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Abstract 

We show that chaotic attractors at and above internal crisis points can be naturally decomposed into nonattracting invariant 
chaotic sets connected by weak intermittent heteroclinic couplings. These basic component sets are used to obtain the 
dynamical multifractal spectrum characterising the asymptotic and the finite time dynamics on the entire attractor. 

1. Introduction 

Transient chaos has been analysed extensively as 
a behaviour preceding the motion on a (simple or 
chaotic) attractor (for a review see Ref. [ 1 ] ). In such 
cases, there exists a nonattracting invariant set in the 
phase space along with the attractor. The nonattract- 
ing invariant set is typically a chaotic saddle which is 
globally repelling but has nevertheless a basin of at- 
traction of measure zero. In strongly dissipative sys- 
tems characterised by one-dimensional maps it degen- 
erates to a repeller with a Cantor-set-like structure. 

In this paper, we would like to point out that tran- 
sient chaos provides a useful characterisation of the 
permanent chaotic motion on chaotic attractors as 
well. 

In particular, we show that in certain situations there 
is a natural way to decompose a chaotic attractor into 
nonattracting chaotic sets (either chaotic saddles or 
repellers) that are weakly coupled and play a deter- 
mining role in the motion on the attractor. We call 
them hereafter the basic nonattracting components of 
the attractor. This is the case with chaotic attractors 

beyond internal crises [2] a situation well accessible 
in experiments [ 3-5].  The importance of nonattract- 
ing chaotic sets at crisis or in the precritical region has 
been mentioned in a few previous publications [4,6- 
9] from the point of view of different multifractal 
spectra. Our results complete this picture by empha- 
sising that the postcritical chaotic attractor can be de- 
composed into nonattracting invariant subsets. These 
basic components exhibit fractal structure along the 
unstable foliation, providing thus a geometrical back- 
bone of the attractor. We give an explicit procedure 
for the construction of these components. 

Although generating transient chaos, the basic com- 
ponents also provide a dynamical backbone of the 
asymptotic motion, in the sense that their dynamical 
multifractal spectra yield a good approximation of the 
dynamical characteristics of the whole attractor. 

The basic components are dynamically coupled via 
heteroclinic orbits. They develop from a single het- 
eroclinic orbit appearing at crisis that is of marginal 
stability, and form a new component of the dynamics. 
This component contains an infinite number of very 
long periodic orbits whose stability might be close to 
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Fig. 1. The attractor of the H6non map (x,y) ~ (a - x 2 + by, x) (a) and the two chaotic saddles (b), the basic components, forming 
the backbone of the dynamics on the attractor. The paran~ters are b = 0.3 and a = 1.276 taken in the postcritical regime above a period-7 
window (the crisis value is ae = 1.2716856). The component which is invariant under the seven-fold iterated map (heavy dots) is located 
in seven bands. The invariant subset restricted to the complement of these bands forms the other basic component (light dots). Both 
chaotic saddles exhibit a pronounced fractal structure along their unstable manifolds. The period-7 orbit (+) mediates between the two 
basic components. The first component was plotted by selecting pieces from a single trajectory on the attractor, while for the second 10000 
evenly distributed trajectories were started from the interval Ixl ,< 0.5, y = 0. In both cases the dotted straight line, which is tangent to 
the local stable manifold at the leftmost mediating periodic point and does not intersect other parts of the attractor, was used to identify 
numerically the points falling into the leftmost band of the first component, as described in the text. 

marginal. The dynamics associated with this compo- 
nent can only be seen in long-t ime observations. Then 
the associated orbits form the "bulk" of  the postcdtical  
chaotic attractor as they fill in the gaps along the un- 
stable foliation of  the basic nonattracting components.  

Because of  the separation of  t ime scales in the post- 
critical region, we can distinguish the finite t ime char- 
acteristics o f  the system from the truly asymptotic 
ones. The asymptotic dynamical  spectrum of  the entire 
attractor can be approximately obtained as the convex 
hull of  the contributions of  the basic components and 
of  the heteroclinic connection, while the finite t ime 
behaviour is faithfully characterised by superimposing 
the spectra o f  the basic components only. These prop- 
erties approximately hold in the postcritical regime, 
even for parameter values considerably far above the 
crisis point. 

