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The dynamics of mean values in two-dimensional H&on-like maps and in their strongly dissipative limit is investigated by 

considering the direct product of n such maps represented in center-of-mass and relative coordinates. The existence of a 

well-defined mean value for n + cc shows up by a nontrivial mechanism on the projection of the center-of-mass variable. 

Numerical simulations up to n = 128 suggest that the deviation between the actual mean value at large n and the limiting one 

obeys a gaussian distribution in the chaotic regime. 

Deterministic dissipative systems exhibiting chaotic 
behaviour can be completely described only by statis- 
tical methods. One way of doing it is to investigate 
the time evolution of a certain initial probability 
distribution which for large times will approach a sta- 
tionary density concentrated on the chaotic attractor 
[1,2]. If the dynamics is governed by a mapping (e.g. 
obtained from a Poincare cross section) the probabili- 
ty distribution follows also a mapping [33. Another, 
equivalent, description of such systems would require 
the knowledge of the mappings specifying the dynam- 
ics of all possible cumulants of the variables. The 
averaging should be taken over a large number of tra- 
jectories. 

We shall investigate here the dynamics of one of 
the most important mean values, on the first cumu- 
lant, obtained after averaging over n trajectories. The 
relevance of this quantity is related to the fact that 
in a realistic experiment one always deals with aver- 
aged values deduced from a certain number of dif- 
ferent measurements on the same system. Our aim is 
to describe the dynamics by means of a map contain- 
ing the mean value explicitly and to study how the 
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approach to a well-defined limiting value shows up in 
this set of recursions when the number of independent 
trajectories tends to inftity. We shall see that this 
map has common features with other multidimension- 
al maps investigated in the literature. 

As a prototype we consider the quadratic map [ 1, 
21 for n trajectories: 

x “=1-&)2, i=1,2 ,...) n, (1) 

with a positive control parameter a not larger than 2. 
The mean value is defined by 

X =&‘in. (2) 

By deriving a map for x one finds that, in addition to 
the center of mass variable (2), n - 1 independent rel- 
ative coordinates are to be introduced in order to have 
a closed system. In the case of four trajectories, for 
example, a particularly convenient choice is: 

n; =f(xl - x2 t .3 - x4), 

b; =x1 -.3 , uf= x2 - 2, (3) 

and the map itself reads: 

x’ = 1 - ax2 - $&2- ;II[(“;)2 + (rJ:)2], 

u’h = -2axu; + fCz[(U,2)2 - (&2], 
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u”1 = -2axu; t (-l)‘au& ) i= 1,2. (4) 

This shows that the dynamics of the mean value is 
strongly coupled to that of the relative coordinates. 
Therefore, by investigating the average over n trajec- 
tories, an irreducible n-dimensional map must be con- 
sidered. When constructing this map for arbitrary 
values of IZ one notices that it is convenient to study 
cases n = 2N with N positive integer. The hierarchy of 
the relative coordinates may then be given by 

2N-j-1 

4 = g (-l)‘#+i2j-N+1, 

ObjGN- 1, O<i<2j. (5) 

The map for x, uj can be expressed in a rather compact 

form: 

N-l 2m 

$=1--2-a go 2-2-m 2 cJQ2, W 

j-l 

l$ = a”; -2x - 2 5;) 

N-l-j 2m-1 

-a c 1 
m=l 2- - 

m c (_ q~(&y* 
I=0 

(W 

In order to make the notation clearer we have intro- 
duced in the first term of the right-hand side of (6b) 
the 2N-1 component vectors “i (i = 0, 1, . . . . N - 1). 

They are constructed from Uj by repeating the ele- 
ments uj with an appropriate sign rule: 

,i+zJk = (_l)k”/!, 
J 

k=O, 1, . ..) 2N-i-1 _ 1 , O<i<2j. (7) 

Note that the recursion for the last block of variables 
u&_~ does not contain irihomogeneous terms. There- 
fore, by choosing p of them to be zero, they remain 
unchanged describing a case where p of the n trajec- 
tories coincide. We shall always use initial conditions 
for which the motion remains bounded. 

