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Abstract 

Situations are considered in which a physical quantity varies rapidly in space from positive values to negative 
values down to some cutoff scale. Typically the cutoff scale is determined by some diffusive process (e.g., 
viscosity), and, as the cutoff scale decreases (e.g., viscosity decreases), the physical quantity as a function of the 
spatial coordinate varies more and more rapidly, approaching a generalized function as the cutoff scale approaches 
zero. As one examines such a generalized function on smaller and smaller scale, it is shown that a certain suitably 
defined quantity sensitive to the intensity of spatial oscillations from positive to negative can exhibit an algebraic 
divergence. The exponent of this algebraic divergence with scale size is one characterization of this situation, 
and is called the cancellation exponent. In the spirit of the multifractal formalism, we introduce a spectrum 
of cancellation exponents yielding a more complete characterization. Partition function and thermodynamic 
formalisms are employed. We also discuss how to associate Dq spectra with these signed generalized functions 
and discuss the relationship of Dq to the cancellation exponent spectrum. Illustrative examples are presented. 

1. Introduction and review 

Many physical processes have been shown to 
be described by multifractal  probability mea- 
sures. For  a probabil i ty  measure/2p on the col- 

lection o f  all subsets o f  a set X,  f lp(EiSi)  
~'~i tip (Si) i f  the subsets Si c X are countable 
and do not  overlap, lzp(Si) > O, and l i p (X)  = 
1. A probabil i ty measure is commonly  said 
to be mult ifractal  i f  its generalized dimension 
spectrum [1,2] Dq varies with q. Equivalently,  
Halsey et al. used the singularity spectrum f (a )  
to characterize the multifractal  nature  o f  a prob- 
ability measure [ 2c ]. 

In this paper  we will consider what we shall 
call sign singular measures. In contrast  to a prob- 
ability measure,  a sign singular measure o f  a set 
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can be either positive or negative. Recently, Ott  
et al. showed that sign singular measures arise in 
many  physical situations [3].  To describe what 
is meant  by a sign-singular measure, consider a 
mapping/~ f rom subsets o f  a finite interval X o f  
the x axis to the real numbers.  Let A c X be an 
x interval such that kt (A) # 0. We say/ t  is a sign 
singular measure if, for any such interval A (no 
mat te r  how small), there is an interval B con- 
tained in A such that # (B)  has the opposite sign 
from/~ (A). T h u s / t  everywhere changes sign on 
arbitrari ly fine scale. 

As a first example of  a physical sign singular 
measure,  we consider the fast kinematic  dynamo 
problem. The fast kinematic  dynamo prob- 
lem can be stated as follows: Will a small seed 
magnetic field in an unmagnet ized electrically- 
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conducting flowing fluid grow exponentially 
with time? Combining Maxwell's equations, 
Ohm's law and the incompressibility condition 
for the flow, this linear instability problem leads 
to the following equation for the magnetic field 
B, 

OB 
+ v .  V B  = B . V v +  ~ m V 2 B ,  ( 1 )  

o--7 

where Rm is the normalized electrical conduc- 
tivity of the fluid and is called the "magnetic 
Reynolds number". The velocity v is presumed 
given and incompressible. The dynamo is said 
to be "fast" if exponential growth persists in the 
limit of  infinitely large Rm. Fast dynamos are 
thought to be relevant to explaining the presence 
of  magnetic fields in astrophysical objects, since 
these objects typically have very large magnetic 
Reynolds number (i.e., Rm > 10 8 on the sur- 
face of  the Sun). Fig. 1 (from Ref. [3]) shows 
the y-component of  the magnetic field as a func- 
tion of the coordinate x for Rm = 107. (The 
magnetic field is generated by a simple baker's 
map dynamo model which we shall not describe 
here.) The main point is that the magnetic field 
oscillates rapidly from positive to negative val- 
ues, and this situation becomes more and more 
extreme as Rm increases. In fact in Ref. [3] it 
is shown that, in the Rm --* oo limit, the integral 
of  the magnetic field over a set A yields a sign 
singular measure # (A). 

A second physical example is provided by the 
vorticity in fully developed high Reynolds num- 
ber turbulent flows. Experimental results in [ 3] 
show that the vorticity yields a sign singular mea- 
sure in a manner similar to that for the magnetic 
field of  a dynamo in the limit Rm ~ ~ limit. 

To characterize this type of  singularity, we 
consider the "cancellation exponent" [3-6 ]. 
Again let /t be defined on subsets of  a finite 
interval X of  the x axis. Cover X with disjoint 
intervals of  equal length e. Then define the 
cancellation exponent K by 

l n x ( e )  (2) x = lim sup 
,~o I n ( l / e ) '  

0 

I , _  i . . . .  I 

0 1 
X 

Fig. 1. By versus x for the dynamo model of Ref. [3] with 
Rm = 10 7. 