2. Constructing the basic components 

Crisis i tself  is the tangency of  the attractor with the 
stable manifold of  a mediat ing periodic  orbit  [ 2] .  This 
stable manifold acts as the boundary of  the basin of  
attraction of  the precritical attractor separating it from 
other invariant sets. The very same manifold provides a 
natural parti t ioning of  thepostcr idcal  chaotic attractor; 

this fact can be used to construct the basic components.  
Suppose that the mediating orbit  is an m-cycle. The 

local pieces of  the stable manifold of  the per iod-m 
orbit  divide the attractor into bands. The subset of  the 
attractor that is invariant under the m-fold iterated map 
is located, in general, in m bands. It forms one of  the 
basic nonattracting components. The invariant subset 
within the complement of  these bands forms another 

basic component. 
Numerically one can obtain these sets by fol lowing 

a very long chaotic trajectory on the whole attractor 
and selecting segments that for many iterations either 
return on each mth step to a given band or never enter 
this band at all. The two sets can be plotted after dis- 
carding the last few points of  these segments, as usual 
in case of  transient chaos [ 10,1]. Alternatively, the 
PIM-triple method [ 11 ] (with the same selection cri- 
terion) can also be used to determine the basic com- 
ponents. 

As an example, Fig. 1 shows the attractor of  the 
H6non map in the postrictical regime above a period-7 
window and its decomposit ion into basic components,  
namely two chaotic saddles. 

The crisis illustrated with the H6non example is 
a case of  attractor explosion [7,9,12-21 ]. Attrac tor  

merging [2,6,22,23] is a related phenomenon when 
two or more disjoint  coexisting attractors become parts 
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Fig. 2. The invariant sets of the Htnon map in the precritical 
regime, inside the period-7 window, at b = 0.3 and a = 1.266. A 
chaotic saddle (light dots) coexists with the seven-piece chaotic 
attractor (heavy dots). The would-be mediating period-7 orbit 
(+) is on the edge of the saddle. When reaching the crisis value 
ac = 1.2716856, the attractor collides with the saddle at this 
orbit. Beyond crisis the remnant of the seven-piece attractor and 
the continuation of the precritical saddle become the two basic 
component saddles shown in Fig. lb. The precritical saddle was 
plotted the same way as in the postcritical case in Fig. 1. 

of an enlarged attractor. The situation is then very 
similar to that of  attractor explosion, except that in 
this case there are more than one precritical attractors. 
If the system has certain symmetries, internal crisis 
might also occur in the form of  symmetry recovering 
attractor merging [22].  

We note that the basic components are the continu- 
ation of  the attracting and nonattracting sets that exist 
before the crisis: the precritical attractor (which may 
well consist of  several pieces) and a coexisting non- 
attracting set. In the case of  the Htnon map these pre- 
critical sets are shown in Fig. 2. 

3. The entropy functions of composed attractors 

There have been different entropy-like functions in- 
troduced for the characterisation of  the dynamical mul- 
tifractal behaviour. They are connected with the statis- 
tics of  trajectories with a given local property. Notable 
examples are t heg (A)  [24] and the ~b(a) [25] func- 
tions based on the path probabilities and the finite time 
Lyapunov exponents, respectively. Alternatively, they 
can also be obtained as Legendre transforms of  certain 
free energy like quantities (e.g., the R6nyi entropies 
in the case of  g ( A ) )  extracted from appropriate parti- 
tion sums (cf. Section 4).  In the next section a third, 

entropy 
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Fig. 3. A qualitative picture demonstrating how the basic compo- 
nents determine the multifractal spectra of the system in different 
measurements. The horizontal axis is a local Lyapunov exponent, 
the vertical, some entropy. The solid lines show the multifrac- 
tal spectra of the individual basic components if measured sepa- 
lately, the thick line, that of the whole chaotic set. The dashed 
and dash-dotted lines show the anticipated outcomes of short-time 
measurements when the entropy is obtained directly or via the par- 
tition sum: they are expected to run close to the maximum or the 
convex hull (dots) of the basic components' spectra, respectively. 
The small difference comes from the negligible contribution from 
the heteroclinic coupling component. 

