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Abstract 

In dynamical systems with periodic attractors which have just emerged from a saddle-node bifurcation the addition of weak 
noise may induce chaotic behaviour. This is accompanied by two remarkable observable effects: noise-induced attractor explo- 
sion and noise-induced intermittency. The theory of quasipotentials is used to explain qualitative and universal aspects of these 
phenomena. The influence of the noise-distribution and its observational implications are discussed. 

1. Introduction 

The influence o f  small random perturbations on 
dynamical systems is most  conspicuous near bifur- 
cation values o f  a control parameter. While an unper- 
turbed system changes its long-time behaviour ex- 
actly when the control parameter  passes a bifurcation 
value, a similar change can already be induced before 
by random perturbations ("noise") .  This phenome- 
non has been the subject o f  many investigations, be- 
ginning with Refs. [ 1,2 ]. 

One way of  describing the effect o f  noise is to intro- 
duce the notion o f  a noisy attractor (see Section 2). 
As the strength o f  the noise is increased in a system 
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shortly before a bifurcation, drastical changes in the 
structure o f  the noisy attractor may occur. This can 
be either a gradual melting of  different attractors or 
different parts o f  a disconnected attractor, or - more 
spectacularly - an abrupt increase o f  the noisy attrac- 
tors' volume. We call the later a noise-induced attrac- 
tor explosion. This is due to the presence of  a nonat- 
tracting chaotic set (chaotic saddle or repeller) 
outside the deterministic at tractor(s) .  In the noise- 
free dynamics, the nonattracting set is responsible for 
transient chaotic behaviour [ 3 ] and does not influ- 
ence at all the asymptotic motion of  typical trajecto- 
ries. In the presence o f  noise, however, trajectories 
can come close to the nonattracting chaotic set and, 
at sufficiently strong noise, it becomes embedded into 
the noisy attractor, which is the cause of  the attractor 
explosion. 

Despite the explosive enlargement o f  the noisy at- 
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tractors, the neighbourhoods of the confined unper- 
turbed attractors are still of  special importance for 
the noisy system: The system leaves these regions only 
for occasional excursions through the rest of the noisy 
attractor. Thus, noise-induced attractor explosions 
imply noise-induced intermittency. The most impor- 
tance observable connected with intermittent behav- 
iour is the characteristic time z between the occa- 
sional excursions. 

Noise-induced attractor explosions typically occur 
for parameter values in periodic windows inside the 
chaotic regime where a nonattracting set exhibiting 
fractal properties is always present. A period-m win- 
dow is closed at its lower edge by a saddle-node (tan- 
gent) bifurcation where a stable period-m orbit is 
created. When increasing the control parameter, this 
attractor undergoes a sequence of bifurcations which 
leads finally to the appearance of a multi-piece cha- 
otic attractor. The window is closed at its upper edge 
by an "interior" crisis [4]: the chaotic attractor is 
suddenly enlarged resulting in a strange attractor 
consisting of one large piece. This crisis is mediated 
by the collision of the multi-piece attractor with the 
stable manifold of the nonattracting chaotic set. 

The influence of noise on a system shortly before a 
crisis has been studied in Refs. [ 5,6 ], leading to the 
notion of a noise-induced crisis. Clearly, when study- 
ing the influence of noise, universal aspects which are 
valid for large classes of systems including realistic 
models of physical processes are particularly interest- 
ing. A universal scaling law for the characteristic time 

was established by Sommerer et al. in Ref. [ 6 ]. This 
scaling law is in agreement with experimental data on 
a periodically driven magnetoelastic ribbon [ 7 ]. 

Recently, it was proposed by Sommerer [ 8 ] to re- 
fine the scaling law found in Ref. [ 6 ] by taking into 
account results from Beale [ 9 ] about the asymptotics 
of z for weak noise. Those results, which were ob- 
tained using the so-called principle of minimum es- 
cape energy, were conjectured in Ref. [9 ] to bear 
universal aspects, supported by former numerical in- 
vestigations by Kautz [ 10 ]. In Section 2 we shall ex- 
plain how the theory of quasipotentials or nonequi- 
librium potentials [11-18], which forms the 
framework of the principle of minimum escape en- 
ergy, can be used to derive such universal aspects. In 
particular we shall substantiate the conjecture made 
by Beale [ 9 ]. 