where 

N(~) 

x(e) -- ~ I~(1~)1, (3) 
i 

w i t h  li denoting the ith e-length interval 
and N(e) denoting the total number of  the 
e-intervals 1 For a probability measure /~, 
I/~(I;)l - ~(I ; ) ,  so that X(e) = 1, and thus 
x is trivially zero. For a measure which has a 
smooth bounded density p(x) and can be al- 
lowed to change sign with x, we h a v e / l ( S )  - 
fsP(X) dx. Thus, as e ~ 0, we have X(e) ap- 
proaches a constant, fs Ip(x)[ dx, leading to 
x = 0. Signed measures [7], in general, have 
x = 0. This follows because the countable ad- 
ditivity condition required of  a signed measure 
allows it to be proven of  that a signed measure 
/ts can be expressed as a linear combination of  
two probability measures/~1 and/~2, one with a 
positive coefficient a and one with a negative 
coefficient b; i.e., Ps = afil -]bl f i2.  Thus the 
sum in Eq. (3) satisfies 

i For some purposes a more satisfactory definition of x 
is obtained by replacing (3) by g (e )  = f l f G , ( x -  
x')B(x')  dx'ldx, where G~ is a smooth positive function 
with integral one (e.g., Ge (x) = (he)-1/2 exp(_x2/2)  and 

is a generalized function whose integral gives the mea- 
sure, # [ J ]  = f j B ( x ) d x .  See [4] for discussion of this 
definition. In this paper we use the simpler definition, (2) 
and (3) throughout. 
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Y~ [Ps(Ii)l ~ y ~ a / t l  (Ii) + Iblft2(Ii) 
i 

= a + lbl. 

Hence, by (2) we have x = 0. (Thus for the sit- 
uations of  most interest here (i.e., x > 0), the 
spatial variation is not describable by a signed 
measure.) In order to have positive x, we must 
require X (e) to continue increasing as e gets 
smaller. Since X (e) increases only because can- 
cellation of  positive and negative contributions 
is reduced with decreasing e, it follows that x > 
0 is an indication of  oscillation in sign on arbi- 
trarily fine scale [ 3 ], what we call a sign singular 
measure. 

This paper is organized as follows. In Section 
2 we consider three examples illustrating the 
occurance of  a positive cancellation exponent. 
The first two examples are analytical and the 
third example is experimental. In Section 3 we 
associate sign singular measures with probabil- 
ity measures and study the dimensions of  these 
probability measures. In Section 4 we general- 
ize the cancellation exponent to a cancellation 
exponent spectrum Xq. In Section 5 we discuss 
a partition function formalism for sign-singular 
measures, and in Section 6 we discuss the anal- 
ogous thermodynamics. 

Throughout this paper we will be discussing 
sign singular measures on an interval X of the x 
axis. We note, however, that there are obvious 
generalizations to the consideration of  measures 
in higher dimensional spaces. 

Finally, we emphasize that we assume 
throughout that all limits exists and that the 
definition (2) makes sense. This is so for the 
physical cases so far examined (dynamos and 
fluid turbulence), thus justifying the introduc- 
tion of  definition (2). We note, however, that it 
is possible to construct mathematical examples 
o f / t ' s  for which definition (2) either yields a 
"peculiar" result or else the limit does not be- 
have. With respect to peculiar results, a very 
analogous situation arises for the familiar box 
counting definition of  the capacity: That def- 

inition yields [2] that the set of  points given 
by 1In with n positive integers has dimension 
Do = 1/2, and this is somewhat unsatisfactory 
since we would not usually think of  a countable 
set of points as a fractal. An example yielding 
a similar difficulty for (2) is discussed in the 
Appendix. In the case of  the set {l /n},  one can 
associate weights with the points so that the 
total measure is positive and normalized. The 
introduction of  the generalized dimensions Dq 
[2] then correctly reflects the low dimensional- 
ity of  the set since one finds Dq =_ 0 for q larger 
than some qc > 0. In an analogous manner, we 
find in our example that the generalized cancel- 
lation exponents Xq become identically zero in 
a range q > qc > O. 

For a recent example of  sign-singular behavior 
in a fast dynamo, see Ref. [8]. 

2. Examples 

2.1. Self-similiar 3-strip generation process 

As our first analytical example we consider 
the limiting measure generated by repeated ap- 
plications of  the process shown in Fig. 2. Fig. 2a 
shows an initial upward-directed field uniformly 
distributed over an x-interval (0, 1 ]. The to- 
tal measure is one. After the first operation, the 
measure is redistributed uniformly to the inter- 
vals (0, 1/3], (1/3, 2/3]  and (2/3, 1] with the 
measures Pl > 1/2, P2 < 0 and  Pl respectively 
as shown in Fig. 2b. Since 2pl + P2 = 1,  the to- 
tal measure in (0, 1 ] is still one. Applying the 
operation a second time generates Fig. 2c. The 
resulting nine intervals have equal length of  1/9. 
Four intervals have a measure p~. Four intervals 
have a measure PIP2. One interval has a measure 
p]. Note that if the distribution on the interval 
(0, 1/3 ] in Fig. 2c is stretched horizontally by a 
factor of  three and vertically by a factor of  1/Pl, 
it becomes a precise replica of the Fig. 2b. Simi- 
lar statements apply to the intervals (1/3, 2/3]  
and (2/3, 1 ]. Thus the graph generated by the re- 
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Fig. 2. Self-similar 3-strip generation process. 
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Fig. 3. Phase-shift 2-strip bakers map 

2.2. Phase-shift 2-strip Baker's map 

peated operations shown in Fig. 2 is self-similar. 
If  one applies the operation again and again, the 
measure eventually changes sign on arbitrarily 
fine scale. 

