance during At 
is 1 + Al i / l i  where Ali  is the increase of the dis- 
tance between the neighbouring particles. Thus, 
we can consider the quantity Ali/(liAt) to be a 
local stretching rate 2i.  The probability to find 

1 2  m 
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Fig. 10. Logarithm of the number of particles in the streak- 
line versus time in the region 0.25 < x < 1 of the 
Navier-Stokes flow. The average slope gives the value 1.7 
for the topological entropy K0. 

this exponent in a randomly chosen point along 
a streakline of  total length L inside the selected 
region is l i / L .  Taking the average of the J,i 's  

with this probability, an average stretching rate 
2 is obtained as 

2 - TeAL 
L At '  (4) 

where AL - ~ i  li is the full increase of  the 
streakline's length inside the region. The factor 
Te reflects again that time is measured in units 
of the period of the velocity field. In the limit 
At ~ 0 the right hand side is proportional to the 
logarithmic derivative of  L. 

Note that the average stretching rate as de- 
fined above might depend on the region selected. 
If the region A is a good cover of  the invari- 
ant set, in particular of  the strongly hyperbolic 
periodic orbits, and if it does not contain too 
large parts far away from the invariant set, then 
2 can be interpreted as the Lyapunov exponent o f  
the hyperbolic component. This is also consistent 
with the fact that the probability with respect to 
which the average is taken above corresponds to 
the natural measure of hyperbolic chaotic sets 
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[32]. 
By choosing A to be the region between x = 

0.25 and x = 0.5 we obtained in the Navier- 
Stokes flow 2 = 4.7. Note that this number is 
definitely less than the Lyapunov exponents of 
the period one orbits (shown in Fig. 4) which 
are on the order of approximately In (1000) = 
6.9. This shows that longer periodic orbits can 
be less unstable than the period one orbits even 
if they belong to the hyperbolic component. The 
relatively large value of 2 ensures that the con- 
vergence of the streaklines to the unstable man- 
ifold is perfect within a time of2Tc (cf. Fig. 6 ). 

From the dynamics of the streaklines the es- 
cape rate x can also be extracted as follows. At 
time t = Ts we stop to inject new particles at 
the point (Xin,Yin) and at the same time we 
stop to interpolate particles into the moving and 
stretching particle chain. Then most streakline 
segments disappear quite rapidly out of the area 
A under observation. The few remaining seg- 
ments are stretched and become filled with par- 
ticles very sparsely only. The number M'  of re- 
maining particles inside A decreases like 

M ' ( t )  = M ' ( T s ) e x p [ - x ( t -  Ts)/Tc] (5) 

on the average. By this method we have found 
the value x = 3.2. 

Having obtained an estimate for the escape 
rate and the Lyapunov exponent, we can use a fa- 
mous relation [61 ] expressing the partial infor- 
mation dimension D1 along the invariant mani- 
folds of the chaotic set as 

D 1 = 1 - x/2. (6) 

With values determined above we obtain D1 = 
0.32 which can be considered as a good estimate 
for the partial fractal dimension D of the chaotic 
set, or equivalently for the fractal dimension of 
the intersection accross the unstable or stable 
manifold. This number shows that the intersec- 
tion is a rather sparse fractal which agrees with 
what one sees on the pictures. Furthermore, the 
metric entropy K~ is the product of the informa- 
tion dimension D1 and the Lyapunov exponent 
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[6t] .  Thus we find KI = 1.5 which is a value 
somewhat below that of the topological entropy 
K0 = 1.7 as it should be. 

7. Time delay statistics 

For a scattering system it is essential to give a 
proper labelling of asymptotes. In our system this 
can be done as follows: Pick a particular value Xin 
of x in the incoming asymptotic region (in the 
Navier-Stokes case we shall take Xin = 0.02) and 
record the y-coordinate and the time modulo Te 
at which the particle coming from -c~ crosses 
the line x = Xin. These two numbers Yin and tin 
label any incoming asymptote uniquely. 