less often used, but for our purposes rather convenient 
entropy function, S ( E ) ,  will be discussed. The graph 
of  all o f  these functions is convex and the analysis of  
the dynamics on composed attractors proceeds along 
the same lines for all of  them. Therefore, in this sec- 
tion we shall not specify the particular form, we shall 
just speak of  an abstract entropy as a function of  a 
kind of  local Lyapunov exponent. Each basic compo- 
nent possesses its own entropy function supported on 
a finite interval (for a schematic diagram, see Fig. 3). 
These intervals might partially overlap indicating that 
the same value of  local Lyapunov exponents can occur 
in different basic components. 

The entropy functions of  the basic components are, 
of  course, smaller than the entropy of  the whole attrac- 
tor (thick line in Fig. 3). The difference between the 
attractor's and the basic components '  entropy comes 
from the contribution of  the third, heteroclinic cou- 
pling component. It is hard to say anything in general 
about this latter contribution, however, we can cer- 
tainly say that somewhat above crisis there are cou- 
pling orbits close to marginality, i.e. with small local 
Lyapunov exponents. A considerable amount of  en- 
tropy may belong to these orbits, therefore we expect 
that the entropy difference between the attractor and 
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the basic components is significant on the left hand 
side, and it is always present in this region. 

The entropy function of the whole attractor thus 
builds up from the contributions discussed above. In 
case of an actual observation, however, its form de- 
pends on the time scale and the way of the measure- 
ment. Let us denote the longest characteristic time 
scale of the motion on the basic components by r; 
close to the crisis this comes from the remnant of the 
precritical attractor, and is typically much shorter than 
the minimal length r '  of  coupling orbits. 

On short time scales, when the observation time T 
is on the order of r, the coupling component cannot be 
observed. Then, a direct analysis of the local Lyapunov 
exponents yields an entropy function very close to the 
maximum of the basic components' spectra (dashed 
line in Fig. 3). When performing a different analysis 
based on the appropriate partition sum (cf. Section 4), 
as a consequence of taking a Legendre transform, the 
resulting entropy function (dash-dotted line) will ap- 
pear close to the convex hull of the basic components' 
entropy contribution. 

In the case of asymptotically long-time analyses, 
T ~ C, a direct determination of the statistics of trajec- 
tories with a given local Lyapunov exponent is hope- 
less, thus one has to use a partition sum approach and 
obtain the entropy via Legendre transformation. Such 
a measurement will yield the entropy function of the 
attractor (thick line in Fig. 3). Due to the extra contri- 
bution of the coupling orbits, which is pronounced on 
the left hand side, it runs somewhat above the convex 
hull of the basic nonattracting components' entropy. 

On intermediate time scales r << T << r ' ,  the 
measured entropy function only gradually exceeds the 
shape determined by the basic components (whichever 
method is used). Thus the backbone remains a good 
approximant for the entropy of the attractor even on 
such time scales. 

4. The geometrical multifractal spectrum 

We propose the use of the so-called geometrical 
multifractal entropy function S(E) [26,27], since 
it seems to be particularly useful in describing the 
essence of the phenomenon. Here the number of tra- 
jectories is investigated rather than their probability 
taken with respect to the natural measure, and this is 

why we call it a geometrical multifractal characteris- 
tic. 

