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A new type of eigenvalue problem is introduced whose solution provides a spectrum of characteristic exponents for chaotic
repellers or semi-attractors. In explicitly tractable examples this spectrum coincides with that of the generalized dimensions. The
eigenvalues form a continuum of fractal measures with a smooth density along unstable directions.

It has recently been observed that strange sets cov-
ered by a probability distribution possess in general
a whole spectrum of characteristic exponents: gener-
alized dimensions [1-4] or, equivalently, scaling
indices [ 5-7]. A multifractal analysis reflecting this
feature has already been applied to the problems of
fully developed turbulence [5,6], diffusion limited
aggregates [ 8], certain random systems [9] and cha-
otic attractors [7,10,11].

Besides chaotic attractors, however, there exist
other important invariant strange objects in dynam-
ical systems. These are the so-called chaotic repellers
[12], or if they are partially attracting, semi-attrac-
tors [13], responsible for transient chaotic behav-
iour (see e.g. refs. [12-14] and references therein).
The concept of transient chaos and of the related
phase-space object is of great interest on its own right
but it may also play a role in other fields of physics,
like e.g. the theory of disordered systems, where
invariant Cantor sets have been found to show up
[15].

In this paper we point out, by extending the results
of refs. [16] and [17], that characteristic exponents
of chaotic repellers or semi-attractors appear as
eigenvalues of certain linear equations. This fact may
provide a simple method for determining the com-
plete spectrum of the exponents.

Let us consider first chaotic repellers generated by
one-dimensional maps x’ =f(x), where fis a single
humped function. It was shown in [16] that the
equation
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has ‘a unique nontrivial limiting distribution
P(x)=lim,_,,, P,(x), only if D, is the fractal dimen-
sion of the repeller. P(x) is then the stationary dis-
tribution on the coarse grained repeller determined
by a finite resolution. Furthermore, it is known
[17,18] thdt there exists another iteration scheme,
namely

P, (x)= (1

C,(x)
cerZon P

which converges to a finite C(x) >0 for g=exp(a)
only, where « is the escape rate. The latter quantity
characterizes an exponential decay in the number of
points which have not yet escaped a neighbourhood
of the repeller [12]. The function C(x) is the density
of the so-called conditionally invariant measure [18].

Egs. (1) and (2) suggest that there are two quali-
tatively different ways of compensating the escape
from a repeller. Both equations arise by dividing the
right-hand side of the Frobenius-Perron equation
[19] (which describes the outflow of probability from
a neighbourhood of the repeller) by certain factors.
In the first case the local escape factor [16]
exp[—a(x)]=|f"(x)|? ! is to be applied, while
in the second case the global escape factor exp( — ).
It seems to be plausible that a simultaneous compen-
sation of local and global escape is also possible and
leads to a set of new eigenvalue problems. In fact, as

Cori(x)=¢ (2)
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suggested by numerical investigations, for any posi-
tive number R there exists one single exponent £(R)
so that the equation

QR (x)
xerSoey 1 ()] ERY>

0<R<oo, (3)

0 (x')=R

possesses a unique nontrivial limit solution
0®(x)=lim,_ . Q® (x) for the class of smooth
positive initial functions J§® (x). The limit J® (x)
will also be smooth. The existence of eq. (3) and of
the spectrum E(R) are the main results of this paper.
As we shall see, analogous statements can be found
for higher dimensional maps, too.

In what follows, another representation of the
spectrum will be used which makes the relation
between eqgs. (3) and (2) more explicit. Namely, we
write

R=exp(ar), E(R)=r+({1-r)D(r), (4)

which defines the characteristic exponents D(r) for
—oo<r<oo. The corresponding functions appearing
in the eigenvalue problem (3) will then be denoted
by Q47 (x). It is obvious that D(0) =D,, and Q@ =P,
QW=C.

As an explicit example, we consider the map

fixy=1—-a,x, x>0,
=l4+a,x, x<0, (5)

where a,, a,>1 and a; ' +a5 ' <1 so that a chaotic
repeller exists. The evolution of a linear initial func-
tion Q§(x)=y§"x+B5” can be followed exactly.
The result is of the same type: Q7 (x) =y’ x+87.
A nontrivial limiting function for n—oo can be
reached only if " —0 which requires the exponent
D(r) to be the solution of the equation

ear(a ]—r+(r~.l)D(r) +a2—r+(r—l)D(r)) — 1 ,

—co<r<oo. (6)

It is easy to see then that all y{” tend to zero (expo-
nentially fast). Consequently, the Q‘”(x) are con-
stant. The stability of this solution in the space of
nonlinear smooth functions can be checked numeri-
cally. For r=0 and r=1 the results for the fractal
dimension [16] and for the escape rate [ 17], respec-
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tively, are recovered from (6). Moreover, since the
stationary distribution P(x) is constant, the spec-
trum of generalized dimensions D, [2,3] can be
directly calculated for the coarse grained repeller and
one finds that D,_, coincides, for all r, with the
eigenvalue D(r) of egs. (3), (4).