Because the trajectories we follow start and 
end close to the middle of the channel, they 
would need a time To to run from Xin to Xout in 
the absence of the cylinder. Since in a parabolic 
profile the velocity in the middle of the chan- 
nel is u0 = 1.5Uav, where Uav is the average 
velocity, we find To = (Xout - Xin )/Uo. So we 
define the time delay of a particle trajectory 
as fit = D T -  To where D T  is the actual time 
the particle needed to proceed from Xin to Xout. 
Then the value of J t  is independent of the choice 
of Xin and Xout as long as these two values of x 
are located in the asymptotic region. We mea- 
sure the number of particles N ( J t )  starting in 
Xin,Yin and having a time delay larger than Jt,  
where the initial time tin is distributed evenly. 

Fig. 11 gives a plot o f l n ( N ( J t )  ) versus In (Jt)  
obtained from a large ensemble of trajectories. 
For large J t  we see an algebraic decay, N ( J t )  
(Jt)  -2. This behaviour is caused by the wall of  
the cylinder and can be understood as follows: 
Both in the Navier-Stokes computation and in 
the analytical model we impose no slip condi- 
tions on the surface of the obstacle since we are 
dealing with viscous fluids. 

This condition implies that the tangential 
component of the velocity goes to zero linearly 
when approaching the wall. Accordingly, the 
value of ~u goes to its value ~uw on the wall 
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Fig. l 1. Logarithm of the relative probability to find a 
trajectory with time delay larger than 6t plotted versus 
In (6t) in the Navier-Stokes flow. The slope of the straight 
line is -2 .  Yin = 0.0995 is kept fixed and the values of 
tin are distributed evenly. The dominant algebraic deacy is 
due a direct collision of particles with the front stagnation 
point. 

quadratically. Considering for a while a station- 
ary flow, we can write 

~ ( r  = g + d , 0 )  dg0 ~/w + A ( 0 )  dE (7) 

where polar coordinates have been used with 
the origin in the middle of  the cylinder. (Cf. 
Eq. (10) of  the Appendix where ~/w = 0. ) Note, 
that this condition is in contrast to the well- 
known potential solution ~/ = ( r - R E ~ r )  sin(0) 
valid for the flow of an inviscid fluid around 
a cylinder which violates the no slip condition. 
(The quadratic behaviour of ~/near the wall has 
also been incorporated in the model flow of [62] 
which differs in some other aspects from our 
model (fit) even though it starts with a similar 
power series expansion in the direct neighbour- 
hood of  the wall.) Far away in the asymptotic 

region we have 

~ , ( x , y )  = ~u~ + uoy (8) 

where u0 is the background flow in the middle of  
the channel. This asymptotics is exact for the an- 
alytical model and is approximate for the flow in 
the narrow channel as long as the point (x, y ) is 
close to the middle of the channel. In the incom- 
ing asymptotic region y is the impact parame- 
ter b of  the particle with respect to the cylinder. 
We can also view b as the distance of  the incom- 
ing asymptote from the stable manifold of  the 
front stagnation point. Applying Eqs. (7) and 
(8) to the same streamline, we see immediately 
that d is proportional to  ]bl UE. The time a par- 
ticle needs to pass along the wall is proportional 
to 1/d  where d is the minimal distance from 
the wall. If the impact parameter axis is covered 
evenly with incoming particles, then the relative 
probability to get an absolute value of the im- 
pact parameter smaller than ]b] is proportional 
to I bl. Accordingly, the relative probability to get 
a closest approach to the wall smaller than d is 
proportional to d 2 and the relative probability to 
get a delay time larger than ~t is proportional to 
(t~t) -2. Now, in our case we do not have a time- 
independent system and we do not cover the im- 
pact parameter axis (y/n-axis) by particles. In 
the time-dependent system the stable manifold 
of the front stagnation point moves periodically 
in time and, therefore, an even covering of the 
initial time with incoming particles has the same 
effect as the even covering of the impact parame- 
ter in time independent systems. The behaviour 
(~t)-2 is also expected in time-dependent flows 
where particles enter evenly distributed in time, 
as long as Yin is sufficiently close to the middle 
of the channel such that Yin is hit by the stable 
manifold of the front stagnation point at some 
values of tin. 