To calculate the cancellation exponent of  the 
limiting measure, consider the situation after 
the nth iteration, where n is a large integer. 
At the nth iteration there will be 3n intervals 
of  width (1/3)  n, and each such interval will 
have a measure which is one of  the values of  

l m _ n - l - m  PiP2 1'1 , where I and m are integers, 0 _< 
(l, m ) _< n. The number of  intervals with a mea- 

n l m n n - l - m  - n - m ~ m i s  t m s u r e  v f  p lp  2 e l  = 1"11 1"2 C l n C ~ _ l  w h e r e  

Cn t denotes the binomial coefficient. Choosing 
e = ( 1 / 3 ) n, we have, 

)(.((_) l m n - m  m 
= E E C " C n - I I P l  P2 I 

l m 

= (2[Pll + IP2I)n. 

Hence 

x =  lim ln(21Pll + Ip21)" 
,--.~ ln (1 /3 ) ,  

_- ln(21pll  + Ip21) (4) 
In ( l / 3 )  ' 

Since 2pl +P2  = 1 andp2 < 0, 21Pll + IP21 > 1, 
and thus x > 0 indicating that the measure is 
sign-singular. Ifpl  and P2 are both positive, then 
the measure is simply a probability measure, and 
since 2lp~l + Ip2l = 2pl + p2 = 1 we obtain the 
result x = 0. 

As a second analytical example [4] we con- 
sider a phase-shift 2-strip baker's map which has 
previously been shown to be a simple model il- 
lustrating aspects of  fast kinematic dynamos. At 
time tn = n T  (n is an integer), there are rapid 
incompressible fltfid motions which map the co- 
ordinates (x, y)  as follows: 

{ a x . ,  for y .  < a, (5a) 
Xn+l = f l ( 1 - X n )  + a ,  f o r y n > a ,  

Yn+l fyn/a, foryn < a, (5b) 
= I. (1 - Y n ) / f l , "  , f o r y ,  > a, 

where a + fl = 1. The action of  this map on 
the unit square 0 < ( x , y )  < 1 is iilustrated in 
Fig. 3. Between these impulsive mappings, there 
is a stepwise z-directioned shear flow which op- 
erates for a time duration T, where Vz = 0 for 
xn < a and vz = Vzo for x > a. 

Imagine that the whole space is occupied by 
perfectly conducting fluid and there is an initial 
seed magnetic field in the unit square shown in 
Fig. 3a. Furthermore, assume that the magnetic 
f i e l d  Bn at the end ofn th  application of  the shear 
flow is independent of y and takes the form, 

B = Re {Bn ( x )  e x p ( i k z ) y o } .  

Since the fluid is perfectly conducting, the flux 
is "frozen-in" while the mapping of  Fig. 3 oc- 
curs. Thus the vertical flux per unit length in z 
through each of  the two strips in Fig. 3b is t~n = 
Re{~neikz} ,  where fI) n ---- f l  Bn ( x ) d x .  The con- 
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tribution from the interval (0, a)  (the "a  strip") 
to (~n + 1 is then ~n and the contribution from the 
interval (a, 1 ) (the "fl strip") is dPne i°, where 
0 = kvzoT + n. Hence, 

~ ) n + l  = (1 + ei°)CI)n. 

Thus, we obtain the flux multiplication rate 2 as 

2 =  1 + e i°, 

where 2 is, in general, a complex number it = 
121ei~. 

Let 

N(e) 

Z(e ,{)  = Z R e { e i g ~ ( I j ) } ,  (6) 
J 

where { is a phase parameter that we introduce 
to facilitate the analysis, Ij denotes the j th  x- 
interval of  length e, and we define the complex- 
ified measure/~ as 

fl, Bn (x) dx  
~(I j )  = lirnoo f l  Bn(x)  dx  

(we assume the limit exists). Taking the real part 
of /~(I j )  as the measure of the interval Ij and 
comparing the definitions o fz  (e) (Eq. (3) ) and 
Z(e,~) (Eq. (6)),  we have 

X(e) = X(e,O). 

Denote the contribution of the a strip to 
x(e ,~)  as X~(e,~), i.e., 

N~(e) 

Z~(e,{) = E R e { e i g f i ( I j ) } ,  
J 

where the summation is over the e-intervals in 
the ~ strip. Z# (e, {) is similarly defined. By the 
self-similarity inherent in the map of Fig. 3, we 
can express Z,  (e, ~) as a sum over all intervals 
Ii of  length e/a  in the entire interval (0, 1 ) 

N(e/a) 

Z~(e,~) = Z Re{2 -1e i ' fL ( l j ) } .  
J 

Thus, 

X~(~,~) ---- l~l-'x(~l~,~-- ¢), 

and similarly 

xp(e,~) = l~l-'x(elP,~- ¢ + o). 