In the present paper we shall put the study of noisy 
systems near a saddle-node bifurcation into the fore- 
ground in order to complement the existing literature 
on noise-induced crises. In addition, by the results 
presented here we hope to encourage experimental 
study similar to Refs. [ 7,8 ] for systems near a tan- 
gent bifurcation. In such cases the effect of noise-in- 
duced attractor explosions is more drastical than near 
crises: The explosion turns a regular period-rn attrac- 
tor into a chaotic one. This effect of noise has been 
discussed on a phenomenological basis in Refs. [ 19- 
21 ] among others under the label noise-inducedchaos. 
Thus, the present paper deals with universal aspect 
of noise-induced chaos. 

Quasipotential methods, however, give only an 
asymptotic description, and so the results of Section 
2 make predictions for numerical or real experiments 
only if the asymptotic regime of weak noise has been 
reached, which may be difficult to ascertain in prac- 
tice. We discuss this question in Section 3. In addi- 
tion, we comment on the relation of our results to a 
scaling law for z near tangent bifurcations found by 
Eckmann et al. [22 ]. This relation is similar to the 
one between the quasipotential results for crises and 
the scaling law of Ref. [ 6 ], on which the above-men- 
tioned refined scaling law proposed in Ref. [ 8 ] is 
founded. Therefore Section 3 also sheds additional 
light on that proposal. 

2. Quasipotentials and noisy attractors 

The discrete-time version of the so-called quasi- 
potential method [ 13-18 ] deals with noise systems 
defined by the stochastic difference equation 

X(o,r) =F(X(O,r)) + ~o,r) (1) 
n + l  

Here, the random sequence (X~. ",r) ) on some 
bounded d-dimensional state space is the outcome of 
the iteration of a function F ( x ) ,  describing the deter- 
ministic part of the dynamics, which in the nth time 
step is perturbed by the addition of a random vari- 
able ~.(~'r) with zero mean and standard deviation a 
(which can be used to measure the strength of the 
noise). The random variables are assumed to be in- 
dependent for different time steps ("white noise"). 
Their probability density ~/to.r)(~) (possibly state 
dependent) has to fulfill the following asymptotic 
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condition for weak noise, which involves a parame- 
ter r> 1, 

~v~'r)(~) × e x p ( - I ~ l r / r a  ") , (2) 
o '~0 

where we introduced an abbreviated notation for 
asymptotic logarithmic equality, 

.. lnA(~) 
A(~) × B(~) means r im--  1. 

~ o  ~ o  In B ( ~ ) -  

Condit ion (2) means that (even for small noise 
strength ~) the random perturbations can be arbi- 
trarily large, but that the probability for large pertur- 
bations decreases exponentially. 

The most important choice for r in (2) is r = 2, be- 
cause this corresponds to a Gaussian distribution of 
the perturbations. However, it is interesting to study 
the case r #  2 in order to reveal the influence of the 
shape of  the noise distribution. The limit r--,oo is of 
special interest since it leads to a uniform box distri- 
bution of the random perturbations, which is often 
used in numerical experiments. 

The stationary density w t°) (x),  which is forming 
under iteration of ( 1 ) starting from any initial distri- 
bution, is a basic characteristic of the noisy system's 
long-time behaviour. The so-called quasipotential 
O(x)  gives (under rather mild conditions on F(x) ,  
see Refs. [ 17,18 ] ) the weak-noise asymptotics of 
w ~') (x) on an exponential scale, 

w°')(x)  × e x p [ - @ ( x ) / a r ] .  (3) 
ct~O 

Conventionally, the quasipotential is normalized in 
such a way that its value is zero on the most stable 
attractor of the deterministic system. 

The quasipotential satisfies an extremum princi- 
ple, and the most instructive methods for determin- 
ing quasipotentials make use of well-known ideas of 
Hamiltonian mechanics. This involves studying or- 
bits of a canonical map (p, q ) ~ ( P ,  Q) on a 2d- 
dimensional phase space whose generating function 
is 

1 [Q-F(q) I~ ,  (4) 
P~(q' Q)=  r 

i.e., P=O2Pr(q, Q) a n d p =  -Olp,(q, Q), where 0~ de- 
notes the derivative with respect to the ith argument. 
We refer to Refs. [ 15-18 ] for details, where also 

methods for the numerical computation of quasipo- 
tentials are given. 