At present, it is an open question whether the spec-
tra D(r) and D,_, are identical also in more general
cases. The following preliminary result at least does
not contradict this possibility. We have investigated
the quadratic map x’' = 1 —ax? in the region a> 2. By
using the data obtained in ref. [17] for the escape
rate and considering D(2) to be a free parameter, eq.
(3) was iterated for r=2 with a constant initial func-
tion. As long as D(2) was too small (large) Q% (x)
monotonously decreased (increased) with » at a fixed
x. If, however, D(2) was appropriately chosen, a
rapid convergence was found (just like in the pre-
vious example). We used this fact to obtain a lower
and upper bound for D(2) as the values where
[Q§(x)— Q5P (x)| <€ with a small . A compari-
son of the result obtained for D(2) with the correla-
tion exponent D, [2,3,20] calculated by a direct
numerical method [21] shows agreement within
computational error (see table 1). Furthermore, it
has been found that D(r), as well as D,_,, varies
extremely slowly with r in the region 0<r<2.

We now investigate invertible maps of the plane
x' = T(x) producing chaotic transients. At nearly all
points of chaotic trajectories a stable and an unstable
direction exists [22,23]. Let 4,(x) denote the local
coefficient of expansion [24] along the unstable
direction. This quantity plays the same role now as
f'(x) in one-dimensional cases. The generalization
of eqs. (3), (4) can be most conveniently formu-
lated in terms of certain measures, ", which we call
r-measure (the analogue of [*Q¢” (X) dx), and has
the form

(W) =€ T(us" | Ay (x) | -0 -2

—oo<r<oo . (7

Here, u{” stands for the r-measure of a tiny region B
around a point x; lying in the neighbourhood of the
semi-attractor, and the induced map in the space of
measures has been denoted by T, too. The new r-
measure (u{” )’ belongs to the region T(B) around
x;. The transformation is then to be repeated after
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Table 1
The exponent D(2) as obtained from the eigenvalue problem (3), (4) in comparison with the correlation dimension D, calculated
numerically in ref. [21]. The error for both types of datais: +5x 103,

a 2.01 2.02 2.03 2.04 2.05
D(2) 0.960 0.942 0.926 0.915 0.905
D, 0.955 0.939 0.926 0.911 0.905

2.06 207 2.08 2.09 2.10
0.894 0.885 0.877 0.870 0.863
0.890 0.885 0.876 0.869 0.863

dividing the support of the new r-measure into areas
where 4,(x) can be regarded as constant. A nontri-
vial limit will be approached only at a single value of
DM (r) for a given r. The superscript 1 is to express
the fact that the spectrum belongs to the unstable
direction along which escape occurs. In the special
case r=0, u‘@* obtained for n—oo is the natural
measure defining the stationary distribution on the
coarse grained semi-attractor, and D) (0) becomes
the partial fractal dimension along the unstable
direction [16]. The iteration for r=1 leads to the
conditionally invariant measure [17,18].

In order to give a nontrivial example we consider
a generalised version of the Baker transformation
[22] introduced in ref. [ 16]. The dynamics is defined
by

y'=sy, y<e,
=—t(l-y), y>c,
X' =ax, y<c,
=1/2+bx, y>c, (8)

where 0<a, b, c<1/2 and sc, t(1 —c) > 1. The latter
condition ensures escape along the unstable y direc-
tion. Starting with the Lebesque measure on the unit
square an application of eq. (7) yields the »-measures

U(") =ears—r+(r—1)D(|>(r)

and
,t(’.)=cart—r+(r—l)D<H(r) (9)

on the strips 0<x<a, O<y<1l and 1/2<x<1/2+b,
0<y<]1, respectively. After n steps the total -meas-
ute on the unit square is then [o(r)+1(r)]". The
condition for a nontrivial limit is therefore

o(r)+t(r)=1, (10)

which specifies the spectrum D (r), —co<r<oo.
The limiting measures obtained for n—oo all have a
smooth, constant, density along the y direction.

Among them the natural measure u(%* is of special
importance since its restriction to the coarse grained
repeller yields the stationary distribution on this
strange set. Calculating the generalized dimensions
of this stationary distribution, we find that
DY(r)y=D{V,, where D" is the partial order-q
dimension [23] along the unstable direction.

Furthermore, all limiting measures u‘”* possess
their own spectrum of generalized dimensions along
the stable x direction. So, to any r belongs a set of
partial dimensions D{?’(r) —co<g<oo. They are
found to be the solutions of

[6(r)]9a = PP +[1(r))9b 1~ PP =1,

1)

Note that D{¥(r) depends strongly on r, and im-
plicity (cf. eq. (10)) also on DV (r).

This example illustrates that there exists a whole
range of measures related to chaotic semi-attractors.
They appear as eigenfunctions of the eigenvalue
problem (7). All measures are smooth along the
unstable direction but show fractal features along the
stable one.

Stimulating discussions with Péter Szépfalusy and
Stefan Thomae are gratefully acknowledged.
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