Hence, 

x ( e , ~ )  = I ; q - ' [ X  (e / ,~ ,~  -- VS) 

+x(el~,~-  ¢ + 0)1. (7) 

Expanding Z(e ,~)  in a Fourier series in ~, we 
have 

X(e,~) = Z Z m ( e ) e  imp, 
m 

which when substituted in Eq. (7) yields 

IAlxm(e)e *me' = Xm(e/a) + Xm(e / f l ) e  imO. (8) 

TO solve Eq. (8), we assume solutions of the 
form Zm (e ) = Kme -x,. (where Km and Xm can 
both be complex). (With regard to the assumed 
form, 7,,n(e) = Kme -xm, see also the last para- 
graph in Section 4.1 of Ref. [8 ]. ) Using this form 
in Eq. (8), we obtain an equation for the expo- 
nent Xm, 

121 eim¢' = c~ '~m + flX"e imO. (9) 

S incez (e )  = Y~Xm(e ) = ~-~Km e - r m ,  for small 
e the quantity will be dominated by the root of  
Eq. (9) with the largest real part of Kin. Taking 
magnitudes of both sides of Eq. (9) and noting 
that la + bl _< laJ + IbJ, we have 

K( r ) 121 _< ~x£r, + /~ m, (10) 

(r) Re{Kin }. Since ~ and fl are both where Km = 

less than one, Eq. (10) implies an upper bound 
(r) 

o n  K m , 

(r) 
K m < ~ ,  (11) 

where ~ is the unique real positive root of  12l = 
ae + fie. We now note that this upper bound 
is actually attained: setting m = 0 ,  we see that 
Eq. (9) reduces to the equation for g. Thus Z "~ 
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Fig. 4. In Z (e)  versus In ( 1/e ) for phase-shif t  2-strip baker ' s  
map  with a = 0.4, fl = 0.6, and  0 = 1.4. The  superposed 
straight l ine is the  l inear  fit, whose slope yields x = 0.36. 

e -e, implying that k is in fact the cancellation 
exponent x, determined by 

141 = ~ + / ~ .  (12)  

In terms o f a ,  fl and 0, one can express the can- 
cellation exponent as 

a ~ + fl~ = 21cos (0 /2 )1 .  (13) 

7 T T 

=t. "~S'- -2"5,~ ~'~1 -2__1.5'0 "'"'""'~: -1_0.50 
• In (1A:) 

--1 --2 --3 
fn ( l / e )  

Fig. 5. lny]~l~o,I versus I n ( I / e )  for the high Reynolds  
n u m b e r  turbulent  wake beh ind  a cylinder.  The  superposed 
straight l ine is the l inear  fit, whose slope yield x = 0.45. 

2.3. fluid turbulence 

As an experimental example, we now consider 
the vorticity field in high Reynolds number fluid 
turbulence [3]. The y component of the vor- 
ticity coy was obtained from data for the wake 
behind a cylinder, where x is the streamwise 
direction and y is perpendicular to the axis of 
the cylinder. The cylinder Reynolds number is 
1,100. Defining o9~ = f~ ogy dx  as the measure 
of the e-interval, the e scaling of  ~ Io9~ I was ex- 
amined. Fig. 5 shows that a decent scaling exists, 
and yields a cancellation exponent of about 0.45. 
The cutoff at small e is due to finite Reynolds 
number. 

We now numerically verify Eq. ( 13 ). We take 
the initial magnetic field at n = 0 to be B0 = 1 
and choose a = 0.4, fl = 0.6 and 0 = 1.4. 
Eq. (13) gives x = 0.3798 ... .  We calculate the 
magnetic field at time step n = 15 at 107 points 
uniformly distributed on the x-interval (0, 1 ). 
Then we obtain Z (e) and plot lnz  (e) versus 
ln(1/e)  as shown in Fig. 4. We see that the 
plot is fairly linear for the range ln(1/e ) < 8. 
For smaller e (or larger I n ( l / e ) ,  the plot de- 
viates from the superposed fitted straight line 
since we iterate the map only for a finite num- 
ber of times. The slope of the fitted line yields 
tc = 0.36, which is close to the value obtained 
for the given values of a, fl and 0 from Eq. ( 13 ), 
x = 0.3798 ... .  

3. Cancellation exponent spectrum 

Consider a sign singular measure/ t  on an x- 
interval X. Divide X into many x-intervals of 
length e. In the spirit of the multifractal formal- 
ism for probability measures define the cancel- 
lation exponent spectrum Xq as 

lnz (q ,~ )  
Xq = lim sup 

--,o In ( 1/e ) 
(14) 

where 

N(e ) 

x (q , c )  = ~ Ilt(li)l q. 
i 

(15)  
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When q = 1, tCq becomes the cancellation expo- 
nent x. 

For the 3-strip process considered in Section 
2.1, we have 

Z I]li[q Z Y ~  l m pn-m,~mlq = CnC~-I l /- '2 [ 

i l m 

= (2lpll q + Ip2lq) n. 