We note by passing that if the leading term 
in ~, were proportional to some power fl of  d, 
then by the same considerations we would ob- 
tain in the time delay statistics an algebraic be- 
haviour (~t) -~ where ~, = r~ (fl - 1). In this 



10 .00  way a measurement of the time delay statistics 
could provide experimental information about 
the behaviour of  the velocity field in the bound- 
ary layer around the obstacle. 

Comparing the effect of  a smooth torus with 
that of  a KAM surface, we see that they both in- 
duce a nonexponential decay in the time delay 
statistics described by a power law (St) -a.  In the 
case of  KAM tori the decay is slower because of  
their stickiness and one has found a ~ 1.5 [63- 
69] which differs from the exponent a = 2 char- 
acterizing the smooth surface of  the cylinder. 

As long as the Reynolds number is close to its 
bifurcation point at which a stationary flow pat- 
tern is replaced by a time-periodic one, the front 
stagnation point exhibits small amplitude oscil- 
lations, and consequently, its stable manifold is 
confined to a very narrow strip along the sym- 
metry line of  the channel. For initial conditions 
outside of this strip the time delay function is 
dominated by hyperbolic influences, a situation 
investigated in Ref. [24]. Note, however, that 
even in such cases there are some nonhyperbolic 
effects present. Because of  recirculation, the par- 
ticle can approach the attractive stagnation point 
in the back of  the obstacle. Their effects could 
only be seen on very fine scales. Further away in 
the Reynolds number from the bifurcation point, 
nonhyperbolic effects become essential. 

Even in the latter case, one has an opportunity 
for studying hyperbolic effects if initial condi- 
tions are taken so as to avoid a direct collision 
with the front stagnation point. Fig. 12 shows 
a typical example for such a situation based on 
the results obtained from the model flow. We 
see exponential decay for small values of  the 
time delay. The arrow indicates a crossover value 
5tc to an algebraic decay valid for large delay 
times. Thus, we conclude that nonhyperbolic ef- 
fects can be observed on short time scales and 
reflect the presence of  an infinity of  strictly un- 
stable periodic orbits. Methods worked out for 
characterizing hyperbolic point mechanical scat- 
tering processes can well be applied in this range 
[27]. The long time behaviour is, however, al- 

Physica D 76 (1994) 123-146 

8.00 

~ -  6 .00  

Z 
~--~ 4 , 0 0  

C 

2.00 

4 0 4 ~  

E.M. Ziemniak et al. / 139 

~ m 

0 . 0 0  i J r l l J l l l l l , , , , i , , , r l l J l J , , , , j ~ , , , , j l l l  
0 . 0 0  10 .00  2 0 , 0 0  3 0 . 0 0  4 0 . 0 0  

~t 
Fig. 12. Time delay statistics in the model system obtained 
by injecting particles at a point which avoids a direct col- 
lision with the front stagnation point. On short t ime scales 
an exponential decay can be seen with the escape rate x of 
the hyperbolic component. 

ways dominated by the nonhyperbolic effect of  
the cylinder surface. The crossover value 5tc can 
strongly depend on the choice of  initial condi- 
tions in position space. 

8. Time delay function 

A clear criterion for scattering chaos is the oc- 
curence ofa  fractal set of  singularities in the time 
delay function [70]. In our system this means 
in detail: Take a 1-dimensional subset of  initial 
asymptotes, e.g. fix Yin, scan tin, and plot the 
time 5t of  the particles. 