2N 
The map (6) is identical to the direct product of 
quadratic maps (1) represented in the collective 

coordinates defined by (2) and (5). The motivation 
for using the form (6) is the fact that we are mainly 
interested in the dynamics of the mean value x and 

perhaps of a few other “macroscopic” relative coordi- 

nates, like u:, which can be considered to be averaged 
values, too. Therefore, we investigate only certain pro- 
jections of the product map. Owing to this restriction 
there is a loss of information and our aim is just to 
deduce the behaviour which can be observed on these 
projections. 

We have simulated the map (6) at a fixed value of 
a with n up to n = 128. Figs. l-3 show two projec- 

tions of the chaotic attractor of this multivariable 
map obtained at different values of n. In order to be 
able to interpret the map as a limit of a more compli- 
cated one, like that associated with Henon’s map [4], 
we have introduced also an auxiliary variable y ’ via 

the dynamics y” = xi. Figs. la-3a show the projec- 
tion on the x, y plane where y is the mean value of 
yi, i.e., y = X;=oyz/n, and figs. lb-3b give the projec- 

tion on the (x, uh) plane. 
Fig. 1 displays the strange attractor obtained for 

12 = 2 at a = 1.9. Both projections cover a piece of the 

plane since the direct product of two logistic maps 
has a strange attractor of dimensionality 2. The sys- 
tem is hyperchaotic [5] possessing two positive Lya- 
punov exponents. The dots in fig. la represent the 
centers of mass of different pairs of trajectories from 

the chaotic attractor of the quadratic map. Therefore, 
the upper borderline of the object in fig. la is an arch 
oftheparabolax=l-ay2for1-a<y<l,while 
the lower border consists of two similar arches, re- 
duced by a factor two. The borderlines of the projec- 
tion shown in fig. lb are curves specifying the largest 

possible difference I$, between two points from the 
interval [l - a, l] having the mean value x. The re- 
sults obtained for averaging over n = 16 trajectories 
can be seen in fig. 2. We notice the significant differ- 
ence in the density of dots for n = 2 and 16 on the 
projections of the strange attractor. The parabola 
arch mentioned above is shown in fig. 2a as well in or- 
der to indicate that this segment of curve is the upper 
borderline of the projection in the present case, too, 

although it is being approached quite rarely. (The 
parabola is in fact an invariant curve of the (x, y) 
plane associated with n identical trajectories.) The 
lower borderline now consists of 16 small parabola 
arches. The tendency observed in fig. 2 becomes more 
pronounced for n = 128 shown in fig. 3. The dots ob- 
tamed with typical initial conditions are here concen- 
trated on small spots in both 1 mrojections inspite of 
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Fig. 1. Projections of the strange attractor of the map (6) with a = 1.9, n = 2 obtained by plotting dots between the 500th and 
2500th iterates. Initial data: x = 0.8, vh = 10m3. 
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Fig. 2. The same as fig. 1 with n = 16. Initial data x = 0.8, u; = 0’ + 1) X 10m3/i 
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Fig. 3. The same as fig. 2 with n = 128. 
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the fact that there exists an extended 128-dimension- cal initial conditions can be replaced after many itera- 

al strange attractor in the complete phase space. Note tions and for large n by an equation describing the 

that with untypical initial conditions other strange at- relaxation toward the limiting value x* with gaussian 

tractors can be reached which may show up with dif- fluctuations. This specifies then the reduced dynamics 

ferent shapes on the (x, v) and (x, IJ;) planes. By for the macroscopic variable x in analogy with a 

choosing, for example, several of the coordinates I&_~ Langevin type description of thermodynamic systems. 

to be zero much larger spots would appear on the pro- With a further increase of n the intensity of the deter- 

jections or, with the extreme case of 128 identical ministic noise decreases in this equation. The fluctua- 

trajectories the parabola arch shown in fig. 3 would tions, of course, vanish at control parameter values 

be reached. These objects, however, are attractive on where the quadratic dynamics (1) exhibits nonchaotic 

certain hypersurfaces only. Typical initial points ap- behaviour. For the dynamics of other macroscopic 

proach the most compact attractor on the (x, y) variables, like I$, , similar properties are expected as 

plane. those just discussed for the mean value. 