Hence 

ln(2lPllq + ]P2lq) (16) 
xq = ln(1/3)  

For the phase-shift 2-strip baker's map consid- 
ered in Section 2.2, we define 

N ( ~ )  

x(q,e,~,n) = Z Re {ei'ft(Ij)} q .  (17) 
J 

Thus, by the similarity already noted in Section 
2.2, we have 

z ( q , e , ~ )  = [ ) t [ - q [ z ( q , £ / o G ~  - q)) 

+z(q ,e / f l ,~ -  q5 + 0)].  (18) 

Hence, following the procedure in Section 2.2, 
the cancellation exponent spectrum is obtained, 

c~ x` + fl~q = 12cos(0/2)1 q. (19) 

In Fig. 6, we show the prediction of  Eq. (19). 
We also numerically calculate the cancellation 
exponent spectrum Xq for several values ofq and 
plot the numerical data as small circles in Fig. 6. 
We see that the data agree well with the curve 
predicted by Eq. (19). 

After having defined the generalized cancel- 
lation exponents xq, it is worth introducing a 
spectrum of local exponent y. Define a crowd- 
ing index or HOlder exponent y for the quantities 
[ # ( I i )  I exactly in the same spirit as for multi- 
fractal probability measures, 

] ~(Ii) 1~ 6Y. (20) 

This expresses the fact the modulus of  the signed 
measure tends to zero with the interval size in 
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q 
Fig. 6. The cancellation exponent spectrum Kq versus q. 
The solid line is the prediction based on Eq. (19). The 
diamonds in the figure are the results of the numerical 
calculations using the box-counting method (i.e., Fig. 4). 

an algebraic fashion and determines crowding 
indices lying in some finite range Ymin < Y < 
~max • 

Obviously, there can be several e-intervals 
characterized by the same crowding index. It is 
natural to assume that in the limit e ~ 0, inter- 
vals belonging to a given range y to 7 + dy form 
a fractal subset of  some dimension f ( y )  < 1. 
Therefore, the number of such intervals N (y)dy 
increases with e according to a power law 

N(7) ,,~ £ - f ( Y ) .  (21) 

The quantity f (y) will be called the multifractal 
spectrum of cancellation exponents. 

By rewriting the sum z(q,e)  defined by 
Eq. (18 ) as an integral over y, 

x ( q , e ) ~  f N(y)eq'dy~ f c-f'r)+q'dy, 
(22) 

and evaluating it via the saddle point method, 
we obtain 

xq = f (yq) - q yo, 

where 

(23) 

f ' ( y q )  = q. ( 2 4 )  
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This means that Xq is the Legendre transform of 
f (7) just as the generalized dimensions are Leg- 
endre transforms of  the multifractal spectrum of  
probability measures. Because of  the lack of  nor- 
malization of  l IZ(Ii) I in our case, however, the 
graph o f f  (7) does not touch the diagonal f = 
7 but rather, as we shall see, intersects it in two 
points. 

It is easy to explicitly determine the f (7) spec- 
trum in the example of  Section 2.1. Assuming 
that Pl >l P2 I, we  obtain 

1 7max - -7 ) l n ( .Tm2z?7  ) 

(7 - - -~min) ln (7 - -~rn in ) ] ,  (25) 

with 

A = 7max -7rain, (26) 

where 7max = (In [P2I)/In ( 1/3) and 7rnin = 
( lnpl) / ln(1/3) .  

Finally we comment that the crowding index 
can be defined at a point x by 

7(x)  = limsup{ln I/z, (x ) l} / lne ,  
, E ----~ 0 

where /z , (x )  = / z ( [ x -  (e /2 ) ] ,  [x + ( e /2 ) ] ) .  
The need for using the limit supremum (rather 
than a simple limit) can be appreciated from 
the example in Section 2.1. Taking x = 1/2, 
we have / t l (1 /2)  = 1 and /zU3(1/2) = 
-P2 < 0. Since /z, (x) is continuous in c, we 
have /z~(1/2) = 0 for some e in [1/3, 1]. 
Similarly /z~(1/2) = 0 for some e value in 
[ (1 /3)  m+l, (1/3)  m] for m = 0, 1,2 . . . . .  Thus, 
in general,/~ (x) can have zeros as a function of  
e, accumulating on e = 0, and the simple limit 
does not exist while the limit supremum does. 

4. Partition function 

cellation exponents can also be given. In such a 
case one finds a natural partitioning of  the unit 
interval X into subintervals  I~ n) at each level 
n = 1,2, .... Note, however, that these intervals 
will be, in general, of  different length. Let l~ n) 
and/z~ n) denote the length and the measure of  

the partitioning interval I~ n), respectively. Let 
us define a partition function F by taking differ- 
ent powers of  the length scales and the moduli 
of  the measure at a given level n: 

l"(q, fl, n) = y~] lt~ n) Iql~ n)a, (27) 
i 

where q and fl can be any real numbers. We 
claim that the generalized cancellation exponent 
r.q has the property that when fl = /¢q the par- 
tition sum becomes asymptotically independent 
of  n, i.e. 

F(q, xq,n) ,-~ 1. (28) 

In particular, for q = 1 we obtain 

Z I/z~ n) 1l~ n)x, (29) 
i 

expressing a special property of the cancellation 
exponent x. 