Fig. 13a displays a representative example of  
5t as function of  tin. We see smooth parts and 
places where the function shows rapid changes, 
which are not well resolved on this scale. Fig. 13b 
gives a magnification with improved resolution 
of  a part of  Fig. 13a, and Fig. 13c gives a further 
magnification of  an even smaller part. We ob- 
serve a typical fractal construction: On any level 
of  the hierarchy there are intervals of  continu- 
ity and unresolved complements in between. On 
the next level we find new intervals of  continu- 
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ity inside the so far unresolved parts. After ev- 
ery step of this construction there remain even lZ - 
smaller unresolved parts within those of the pre- 
vious step. The set of accumulation points of the 
boundaries of intervals of continuity is a Can- 
tor set. From level to level in this hierarchy the 
value of 5t increases and on the fractal set itself o t  

the value of 5t is infinite. 
The big structures in the time delay function, 

the complete stems of Fig. 13, are caused by tra- 
jectories of the particles approaching the wall of 
the cylinder around the front stagnation point. 
Then they pass along the wall, just like in the 
example of Fig. 3a. As a consequence of the ar- 
gument given for deriving the algebraic decay in 

1 2 -  
t h e  time delay statistics, the thick stems in the 
time delay function shown in Fig. 13 exhibit a 
one over square root singularity. 

In this sense the coarse structure of the time 
delay is dominated by the effects of the wall of Dt 
the cylinder. The effects of the unstable periodic 
orbits are to be found on finer scales, especially 
in the internal structure of the small spikes in 
the wings of the main stem. These fine structures 
can best be resolved in the model flow and one 1 
discovers (Fig. 14) both complete and truncated 
stems which correspond now to an exact colli- 10- 
sion with or passing nearby the r e a r  stagnation 
point. 

Furthermore, one can read off these pictures 
that the sequence of complete stems converges to 
the left boundary of the cluster according to a ge- 
ometrical progression. The origin of this fact can ot 
be understood by taking trajectories from the in- 
side of stems in this sequence. In this sequence, 
a few members of which are shown in Fig. 15, 
trajectories remain close to the figure eight orbit 
before reaching the wall. Two consecutive mem- 
bers of the sequence differ by performing an ad- 2 
ditional half revolution around this orbit of pe- 
riod one. In order to perform an additional half 
revolution, the distance of the initial conditions 
from the stable manifold of this periodic orbit 
must be smaller by a factor which is the square 
root of its stability exponent. Extracting the scal- 
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Fig. 13. Plot of the time delay function Dt(tin) for 
Yin = 0.0995 based on Navier-Stokes data. (a) shows this 
function on its whole domain. (b) is a magnification of one 
of the small intervals containing singularities. (c) shows a 
further magnification. 
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Fig. 14. Magnification of the time delay function on a very fine scale. This plot is based on the flow of the analytical model, 
for details see [27]. The arrows mark points around the centers of the stems and approach the left boundary of the cluster 
of singularities in a geometrical progression. 

ing factors of  the self-similiar structures in the 
time delay function provides thus a possibility 
for finding the local Lyapunov exponents of pe- 
riodic orbits embedded into the chaotic set. 

9. C o n c l u s i o n s  

In this concluding section we give, based on 
the observations made in the paper, a brief sum- 
mary of  quantities that might be measured ex- 
perimentally. 
- Particle trajectories of  complicated form can 

be observed, and simple periodic orbits or 
parts of  them can be identified by means of  
trajectories shadowed by such periodic orbits. 

- Streaklines converging in the wake of  the ob- 
stacle to the unstable manifold of  the chaotic 
set can be followed. The fractal dimension of  
the cross-section can be determined (e.g. by 
the method of  [ 15 ] ) which in case of  an inter- 
mediate resolution should correspond to that 
of  the hyperbolic component. 

- Time delay statistics can be measured (simi- 
larly as it was done in a closed system [69] ) 
and should be dominated by an algebraic de- 