In the case of a single invariant set in a two- 
dimensional map, the entropy function is defined as 
follows. Cover the set in a generating partition with 

r 1N(n) hierarchically nested "boxes" of linear sizes ~t~ili=l 

along their local unstable direction at each level n 
of the partition. These length scales decrease expo- 
nentially in n, thus, local scaling exponents Ei can 
be introduced via the relation ei = exp (-Ein) for 
each "box". Since the nth images of the partitioning 
boxes extend to the whole set, Ei can be considered 
as the growth rate of expansion, i.e. the local Lya- 
punov exponent. As n grows, there is an increasing 
number N(n,E) of boxes having the same expo- 
nent E. This growth is exponential in n again, and 
the rule N(n, E) ,,~ exp [S(E)n] defines the entropy 
function. Thus, S(E) can be interpreted as the topo- 
logical entropy of trajectories with local Lyapunov 
exponent E. 

Alternatively, S can be extracted from a partition 
sum Zs and the associated free energy F ( f l )  defined 
a s  

N(n) 

Zs -- ~ exp [ - e r < e ) n ]  (1)  
i=1 

by taking the Legendre transform of f lF( f l ) .  For com- 
parison it is worth also giving the partition sums con- 
nected with the other two entropy functions mentioned 
in the previous sections, 

zg= p:, <2> 
i 

and 

= P , C  (3) 
i 

Both of them incorporate metric properties connected 
with the natural measure Pi of the "boxes", in contrast 
to the purely geometric definition of ( 1 ). 

The graph of S ( E )  must be a single humped convex 
function whose maximum is the topological entropy 
of the set, and the E value where the graph has a unit 
slope can be shown [26] to be the average Lyapunov 
exponent. For attractors, the S(E) curve touches the 
diagonal S -- E while, for nonattracting sets, S(E) is 
shifted to the right by the amount of its escape rate x. 
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Fig. 4. Entropy spectra of the quadratic map x ~ 1 - ax 2 around the attractor explosion at the end of the period-3 window. The entropies 
were obtained by the constrained Frobenius-Perron operator method as it has been worked out in Ref. [29]. The Lyapunov exponent of 
the mediating period-3 orbit is denoted by A. In the precritical region (a), at a = 1.785, the three-piece attractor (A3) and the coexisting 
repeller (R) have disjoint entropy spectra. At the crisis value a = ac = 1.7903275 (b), besides these, a marginally stable heteroclinic orbit 
yields the third component (M) in the origin. Then the asymptotically exact entropy of the entire system (A) is given by the convex hull 
(solid line) of the three components. In the postcritical region (c) the remnant of A3 becomes a three-piece repeller, R3, while its entropy 
spectrum is shifted to the fight, below the diagonal. The other basic component remains practically unchanged. These spectra reflect short 
lifetime behaviours of the two intermittent chaotic phases. The entropy of the entire attractor (A) describing the asymptotic dynamics is 
somewhat over the convex hull of the two repellers. 

We briefly sketch a method that can be applied to in- 
vertible two-dimensional maps. The basic nonattract- 
ing sets can be constructed, as discussed in Section 2, 
(cf. Fig. lb) by computing a few branches of the me- 
diating orbit's stable manifold, thus specifying regions 
containing the sets. In order to find the entropy func- 
tion one can use a procedure worked out originally 
for scattering processes [30]: start trajectories along 
a line outside of the specified regions and follow how 
long they remain inside these regions. Increasing life- 
times define intervals arranged in a hierarchical order. 
Measuring their sizes defines length scales {ei}, very 
much in the same way as in one-dimensional cases, 
from which the entropy function can be derived. 

However, the most powerful method for determin- 
ing S ( E )  has been worked out for one-dimensional 
maps: it can be obtained from the largest eigenvalue 
of the generalised Frobenius-Perron operator [28]. 
By restricting this operator to the basic components 
(which are repellers in this case) the partial entropy 
contributions can also be determined [29]. 

5. Example for the decomposition of the entropy 
function 

In order to gain qualitative verification of the theory 
outlined above we made exact calculations for deter- 
mining the entropy spectrum in the quadratic map 

x ~-~ 1 - a x  2. (4) 

We have investigated not only the postcritical case 
but the full vicinity of the attractor explosion point 
at the end of the period-3 window, which is the one- 
dimensional analogue of the phenomenon shown in 
Figs. 1 and 2. In Fig. 4 we demonstrate how the S ( E )  

function changes when the control parameter a passes 
through the the crisis value a = ac = 1.7903275. 