The quasipotential has local minima at the attrac- 
tors of F, saddles at the saddles of F, and local max- 
ima at the repellers of F. Saddles and repellers, how- 
ever, are very often embedded in larger regions with 
constant (or scarcely varying) quasipotential, which 
we call quasipotential plateaus. In particular this is 
true for chaotic repellers or saddles with fractal struc- 
ture. The qualitative reason is that the quasipotential 
must be constant on the entire nonattracting set, and 
it turns out that plateaus are then typically formed 
along unstable directions emanating from this set. For 
a discussion of examples we refer to Refs. [ 15-18 ], 
and further examples are given below. However, a 
detailed discussion of the formation of quasipoten- 
tial plateaus lies beyond the scope of the present pa- 
per. But we shall explain how the existence of a quasi- 
potential plateau can be used to predict a noise- 
induced attractor explosion. 

The first step is to put in concrete terms the idea of 
noisy attractors as the sets of points to which the long- 
time behaviour of the system ( 1 ) is confined. If the 
stationary density w co) (x) were zero on large regions 
of the state space, it would be clear that the support 
of w to) (x) should he considered as the noisy attrac- 
tor. However, the type of noise we are dealing with 
according to condition (2) leads to a nowhere van- 
ishing stationary density. But we can use the argu- 
ment that any observation of the stationary density 
has a finite threshold of resolution Z, so that we define, 
depending on that threshold, the noisy attractor of 
the system ( 1 ) as 

A~,.z={x: w<~)(x)>~Z} . (5) 

A different definition of noisy attractors has been 
proposed in Ref. [ 23 ] but it is more complicated and 
less appropriate for the quasipotential approach. 

If  the quasipotential of a system is known, but not 
its complete stationary density, the noisy attractor for 
sufficiently weak noise may be approximated by the 
idealised noisy attractor, defined as 

~,~.x={x:rP(x) ~<~rlnz-~).  (6) 

The r i~t-hand side of (6) would he equivalent to 
that of ( 5 ) if the asymptotic equality in (3) were an 
exact equality. Since this is not true, predictions de- 
rived on the level ofidealised noisy attractors can de- 
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viate from those based on definition (5).  We shall 
analyse this point in section 3, but for the moment  
adhere to the idealised viewpoint. ~(x,y) 

I f  there is a quasipotential plateau o f  height t~l~, .4I! 
then there is, obviously, an abrupt increase in A~,x as 1. 10 
soon as the noise strength a passes the critical value 

a~r= "x//~p/lnz - '  , (7) 1. lo 

because then the total region of  constant quasipoten- 
tial is added at once to the noisy attractor. So, from 
the idealised point o f  view, one expects a noise-in- 
duced attractor explosion at noise strength a or. In or- 
der to be able to compare our statements below with 
other results, we mention that ¢'1~ coincides with the 
quantity called " m i n i m u m  escape energy" in Refs. 
[ 10,9 ] for reasons connected with ( 17 ). 

In Fig. 1 we give an example showing that the ex- 
pectation o f  noise-induced attractor explosions in 100 
systems with quasipotential plateaus is qualitatively 
correct. This example is a two-dimensional map of  1 

w(x,y) 
the type described by McDonald  etal .  [24] with re- 
gard to disconnected fractal basin boundaries. The 0 
explicit expression of  the map is not important  here. 
We just remark that the map has two attracting fixed 
points at (0, - 0 . 9 )  and (0.5, 0.9) and a fractal sad- 
dle with the typical Cantor  set structure arising from 
stretching and folding. The unstable manifold is 
smooth, roughly S-shaped, but its cross-sections par- 
allel to the y-axis exhibit fractal features. Fig. 1 a shows 
that there is a quasipotential plateau which follows 
the S-shape o f  the unstable manifold, and also the 
fractal fine structure can be guessed at, despite the 1000 
low numerical precision. Figs. lb  and lc are the re- 
suits o f  a numerical simulation o f  the noisy system w Cx,y)lc 
and show that at some critical noise strength there is 0. 
a noise-induced attractor explosion: Whereas in Fig. 
l b the system remains confined to the neighbour- 
hood of  the attracting fixed points, there is a signifi- 
cant probability to find the noisy system of  Fig. 1 c at 
any point in the region of  the quasipotential plateau, 
too. 