Our numerical observations for cases between n 
= 16 and 128 suggest that the linear size of the most 
densely tilled region, reached with typical initial con- 
ditions, decreases approximately like nP112. Thus, by 
assuming ergodicity, the deviation between the mean 
value x taken over n (%l) trajectories and the limiting 

one, x* obtained for n + m, can be characterized by 
a gaussian distribution after transients have died out. 
This is, in fact, supported by numerical simulations of 

(6) (see fig. 4) illustrating that the central limit theo- 
rem may be valid for independent variables with 
chaotic dynamics, The variance, b2, of this distribu- 
tion is given by b2 = Co/n, where C, denotes the 
second cumulant of the one-dimensional dynamics in 
the stable stationary state. With the data of fig. 4, for 
instance, b = 0.054 and therefore Co = 0.37. Note, 
that for a = 2 an exact result is known: C, = 0.5 [6]. 
Moreover, we may conjecture that eq. (6a) with typi- 

It is also of interest to investigate regions where 

the one-dimensional map possesses a multi-piece cha- 
otic attractor or a nonchaotic periodic attractor. The 
general features can be best understood on the 

example of the stable period-two orbit. In the n = 2N- 
dimensional product map (6) then 2n-’ different at- 
tracting trajectories are present. However, on the 
(x, y) plane only n/2 + 1 different attractors can be 

observed. One of them is realized by n identical one- 
dimensional trajectories. The corresponding relative 
variables vanish in this case. In general, the mth period. 

two attractor on the (x, JJ) plane of the n-dimensional 
map can be constructed by n - m one-dimensional 
trajectories starting at one of the periodic points and 
m other ones at the other periodic point. By increas- 
ing m, the value of the corresponding relative coor- 
dinates typically increases and the difference between 
the x-values decreases. The attractor with m = n/2 
realized by n/2 one-dimensional trajectories at both 
periodic points appear then as a fixed point on the 
(x, y) plane. The “stength of attraction” of these ob- 
jects may be estimated by the number of different 
ways they can be constructed from one-dimensional 
trajectories. This is obviously given by a binomial 
distribution with a maximum at m = n/2. Therefore, 
the fixed point should have the largest basin of at- 

traction in the (x, v) plane for large n. Similarly, at 
a control parameter value where the one-dimensional 
map possesses a multi-piece chaotic attractor (or 
stable higher periodic orbits) may coexisting multi- 
piece chaotic attractors (or periodic orbits) appear 
on the (x, y) plane of the map (6) at any finite value 
of n. For large n, however, the most symmetric at- 
tractor, realized by the largest number of one-dimen- 
sional trajectories, dominates. This is a one-piece ob- 
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Fig. 4. Histogram showing the number R of dots falling in cells 
of size AX = l/100 for iterates between 100 and 10500 of the 

map (6);~ = 1.9. n = 128, initial data as in fig. 3. The dashed 
line represents a gaussian curve fitted to the histogram. 
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ject on the (x, u) plane in accordance with the fact 
that there exists a single mean value x* at any con- 
trol parameter value for n + m. The deviation between 
the actual mean value, obtained at a fured large n, and 
x* obeys in the chaotic regime again a gaussian distri- 
bution the variance of which typically decreases by 
decreasing the control parameter a. 