(a) In the precritical region, within the main period- 
3 window a E [ 1.75, ae] of the map (4),  analogously 
to the situation in Fig. 2, there is a three-piece at- 
tractor (A3) and, an additional chaotic repeller (R) 
with a Cantor-set-like structure. These two invariant 
sets are responsible for the asymptotic behaviour and 
the preceding chaotic transients of the system, respec- 
tively. Fig. 4a shows the free energy functions of the 
three-piece attractor and the coexisting repeller ob- 
tained by using the constrained Frobenius-Perron op- 
erator method [29], at a = 1.785, a control parameter 
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value where the attractor is chaotic. Note that the en- 
tropy function of the component sets are disjoint. Ap- 
parently, the transient behaviour of this system is more 
chaotic than the asymptotic one because the S ( E )  
spectrum of the repeller is much further away to the 
right than that of the attractor (i.e., it has strictly larger 
local Lyapunov exponents) and, also, has a greater 
maximum (i.e., topological entropy ). We note that the 
local Lyapunov exponent, A, of the mediating period- 
3 orbit is the smallest on the repeller. 

(b) At the crisis situation a = ac the three-piece at- 
tractor just touches the repeller at the mediating orbit. 
Fig. 4b shows that the mediating orbit indeed gives a 
contribution (at E = A) to the spectra of both basic 
components. Due to this heteroclinic tangency, an ad- 
ditional coupling component also appears in the sys- 
tem in the form of an infinitely long marginal or- 
bit (M).  Since its topological entropy and Lyapunov 
exponent are both zero, this component can be repre- 
sented by a single point at S = E = 0. Because the cou- 
pling is infinitely weak at crisis, the resultant entropy 
function is the mere superposition of the entropies of 
the main components: the old attractor (A3), the re- 
peller (R) and the heteroclinic orbit (M).  This rule 
holds as long as finite time observations are made. The 
asymptotic result, on the other hand, can be obtained 
as the convex hull of the main components' contribu- 
tion. This implies the appearance of the straight lines 
connecting the old attractor's entropy contribution to 
the graphs belonging to the mediating orbit and the 
nonattracting set, respectively. The piece on the diago- 
nal S = E in the entropy spectrum has previously been 
described [31 ] as a general sign of intermittency. (We 
note in passing that the reason of the triangular shape 
of the entropy of A3 in Fig. 4b is that A3 undergoes a 
phase transition when it collides to the mediating or- 
bit. This situation is the counterpart of the phase tran- 
sition at the external crisis point a = 2 [32] where the 
attractor practically becomes a two-scale set.) 

(c) Beyond the crisis (a > ac) there is only a 
single, one-piece enlarged attractor (A). Just like in 
the analogous case shown in Fig. lb, there are two 
basic components embedded in the attractor. Both of 
them are repellers now with a Cantor-set-like structure. 
One of them inherits the topological structure of the 
precritical repeller, therefore, we keep denoting this 
subset by R. The other one consists of those orbits 
that never escape from the three bands of the former 

attractor A3; this set will be called hereafter the three- 
piece repeller (R3). 

By considering the S(E) functions at a = 1.8, some- 
what beyond the crisis situation, in Fig. 4c, it is con- 
spicuous that the spectrum characterising the whole 
attractor, obtained from an asymptotic measurement, 
runs somewhat above the common convex envelope 
of the curves belonging to the two repellers. This fact 
shows convincingly that the multifractal spectra of the 
embedded repeller components can indeed be used as 
a sort of backbone, to approach the spectrum of the 
whole attractor. 