Another, even simpler appearance of  the same 
phenomenon can be found in the period-3 window of  
the family o f  logistic maps 

Fu = 1 - / ~  2 , (8) 

which extends over the parameter range ~ =  
1.75 < / t <  pc= 1.7903 .... As an example we show in 

Fig. 1. (a) Quasipotential ~(x, y) (for r=2) of a two-dimen- 
sional system with two fixed points and a Cantor saddle. ~b v is 
approximately 4× 10 -4. (b) Invariant density w(x, y) of that 
system, perturbed by Gaussian noise with variance a 2-- 2 × 10- 6. 
(c) Same as (b), but with a2=2×10 -s. In (b) and (c) the 
threshold value is X=0.01. The asymptotic region of weak noise 
has not yet been reached so that the idealised critical noise strength 
as given by (7) only leads to an order of magnitude estimate for 
the explosion. 
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~t 

Fig. 2. Quas ipotent ia l  for  the logistic m a p  (8 )  w i t h / z =  1.752 and  

r m - 2 .  

Fig. 2 the numerically computed quasipotential for 
(8) with # =  1.752, and r=2.  The plateaus belong to 
the two shortest intervals that cover the repeller lying 
between the components of the period-3 attractor. 
The critical noise strength can be fairly well esti- 
mated via (7) by using the plateau value ~p~, 
3.7×10 -6 . 

In order to go beyond the realms of qualitative 
statements we address the question of how the con- 
ditions of a noise-induced attractor explosion change 
if a system approaches a saddle-node bifurcation. 
Consider a generic one-parameter family of d-dimen- 
sional maps Fa (x) in which a saddle-node pair of pe- 
riod-m orbits is created at 2=0,  and in which the un- 
stable periodic orbit is embedded in a fractal saddle, 
giving r iseto a quasipotential plateau. It is a well- 
known fact [25] that locally the map (2, x ) ~  
(2, F~' (x)) ,  restricted to its two-dimensional centre 
manifold, is topologically equivalent to the map 

(2, y ) ~ ( 2 ,  y + 2 - - y  2) , (9) 

where y is a real variable, so that we are dealing with 
a problem which is effectively one-dimensional. This 
fact enables us to use results of Ref. [ 17 ] (especially 
its equations (3.11 ) and (3.12) ) for estimating the 
increase of the quasipotential between the node and 
the saddle which exist for 2 > 0. This leads to 

¢,AAx) ~ C,(,~)la.,cl ~ (10) 
16xl ~ 0  

if  the value of the quasipotential is set to zero at the 
node; I Axl means the distance from the node in di- 
rection towards the saddle, and " ~ "  denotes asymp- 
totic equality. Thus, the quasipotential is locally par- 

abolic with the same exponent r as the noise- 
distribution (2) .  The leading order of the 2-depen- 
dence of the coefficient C,  is determined by (9)ac-  
cording to the above-mentioned results of Ref. [ 17 ] 
(for details see Ref. [ 18 ] ), 

Cr()O ~ cr2 ~'-L~/2,  (11) 
A~O 

where the coefficient cr depends on the specific fam- 
ily F~. From (9) follows further that the distance be- 
tween saddle and node is proportional in leading or- 
der to x/~. Inserting this for I Axl in (10), together 
with (11 ), we obtain that the plateau height ~p(2) 
scales with the bifurcation parameter 2 as 

Op(2) ~e,2~-,/2. (12) 

This means that for all generic one-parameter fami- 
lies undergoing a tangent bifurcation there is a uni- 
versal leading power in the 2-dependence of ~p(2), 
whereas the corresponding coefficient depends on the 
specific family. In particular, this establishes that 
Beale's conjecture of a universal exponent 3/2 for 
Gaussian noise (i.e. r =  2), based on the numerically 
and analytically treated examples in Refs. [ 10,9 ], is 
correct. 

We tested the parameter dependence of the quasi- 
potential plateau height (see Fig. 2 ) numerically for 
the family (8) with ),= # -  ~ and found 

r=2: q~p(/~) ~ 4.1 × 10-2 (/~-/zt) Ls (13) 

and 

r=5: ~p( /Z)~5.4X10-4(#- /A)  4"5 , (14) 

with a numerical uncertainty of about 5% in the val- 
ues of the coefficients. 