The equivalence of  this definition with 
Eq. (17) can best be seen on the example of  
a self-similar N strip process (in Section 2.1, 
N = 3). At level-1 the distribution is defined 
on N strips of  the unit interval. Strips of  width 
w/,, k = 1,..., N carry measures Pk, k = 1 ..... N 
where the Pk'S can be of different sign but their 
total contribution is unity: ~ v =  1 Pk = 1. A self- 
similar repetition of  this construction in each 
subinterval up to infinity defines a sign singular 
measure. One easily sees that 

In the case of  sign singular measures possess- 
ing a hierarchic organization with a level struc- 
ture, another definition of  the generalized can- 

Let us now use definition (17) to this measure. 
One can decompose the quantity g (q, c ) into N 
terms 
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N 
z ( q , e )  = Z z ( k ) ( q , e ) ,  (31) 

k=l 

where Y Ik) denotes the contribution from strip 
k. Because of selfsimilarity, Z I/,) can be obtained 
from Z by measuring the length in units of  Wk 
and multiplying the total weight by p~: 

x(k)(q,c)  = P~ z (q , e /Wk) .  (32) 

By recalling the scaling relation 

x ( q , e )  "~ e -'q, (33) 

we find from Eq. (32) that 

N 
q K¢ 

Z [ P k  [ w/c "~ 1, (34) 
k=l 

in agreement with Eqs. (28) and (30). In the 
special case of equal strip widths wg = 1/N, we 
obtain 

In ( ~ r =  1 I Pk [q) 
tcq = In ( l / N )  (35) 

This contains the result derived for the three 
strip process in Section 2.1. 

An interesting consequence of  definition (28) 
is that the generalized cancellation exponent xq 
vanishes at some value q = a > 1. To see this, 
we recall that a vanishing xa implies that 

Z [ ~ n ) [ o  1. (36) 
i 

As known from the theory of fractals, the dimen- 
sion Do of a set covered hierarchically by lengths 
scales l~ n) follows from relation 

~--~ l ~n)°° ,,~ 1. (37) i 
i 

By comparing the last two formulas, we conclude 
that tr is a kind of fractal dimension, namely the 
dimension of a set constructed with [ /t~ ") [ as 
its length scales. Since, however, ~ i  [ p~n) l> 1, 
such a set cannot be embedded in an interval and 
its fractal dimension must be bigger than unity. 
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5. Association of probability measures with sign 
singular measures 

Consider a physical quantity Q that varies 
rapidly but is ultimately smooth on a suffi- 
ciently small scale, e.g. in the fluid turbulence 
example, ~ might be a component of the vortic- 
ity vector and the short smoothing scale is the 
Kolmogorov cut-off. Consider the variation of 
Q in an interval X along the x-axis, Q = Q (x),  
for scales larger than the smoothing scale. 

We consider two situations: 
(i) Truncation at given stage. The quantity 

Q (x) results from a finite number of applica- 
tions of a generating process. For example, in 
Sections 2.1 and 2.2 we can consider the den- 
sity at some particular large value n, of  n. Note 
that it is possible that the generated range of 
small scales might be exponentially large in n,. 
For the example of in Section 2.2 the generated 
small scales range from a n* to fin,; the gener- 
ated interval sizes at level n, are atfln.-l, for 
l = 1,2, ..., n,. (For the example of Section 2.1 
the generated intervals at level n = n, have the 
same length 3 -n" ). 

(ii) Truncation by smoothing. The quantity 
results from a physical process determining a 
cutoff scale e,. Examples are the Kolmogorov 
scale for the vorticity measure (Section 2.3), 
and in the magnetic dynamo case the scale 
~, '~ Rm -1/2 where Rm is the magnetic Reynolds 
number. Note that this case is qualitatively dif- 
ferent from that resulting from a truncation at 
a given stage in that there is necessarily a single 
smallest scale e, and not an exponentially large 
range of small truncation scales. 

We now associate with p (x) a family of prob- 
ability measures/~p with densities 

Ip(x)lP (38) 
p p ( X )  = fx lP(X)[ p dx" 

Divide X into many x-interval of  length e. We 
then define the dimension spectrum Dq,p for the 
associated probability measures by the following 
scaling in the range e > ec (for truncation by 
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smoothing ec = c, ), 

Jp(q,e  ) ,,~ e(q-l)Dq,,, (39) 

where 

Jp(q,e  ) = Z [/2p(Ii) ] q , 
i 

/2p(li) = [ pp(x) dx .  (40) 
1 1  

It 

In the case of  truncation by smoothing, knowl- 
edge of  the spectrum of fractal dimensions for 
the case p = 1, implies knowledge of  the fractal 
dimension spectrum of the measure/2p for any 
p. In particular, it can be shown for this case that 

[51, 

Zq,p = Zpq, l --  qZp,1,  (41) 

where Zq,p = ( q -  1 ) Dg,p. Thus Dq,p as a function 
of  q is determined from Dq,1 as a function of  q. 

From now on we shall only consider the case 
p = 1 and the subscript "p" on/2 and Dq will be 
dropped with the understanding that it is one. 