Such an approach provides us with some informa- 
tion on the internal structure of the attractor and on 
the characteristics of the asymptotic behaviour too; 
for example the escape rates from the individual basic 
components determine the average lifetime and typ- 
ical frequency of bursts characterising crisis induced 
intermittency [ 14]. These quantifies give the char- 
acteristic time scales of chaotic transients on the re- 
pellers R and R3, respectively. In the vicinity of ac 
these time scales remain significantly shorter than that 
of the third, heteroclinic component which is deter- 
mined by the diverging lengths of the coupling orbits. 
This makes sure that on time scales of r, the recip- 
rocal value of the smallest escape rate, one observes 
just the union of the basic components' entropy con- 
tributions rather than the full spectrum, as described 
in Section 3. 

We emphasise that the property of decomposabil- 
ity holds considerably beyond ae. However, it is dif- 
ficult to tell in general what the region of validity of 
the decomposition suggested in this paper is. The rela- 
tive difference in the control paramater from the crisis 
value (a /ae  - 1 ) is not necessarily a proper quantity. 
It is clear from Fig. 4 that although the relative dif- 
ference is rather small, the actual shape of the basic 
components' entropy function undergoes a consider- 
able change. In contrast to previous papers [6,7,9] re- 
stricted to an infinitesimal vicinity of the crisis config- 
uration, we claim that by determining the basic com- 
ponents and their entropies at a rather than at ac, the 
decomposition suggested might be a good approxima- 
tion even at such control parameter values where the 
dynamics on the basic components considerably dif- 
fers from that at crisis. 

In our example the entropy functions of the basic 
components do not overlap (cf. Figs. 3 and 4): they 
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only touch each other at A, the local Lyapunov ex- 
ponent of the mediating orbit all over the postcriti- 
cal region. This fact is a consequence of the specific 
map, and this is not necessarily true for other one- 
dimensional maps and is certainly atypical for higher 
dimensional systems. 

6. Closing remarks 

The picture we outlined in this paper is particularly 
practical to demonstrate the mechanism how the topo- 
logical entropy and the average Lyapunov exponent 
changes when the system undergoes a crisis. Fig. 4 
shows well that when the enlarged attractor appears, its 
entropy function takes up the maximum value exactly 
where the former repellers' spectrum does. Therefore, 
when the enlargement happens, the topological en- 
tropy of the attractor jumps suddenly from the value 
of the precritical attractor's to that of the precritical 
repeller. (There is of course no jump in the topologi- 
cal entropy of the whole system.) The Lyapunov ex- 
ponent of the attractor, i.e. the place where the S(E) 
function is tangent to the diagonal also departs rapidly 
(although continuously) to the right from its origi- 
nal, precritical value as the system parameter exceeds 
the critical value. This is consistent with the obser- 
vation that the Lyapunov exponent of the postcritical 
attractor is typically larger than that of the precritical 
one(s) [ 15]. 

An important advantage of our method is that the 
nonattracting sets selected as basic components are 
particularly robust, in contrast to the attractor which is 
extensively sensitive to changes in the control parame- 
ter, as it was discussed above. In one-dimensional sys- 
tems the basic components are typically structurally 
stable: their orbits do not appear, disappear nor change 
stability. In higher dimensions this is not general [ 33], 
however, the basic components are much less sensitive 
than the contribution of the newly appeared connect- 
ing orbits. 

We would like to recall that the basic nonattract- 
ing components, as we defined them in the most nat- 
ural way, can be associated with the different chaotic 
phases in crisis induced intermittency [ 14]. 

This mechanism has been described in the case of 
the ~b(a) spectrum [6,7] by assuming the entropy 
contribution of nonattractive sets inside the attractor 

without explicitly determining them. In this paper we 
argue that this phenomenon is general for all kinds 
of entropies around crises. We show that the basic 
components can be constructed, and their individual 
entropy functions can, in fact, be measured. 

We also mention that, according to our results, at- 
tractor enlargement provides a good example for mul- 
titransient chaos [20] in the sense that the dynamics 
of weakly coupled non-attracting chaotic sets can be 
used successfully to analyse the motion on the joint 
chaotic attractor. 
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