cay with an exponent -2 .  (If the tangential 
velocity in the boundary layer decayed as the 
( f l -  1 )st power of  the distance, then this expo- 
nent would be r ~  ( 1 - fl ). ) With initial condi- 
tions avoiding a direct collision with the cylin- 
der wall, a short time exponential behaviour 
can be seen the decay of  which defines the 
escape rate from the hyperbolic part of  the 
chaotic set. 
From the dynamics of  line segments the topo- 
logical entropy of  the chaotic set can be ex- 
tracted. 
An alternative way of  determining the escape 
rate is based on the streakline dynamics, from 
which an average Lyapunov exponent can be 
extracted, too. 
By means of  ensemble methods also the 
chaotic set and its stable manifold could be 
visualized. 
The most difficult task could eventually be the 
measurement of  the time delay function. On 
the crudest scale it should be dominated by 
stems that exhibit global algebraic behaviour. 
With fine resolution also self similar structures 
could be seen, the scaling properties of  which 
provide information on the instability of  the 
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Fig. 15. A sequence of scattering trajectories corresponding to a sequence of stems seen in the time delay function of Fig. 14. 
The initial condition i n  Fig. 15a and b correspond to the arrows in Fig. 14a. Those of Fig. 15c and d correspond to the two 
middle arrows of Fig. 14b. For better visualization, different scales has been used on the axes. 

shortest hyperbolic periodic orbits. 
In the bulk of the paper we have treated incom- 

pressible flows in a 2-dimensional position space 
which lead to the analogy with Hamiltonian dy- 
namics. This analogy was not essential for many 
concepts presented, e.g. for the time delay func- 
tion and its statistics, for the existence of  peri- 
odic orbits and their manifolds, for the invariant 
set and for the creation of  streaklines. Therefore, 
the basic ideas of  this paper work equally well 

also for 3-dimensional flows and for fluids with 
some compressibility. 

Open systems provide an essential advantage 
over closed systems for the visualisation of  the 
fractal phase space structures typical for chaotic 
dynamics. Because of  the Poincar6 recurrence in 
closed Hamiltonian systems, each point of  the 
phase space belongs to a component of the in- 
variant set. Therefore, the invariant set is not 
a fractal subset of  the phase space. In a closed 
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system also the manifolds of  periodic orbits are 
dense in a subset of  nonzero measure and, ac- 
cordingly, the long time limit of  the streaklines 
do the same. They do not have empty gaps on all 
scales as typical for fractal patterns. In contrast, 
for open systems at least the component of the 
invariant set accessible by scattering trajectories 
is a fractal set of  measure zero, and has gaps on 
all scales. The invariant manifolds are then frac- 
tals, too. Therefore, only in open systems does 
the distribution of  advected particles converge 
towards a fractal pattern in the long time limit. 

Realistic scattering experiments are per- 
formed in systems of mesoscopic or microscopic 
size where the semiclassical or wave properties 
are essential and lead to interference effects. 
Passive advection in the wake of an obstacle is, 
however, a pure classical phenomenon, and we 
think that it could thus be a promising candidate 
for investigating scattering chaos in a laboratory. 
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Appendix A. The model flow 

The analytic model used in the computations 
is defined by a streamfunction V. By choosing 
the center of  the cylinder to lie in the origin, we 
write V in the following form: 

V ( x , y , t )  = f ( x , y ) g ( x , y , t )  (A.1) 

The first factor 

f ( x , y )  = 

1 - e x p { - a [ ( x  2 + y2)1/2_ 112} (A.2) 

yields the no-slip boundary condition at the 
cylinder's surface. The cylinder radius has been 
taken to be unity which can always be done by 
suitable rescaling the length scales. The coeffi- 
cient a - U 2  plays the role of the width of the 
boundary layer. This form of the streamfunc- 
tion ensures that the tangential velocity tends 
linearly to zero as expected in a boundary layer. 
We use the boundary layer thickness as a free in- 
put parameter. A more realistic parameter could 
be used as well, e.g. taken from experiments. 
The radial component of the velocity vanishes 
quadratically which shows that the cylinder sur- 
face can be viewed as the union of an infinite 
number of degenerate parabolic fixed points. 