One can easily include the effect of weak random 
noise in the map (6). We start then with a noisy 
quadratic recursion having a gaussian delta-correlated 
fluctuating force on the right-hand side of (1) with in- 
tensity o2 Q 1. According to the definition of the col- 

lective coordinates (2), (5) new additive noise terms 
show up in the equations for x’ and uy. It follows im- 

mediately that these fluctuating forces are mutually 
independent and that the noise intensity for x’ is 
given by o22-N and that for ~7 by 0222’j-N if the 
map describes independent trajectories. Consequent- 
ly, for large N the noise plays an explicit role for the 
last blocks of variables, for i 9 1, only. Since the in- 
tensity is weak, an appropriate decorrelation of higher 

order cumulants becomes possible and the resulting 
map obtained for the mean values averaged over the 

noise behaves then in the (x, v) and (x, u;) planes 
similarly to that shown in figs. l-3. Noise terms assure 
that the second and eventually higher cumulants of 
r~; are bounded from below by cr222+i-N. Moreover, 
the presence of noise obviously reduces the size of 
the basin of attraction for extended attractors on the 
(x, u) plane. The reason is that these objects are 
characterized by small values of the relative coordi- 
nates which cannot be maintained in a noisy system. 

A cumulant expansion can be performed also for 
one single trajectory. In the presence of weak noise 
one may keep the recursion for the mean value (taken 

over the noise) and the second cumulant [7,8 1. This 
method is valid in a time interval in which the devia- 
tion between trajectories with and without noise re- 
mains small. It may, therefore, successfully simulate 

[S] the noisy bifurcation diagram [9]. For describing 
the approach to the ensemble average it is most con- 
venient to take an additional averaging over the ini- 
tial conditions which would lead to a map similar to 
that we just discussed. 

Let us now shortly mention possible generaliza- 
tions. For the sake of simplicity we turn back to the 
deterministic case. Maps for the mean value of higher 
powers of the variable or for its correlation function 

can be constructed and would lead to similar conclu- 
sions for the behaviour at large n as those obtained 
for (6). The investigation of the map x’~ = f(x’) where 
fis a polynomial is also possible along similar lines. 
As a next step, one may include the effect of a second 
variable y’ by considering a class of maps in the form: 

~‘~=f(x’)+&‘, yfi=xi, i= 1,2 ,..., n. (8) 

Besides the mean value y, relative coordinates zi of 

the variables yi are to be introduced in complete ana- 
logy with (5). Since yi appears linearly in the recursion 
for x2 the map for the collective coordinates will read: 

x’ = (x’)o + by, y’ =x, 

fJ; = (IJ30 t bzj, . q = u!’ I, (9) 

where quantities with subscript zero denote the recur- 
sions associated with the one-dimensional map ob- 
tained in the limit of extremely strong dissipation 

(b = 0). Eqs. (9) describe, for example, the dynamics 
of the mean values x and y in the Henon map if (x’)~, 

and (u~)o are given by the right-hand side of (6a) and 
(6b), respectively. The borderlines of the strange at- 
tractor in the (x, JJ) plane for n = 2 will then be relat- 
ed to certain branches of the H&on attractor. Apart 
from changes like this, however, the conclusion con- 
cerning the approach to a fmed point for large n is 
identical to those discussed for the case b = 0. There- 

fore we have limited ourselves to illustrate only the 
latter case having in mind clearness rather than com- 
pleteness of the presentation. 

Finally, we emphasize that the map (6) may be 
considered as a starting point when considering 

coupled logistic maps. The case of two such maps, 
which has been investigated extensively [IO- 151, is 
a perturbation of (6) with n = 2. In the study of a 

ring of coupled logistic maps [ 16 3 the Fourier com- 
ponents play a role similar to our collective coordi- 
nates. Therefore, some properties of these maps, like 
high dimensionality of the strange attractor or the co- 
existence and multistability of attractors, can be 
traced back to the properties of the product map. 
More generally, when dealing with dissipative maps of 
several variables, they may turn out to be close to the 
direct product of simple low-dimensional maps. By 
this we mean that the coefficients of the map only 
slightly differ from those of the product map repre- 
sented in certain reference frame. The knowledge of 
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typical features of the product maps may thus be 
also useful in studying the behaviour of high-dimen- 

sional mappings. 
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