6. Thermodynamic formalism 

In the spirit of  the thermodynamic formalism 
of strange sets [2,9], one expects in the large- 
n limit an exponential scaling of  the partition 
function with n, 

F ( q ,  fl, n) = ~'~l lt~ n) Iql~ n)~ 
i 

,,~ exp (F (q, f l )n  ). 

This defines a bivariate free energy F ( q ,  fl) 
which provides the most general characteriza- 
tion of  sign singular measures. A comparison 
with definition (28) of  the generalized cancel- 
lation exponent immediately yields that the free 
energy vanishes at fl = Xq, 

F ( q ,  x q )  = 0 .  (42) 

The framework of  the thermodynamical for- 
malism provides a good opportunity for relating 

the cancellation exponents of  sign singular mea- 
sures to generalized dimensions of  some asso- 
ciated probability measures. We recall that the 
generalized dimensions Dq of a measure which 
is concentrated at level n on boxes of  linear size 
I~ n) carrying probabilities Pi (n) follows from the 
implicit relation [ 2 ] 

Z Pi(n)ql~n)-T(q) , -~ 1, (43) 
i 

where z (q)  = (q - 1)Dq. 
Next, we address the question whether the gen- 

eralized dimensions of  the associated probabil- 
ity measures can be related to the spectrum of 
cancellations exponents. Situations with differ- 
ent truncation procedures will be treated sepa- 
rately. 

(i) Truncation at given stage. Let B(0) denote 
the associated probability measure, where the su- 
perscript "0" is used to distinguish the case of  
truncation at a given stage. Say the truncation 
level is denoted n,. Now consider the probabil- 

:(O)(n) of  an interval I (n) at some ity measure #j 
level n < n,, 

j (n,) 
"J - 

z...,i , i , 

where/z~ " ' )  = / l ( I / n * ) ) ,  I /n ' )  denotes an inter- 
val generated at the cutoff level n., and the nu- 
merator sum ~ i  y is only over those values of  

i for which I~ n*) c I (n). From the thermody- 
namic relation (42) taken at q = I, fl = 0, 
the denominator in the above relation scales as 
exp(F  ( 1,0)n.  ). We expect that the numerator 
is proportional to the magnitude of  the sign sin- 
gular measure/2~°) (n) of  the interval I ( ' )  and the 
proportionality coefficient is a function of  n. - n  
only: 

J " ' )  [=, . /2~°)(n) f (n,  - n). (44) 
i 

Obviously f (m) must be unity for m = 0. Take 
a level n which is large but much below n.: 1 << 
n << n.. Assuming effective self-similarity, the 
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sum on the left hand side grows like the partition 
sum (42) taken at q = 1,fl = 0, i.e., f ( m )  ,,~ 
exp [F (1,0) m ]. Thus, the probability measure 
/~(0)(n) of subinterval i at level n (1 << n << n . )  J 
is 

/~(0)(n) ~ exp [ - F ( 1 , 0 ) n ]  [ltj  (n) [, (45) J 
where the quantity exp ( - F  (1 ,0)n)  provides 
the necessary normalization for a probability 
measure. 

Substituting this into relation (43), we find 
that the quantity z (°) (q) of  measure/~ (0) fulfills 
the implicit equation 

F ( q ,  fl = -z ( ° ) (q ) )  = qF(1 ,0 ) .  (46) 

Thus, z (°) can only be computed with full knowl- 
edge of the bivariate free energy and does not 
follow from x a alone. 

(ii) Truncat ion by smoothing.  The associated 
probability measure will be denoted by a super- 
script "1", that is ~(1). According to the defini- 
tion of x, Eq. (2), 

y ]  lit(I;)[-~ IIt(X)l(lo/e) '~, (47) 
i 

where l0 is the length of the interval X and e 
is the size of the intervals Ii. Consider now the 

=(1)(n) of an interval I)  n) probability measure #j 
at some level n < n,, such that all the interval 
lengths l~ n) are greater than e,. By definition, 

~<1)<.) E~ j IIt(U)l (48) 
J = E i l i t ( I ? ) l  ' 

where the numerator sum ~ i  j is only over those 

i for which I/* c I) "). We now write (48) as 

E ;  lit ( I i  * )1 IItJ") I ' 
(49) 

(n) where I t j  = It ( / J n ) ) .  The denominator in the 
first ratio in (49) can be estimated directly from 
(47), 

Y~ IIt(I,*)l ~- II t (x) l( lo/e ,)  '~. (50) 
i 

Assuming that the sign-singular measure is effec- 
tively self-similar, the numerator of the second 
ratio is (again from (47)) 

J lit(Z;)[ ~-[i t~n)[(l)n)/~.)x.  (51) 
i 

Combining (49)-  (51 ), we have 

#J - lit(X)[ ~ lo ) ~ IItjn)l (l)n))x'  

(52) 

where, in the last relation, we have dropped the 
constant factors lit (X)[ and 10. Thus, truncation 
by smoothing leads to taking the modulus of the 
sign singular interval measures and ensuring nor- 
malization by multiplying this with power x of 
the interval's length (cf. Eq. (29)). 