The factor g contains the contributions of the 
vortices and of the background flow u0. It reads 

g ( x , y ,  t) = - w h l  (t) gl (x,y,  t) 

+wh2 (t) g2 (x,y,  t) 

+Uoys(x ,y)  (A.3) 

The first two terms describe the alternating birth, 
evolution and damping out of  vortices 1 and 2 
of equal strength but opposite sign. The quan- 
tities w and hi(t)  stand for the overall vortex 
strength and amplitudes, respectively. Because 
of the alternating character, one has h2 (t) = 
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hi (t - TJ2 )  where Tc denotes the time period 
of the flow. As a simple choice we took 

hi( t )  =l sin (nt/T¢) 1. (A.4) 

The vortex centers are assumed to move parallel 
to the x-axis and with a constant velocity. Their 
x-coordinates are expected to change with time 
a s  

x l ( t )  = 1 + L[ ( t /Tc )  modl ] ,  (A.5) 

X 2 (t) = xl (t - Tc/2), (A.6) 

while the y-coordinates are constants, 

Yl (t) = -y2 ( t )  - Y0- (A.7) 

Both vortices pass a distance L during time Tc 
and then shed. These formulas describe a situa- 
tion when vortex 1 is created at (x = 1, y = Y0) 
at time zero when vortex 2 is just in its most de- 
veloped state at (x = 1 + L/2,  y = Yo). Let a 
denote a characteristic ratio telling us how much 
longer the linear size of the vortices along the x- 
axis is than along the y axis. The contribution to 
the stream function of  the vortices can then be 
expressed by the form 

gi (x,y, t) = exp ( - Ro{ [x - x i  ( t ) ] 2  

+ Oz2 [Y -- Yi (t) ] 2 } )  (A.8) 

where R o 1/2 is the characteristic linear size of the 
vortices. Note that the vortex stream functions 
are chosen to be Gaussians of finite amplitude 
in contrast to the singular form used e.g. in the 
theory of point vortices. 

The last term in Eq. (A.3) gives the contribu- 
tion to the stream function from the background 
flow of uniform velocity u0. The factor 

s ( x , y )  = 1 - e x p  [ - ( x :  1)2/a2--y 2] (A.9) 

is introduced in order to simulate in a phe- 
nomenological manner the shielding of the 
background flow just behind the cylinder. This 
is taken here into account by using the same 
elongation factor a as in case of the vortices. 

In the analytical model no channel walls are 
incorporated because the most essential features 
of the advection process are connected with the 
boundary condition on the surface of the cylin- 
der only. The form given above is sufficient to 
incorporate useful features of the Navier-Stokes 
flow. For streamlines of the model see [27]. 

In contrast to a solution of the Navier-Stokes 
equations which depends only on the Reynolds 
number and on the aspect ratio, the model 
stream function contains several parameters. 
The numerical values of them have been chosen 
in such a way that one obtains a phenomenolog- 
ical fit to the known solution of the computer 
simulation of the Navier-Stokes problem. For 
the case of Re = 250 and aspect ratio r = 0.25 
treated in the paper, the vortices had an elonga- 
tion factor 2 and a size of about 1.6 times the 
cylinder radius, disappeared at about two cylin- 
der radius past the cylinder. Consequently, we 
have a = 2, Ro = 0.35, L = 2. Furthermore, 
we chose Yo = 0.3. Since the vortex velocity 
was about 7 times slower than the background 
velocity, one obtains u0 = 14/Tc. The value 
of w = 0.06 Tc was an appropriate vortex 
strength as it provided a considerable recircula- 
tion in the wake of the cylinder just like in the 
Navier-Stokes case. The parameter a determines 
the width of the boundary layer which in the 
Navier-Stokes flow is obviously different from 
unity. This width has essential influence on the 
distance of the periodic orbits from the wall of 
the cylinder, in a most pronounced way for the 
figure eight orbit, and also on their eigenvalues. 
In order to see a large number of hierarchical 
levels with good numerical precision we need 
small cycle eigenvalues. Therefore, we took 
a = 1 leading to convenient eigenvalues. At this 
point we definitely deviate from parameters of 
the Navier-Stokes flow but the results do not 
depend essentially on the particular value of a 
and our choice was motivated just by numerical 
convenience. The smooth form of the shielding 
function (see Eq. (17)), which is much softer 
than the one appearing in the Navier-Stokes 



E.M. Ziemniak et al. / Physica D 76 (1994) 123-146 145 

flow, has been chosen for similar reasons. 
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