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The nonlinear critical slowing down of the order is calculated for the time-dependent Ginzburg—Landau model in
the limit of infinite spin dimensionality. The scaling law A(M%) = A(®) — 3 is verified for this model.

" A phenomenological analysis of the nonlinear cri-
tical dynamics of purely relaxational systems has led to
the scaling law [1,2]

A0 = A®) g, (1)

relating the critical exponents (A® and A®9) of the
linear and nonlinear relaxation times of the order param-
eter and the static exponent §. High temperature series
[3—6], Monte Carlo works [7] and the only available
experiment [8] seem to support this scaling law and
its extension [2] to variables other than the order pa-
rameter.

One of the assumptions involved in deriving (1) is
the scaled form of the relaxation time

(AT, My) ~ AT-2®o (0, /ATS) , )

where M, is the initial deviation of the order param-
eter M from its final equilibrium value and AT = |T -
T, Renormalization group calculations [9, 10] have
proved this assumption to be correct. The scaling rela-
tion (1) howevér does not follow from (2) unless

®(x) ~ x~1 for x - o0. One can give arguments based

on ergodicity [1] leading to the x—! behavior, it remains
however to be verified by explicit calculation.

In this letter we present the first verification of (1)
for a nontrivial model, namely for the time-dependent
Ginzburg—Landau (TDGL) model in the limit of infi-
nite spin dimensionality.

In the TDGL model the time evolution of the n
components of the order parameter field S; = S;(x, 1)
(i=1, .., n)is described by the equation [11]:

n

where n; = n;(x, f) is a Gaussian—Markoffian random

force [11],ry ~ a+T and since we are interested in
the n ~> oo limit u ~ n~! is assumed. For simplicity
the case T> T, is considered and we set I'y = 1.

We shall assume that the heat bath is regulated
externally and changes its temperature instantaneously.
Then the temperature and consequently the parameters
in (3) are well defined. In this case the system may be
far from equilibrium in the sense that e.g. M is far from
its equilibrium value. This situation is often met in ex-
periments [8, 12].

When calculating the nonlinear relaxation an impor-
tant point is that the solution of (3) has to be averaged
not only over 1; but also over the initial conditions.
We shall use a far from equilibrium initial state pre-
pared similarly to the experimental procedure [8,12]:
for £ <0 the system is in equilibrium at a temperature
Ty <T_, thus there is a spontaneous order M. At t=0
the system in heated instantaneously to 7> T, where
the equilibrium value of M is zero.

If the above procedure is used then for # > 0 the
parameters in (3) have their equilibrium value at T> T
and the calculation can be carried out as follows. Let
the direction / = 1 be along the initial ordering. It is
known from statics [13] that My ~+/n, so it is conve-
nient to write

S16e, )=M(@)+ L(x, 1), C))

where M(¢) = (S, (x, )~ v/n and the brackets () de-
note the double averaging over the initial conditions
and noise as described above. Eliminating S (x, #) from
(3) the equation (L (x, 1)) = 0 yields in the limit n > e:

M) =-T(@OM@), 5)

T =ro+tud?@)+un [ dqC(g, 1. ©6)
igI<A



Volume 60A, number 1

where C(g, ) is the Fourier transform of the transverse
correlation function C(x, 1) =(S;(x, 1)S;(0,1)) (i = 2,
ey ).

The equation for C(g, £) can be obtained by iterat-
ing eq. (3) with the uM2(¢) term included in the zeroth
order approximation. In the n - ¢ limit one has to
keep track of the closed loops since «# ~ n~1 and each
closed loop generates a power of n. The result is the
Hartree approximation:

t
C(g, 1)=C(q,0) exp {—2 f[q2+r(s)]ds]
: . @
+2 fdt'exp {—2 f[qz+l"(s)]ds] .
0 t

Here the initial correlation is C(g,0) = g—2.

Combining (5), (6) and (7) we find that, as in the
case of the e-expansion [10], the equation for m(f)=
M(t)/My is non-Markoffian

~11 = (rg — rg)m + uMam?

t
+2unm3 fdt' f d4q g 2exp[-2q%(t—-1)]

0 IgI<A (8)
Xm=3("ym(t'),

where r = ro(T)ie., rg —roc ~ T T,

The memory term is crucial for non-classical critical
dynamics, if it is neglected the equation of motion
becomes that of the mean field theory.

Eq. (8) is a linear integro-differential equation for
m=2, It can be solved by Fourier transformation. From
the solution it can be easily deduced that near T, and
for small w the Fourier transform of m(#) has the
following scaled form:
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oy - 3 i _1 M,
m(w)-ofe tm(r)dt-7f(‘7",A—°f), ©)

where  is the inverse susceptibility » ~ x =1 ~ AT2/@-2),
From (9) the scaled form (2) of the relaxation time

7= m(0) follows and one can read the well known

[11} value of the critical exponent of the linear relax-
ation time A® = 2/(d - 2).

The exponent of the nonlinear relaxation time is
found by calculating 7 (w) at T, with M # 0. One
can show that for 2 < d <4, M(w) ~ w@-6)/4_ Then
scaling (9) implies 7 ~ AT@-6)/2W@-2) apd s0 A =
(6—d)/2(d —2). Since A@=2/(d—2)and =% we
have proved the validity of the scaling law (1) in the
n —> oo limit of the TDGL model. Finally we note that
for d > 4 the memory effects are negligible and the
molecular field results [1] apply.

We are indebted to L. Sasvari for helpful discussions.
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