From Eq. (43) it follows that the quantity 
r (1) (q) characterizing this measure fulfills 

F ( q ,  fl = q x -  ~(1)(q) ) = 0. (53) 

Since, however, F ( q, xq ) = O, this can only hold 
if 

tcq = q x  - r (1)(q). (54) 

We note that the same result also follows for 
sign singular measures without any obvious level 
structure. One can nevertheless associate a prob- 
ability measure/~(1) (lj) to any e length interval 
of  size longer than some cut-off scale e, via 

#(1 ) ( I j )  =[  I t ( I j )  I e K, 

and 

J 

Note ~j/~(1) ( I j )  remains a finite number as 
goes to zero because of definition (2) of  the can- 
cellation exponent. By substituting this into the 
formula ~ t ( l ) ( l j )  g ~ e r~')(q), Eq. (55) is re- 
covered. 

In cases with truncations be smoothing, the 
generalized cancellation exponents can thus be 
expressed by the generalized dimensions of the 
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associated probability measure ~(1). As a conse- 
quence, the multifractal spectrum f (7) of  can- 
cellation exponents is just a shifted version of 
the multifractal spectrum f(1) (a)  of probability 
measure ~(i): 

f ( 7 )  = f ( 1 ) ( o ~ ) l a = ~ , _  x.  (55) 

Since f(1) is shifted to the left by an amount of 
x, the graph of f (y) intersects the diagonal. 
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Appendix A. An example that is singular at a 
point 

Let 
oo  

p(x)  = ~_, f ,a(X--  Xn). 
n = 2  

where 

(A.1) 

fn = ( - 1 ) n n  -a, a > 0, (A.2) 

x ,  = n -b, b > 0, (A.3) 

and O(x) denotes the delta function. We con- 
sider the quant i ty / t (S)  = fs  p ( x )  d x  for sub- 
sets S of the interval (0, 1 ). For large n, the sep- 
aration between two successive values of Xn i s  

~ n  = Xn -- Xn+l  

- d x n / d n  = bn -(b+l). (A.4) 

Now divide the interval (0, 1 ) into subinter- 
vals Ii = (ie, (i + 1 )e ) and consider the quan- 
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t i tyz  (e) into Eq. (3). We have from (A.4) and 
(A.3) that ~kXnS£  , if 

rt < n~ =- ( b / £ )  (b+l)-I  , (A.5)  

o r  

X > X~ =-- n-~ b = ( c / b )  b/(b+l) .  ( A . 6 )  

We can write Z (e) in (3) as 

x(e) = ~ 'l#(Ii)l + Y~ "lu(I~)l. (A.7) 
i i 

where the first sum is over intervals lying in x > 
x,, and the second sum is over the remaining 
intervals. Noting that Ax, > e implies that at 
most one delta function falls in an interval, we 
have that 

t n~ n¢ 

~ l u ( I i ) l  = Y~ lUll = ~-'~ n-~ 
i n = 2  n = 2  

,~ .-~d = 
2 

(1 - a)  [n~ (l-a) - 2( l -a)  ]. 

Hence, for small e, 

{ (I-a) i r a < l ,  n~ ~ e-n '  (A.8) 
e lu(Ii)l ~ O(1), i r a  > 1, 

where q = ( 1 - a ) / (b + 1 ). A similar, but slightly 
more elaborate, calculation shows that the sec- 
ond summation in (A.7) never exceed the es- 
timates on the right hand side of (A.8). Hence 
(A.8) determining the e scaling o fg  (e), 

{¢ -~, f o r a <  1, 
X(E) "~ O(1), f o r a  > 1, (A.9) 

and the cancellation exponent is 

(1 - a ) / ( b  + 1), f o r a  < 1, 
x =  0, for a > 1. (A.IO) 

Thus we see that x > 0 if a < 1, even though 
p (x) can be said to change sign on arbitrarily 
fine scale only at a single point, namely x = 0. 
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An analogous computat ion for the cancellation 
exponent spectrum/¢q yields 

(1 - a q ) / ( b  + 1), f o r a q  < 1, 
Xq = 0, f o r a q >  1. (A.11) 

Thus, for large enough q values (q > q¢ - 1 / a )  

the generalized cancellation exponents become 
zero correctly reflecting that the singularity is at 
one single point only. 

Eq. (A. 1 ) involves delta functions. An essen- 
tially equivalent example using a function that 
is completely smooth in x > 0 is provided by 

1 n 
p ( x )  = ~-scos~-g. (A.12) 

We can regard (A. 12) as a sequence of positive 
and negative wiggles, analogous to the sequence 
of positive and negative delta functions in (A. 1 ). 
The location of the center of the nth wiggle is 
7~Xn d = r/7~, o r  

Xn = n -1 /a .  (A.13) 

The width of the wiggle centered at xn is A x n  ,,~ 

] d x n / d n [  = n - t ( a + l ) / a ] .  The amplitude of the 
wiggle centered at x = x,  is x ;  c = n c/d. Thus 
the wiggle strength (i.e., amplitude multiplied by 
width) is 

Identifying (A.13) with (A.3) and (A.14) with 
(A.2), we see that (A.10) also applies to this 
case, if we replace a by e and b by ( 1/d ). 
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