We note in passing that (10) can still be applied in 
the vicinity of crises. However, there are two impor- 
tant changes: The coefficient Cr does not vanish at 
the critical parameter value, a n d t h e  distance be- 
tween attractor and quasipotential plateau is propor- 
tional to 2, generically. Thus, near a crisis we obtain 
in place of (12) 

Op(2) ~ e,2 r ' (15) 

again in accordance with Beale's conjecture for r =  2 

[91. 
The result (12), tog&her with (7), implies 

tr~ (;t) ~ d,,x2 l -  l/2r . (16) 
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Thus, from the idealised point of view, a universal 
power law holds for the critical noise strength for an 
attractor explosion near a tangent bifurcation if the 
threshold X is fixed. The critical noise strength for at- 
tractor explosions is an observable which is suited for 
experimental studies. One has to bear in mind, how- 
ever, that the adequacy of the idealised point of view 
may diminish as 2 approaches zero. It is in this limit 
when definitions (5) and (6) drastically differ. Sec- 
tion 3 deals with a different formulation of that prob- 
lem. 

We now turn to a more traditional observable: the 
characteristic time z(~), introduced in Section 1. The 
weak noise asymptotics of z (°) is entirely accounted 
for by the asymptotics of the mean escape time from 
the node to the saddle, which on an exponential scale 
is determined by ~p [ 9,15,17 ], 

z ( ' )  × exp(~p/o~) . (17) 
G~O 

Thus, we learn from ( 12 ) that 

l ima  ~ In T,~ °) ~ Cr ~ r -  ! / 2 .  ( 1 8 )  
~r~O A~O 

3, Predictions and computer experiments concerning 

Besides (18) there exists another statement rele- 
vant for the weak noise limit of z~ =) . The arguments 
and numerical studies of Ref. [22 ] seem to suggest 
the existence of a scaling funct ionf(a ' )  such that for 
all a ' > 0  

lim x/~ "~ A3/40",) =f( t r ' )  (19) 
A~O 

and that the scaling function is independent of the 
noise distribution. 

For a Gaussian noise distribution ( r=  2) the state- 
ments (18) and (19) are consistent: From ( 18 ) fol- 
lows the asymptotic form of the scaling function, 

f(G') X exp(~2/o-,2), (20) 
O"~0 

where c2 is the coefficient introduced in (12). 
AS a side-remark we note that combining (18) and 

( 19 ) in order to conclude (20) is similar to the de- 
scription of the situation near crises in Ref. [ 8 ], re- 

ferred to in the introduction, which reads (r = 2 ) 

lim 2vz) ~'') = h ( a ' ) ,  

where the exponent 7 depends on the deterministic 
dynamics, and 

h( t r ' )  × exp(¢2/a '2).  
O"~0 

Regarding the latter relation, Ref. [8 ] did not in- 
clude the warning that only asymptotic logarithmic 
equality is implied for h (tr'). 

Fig. 3 shows the results of computer simulations of 
( 1 ) for the maps (8) with Gaussian noise. The quan- 
tities a and 2 = /z- /A are varying between 5 × 10 - 4 and 
9X10 -4 and 10 -3 and 2.5× 10 -3, respectively, so 
that a ' = a 2  -3 /4  changes over several decades. The 
measured values for the escape times TJ °) are com- 
pared with the asymptotic prediction of  (20), which 
is plotted as a broken line in Fig. 3, using the value of  
c2 obtained in (13). We find excellent agreement in 
the whole a'-interval accessible to our simulations. 

Now we return to the above remark about f ( a ' )  
putatively being independent of the noise distribu- 
tion, which would not be compatible with our result 
(18). Fig. 4 shows results of simulations analogous 
to those shown in Fig. 3, but this time the noise dis- 
tribution satisfies (2) with r =  5. Remarkably, we find 
agreement with the scaling function for Gaussian 
noise for those measurements which result in mod- 

Al/2 T~ =) 

iooooo 

ioooo 

iooo 

ioo 

io 

1 

All. .̧  

)(," 
).," 

a f,-'" %,, 

5'0 16o i~o 20o 2~o o 
A3/2 o--2 

Fig. 3. Data obtained by simulation of  (8) near/A= 1.75, per- 
turbed by Gaus~ian noise (ire., r=2). Different symbols denote 
different noise strengths o'. The sampling error in the escape time 
z is 5%. The broken line shows the behaviour as predicted by (19), 
(20), and (13). 
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Fig. 4. Same as Fig. 3, but now with r= 5 for the shape of the 
noise distribution. 
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Fig. 5. Same data as in Fig. 4, but now compared with the predic- 
tion of (18) and (14) (broken line). 

erate escape times. But clearly, the behaviour of  pro- 
cesses with very long escape times is not properly de- 
scribed by (19), (20), and in this regime a cross-over 
to another scaling law occurs. 

Fig. 5 contains the same data as Fig. 4, but now in 
a different presentation in order to test (18). Ac- 
cording to that statement, a logarithmic plot of  z~ ¢) 
versus 24-5/G 5 should result in a curve whose slope 
approaches the value ~5 (which can be taken from 
( 1 4 ) )  as 24"5/t75 grows. Our measurements tend to 
confirm this statement, although it is obviously only 
in the domain of very long escape times that the ex- 
ponential asymptotics (18) becomes apparent, which 
makes it difficult to observe. 

The fact that deviations from (19) can only be seen 
for very large escape rates is the reason why the nu- 
merical experiments of  Ref. [ 22 ] did not suggest a 
dependence on the noise distribution. We can only 

sketchily indicate, why neither in the mathematical 
arguments of  Ref. [22] such a dependence showed 
up. The scaling behaviour (19) is derived by com- 
paring the escape time of  ( 1 ) with the escape time of 
a continuous-time process for which the scaling is ob- 
vious. However, the arguments used to establish the 
relation between both escape times implicitly assume 
that, for fixed value o fa ' ,  the escape time of ( 1 ) does 
not depend exponentially on 2. But this is only true 
for r =  2 (of. (18) ). Nevertheless, with a few modifi- 
cations it should be possible to use the arguments of  
Ref. [ 22 ] to give a rigorous explanation of the obser- 
vation of Fig. 4, which suggested that there is inde- 
pendence of the noise distribution as long as the es- 
cape time does not exceed a certain bound. 

The following heuristic considerations may be 
helpful to understand the existence of  two different 
domains in the behaviour of  z~ ~) . There are two small 
parameters involved: a, characterising the weak ran- 
dom influence, and 7, also characterising a weak in- 
fluence, namely the nontrivial influence of the deter- 
ministic dynamics (as opposed to the trivial dynamics 
for 7-- 0 that is locally given by the identity map) .  So 
the question is reasonable whether we should, in the 
situation at hand, regard (1) as deterministic dy- 
namics with small random perturbations or as a sum 
of random variables which would be independent if  
Fwere the identity, but whose independence is slightly 
perturbed for small 2>  0. What is appropriate de- 
pends on the way how the laboratory or numerical 
experiment is carried out, in particular, on what the 
ratio of  the small parameters is. 

The quasipotential method calls for the first point 
of  view - the deterministic influence must be domi- 
nant compared to the random influence. This is the 
reason for the order of  limits in ( 18): The asymptot- 
ics for 2--, 0 is accessible only after the limit a - ,  0. This 
implies that, given a f'Lxed finite value of a, the results 
of  the quasipotential method are relevant only if 2 
exceeds some minimal value, as it was observed in 
Fig. 5. 

If, in contrast, the second point of  view is appro- 
priate, then one should expect that the long-term ef- 
fect of  adding up the random contributions essen- 
tially amounts to what the central limit theorem 
predicts: a Gaussian distribution of the random in- 
fluences irrespective of  the distribution of the single 
contributions. This explains why we found corre- 
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spondence with the Gaussian behaviour in Fig. 4 as 
long as 2 is sufficiently small for fixed a. 

These considerations show that a Gaussian distri- 
bution of the random perturbations has the unique 
property of combining smoothly the two domains, as 
demonstrated in Fig. 3. Characteristic scaling laws like 
(19), (20) suggest to make use of controlled small 
random perturbations for probing bifurcating sys- 
tems. Our findings strongly recommend the use of 
Gaussian noise for that purpose (and not, for in- 
stance, uniformly distributed noise) since then the 
scaling laws have the largest range of validity. 
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