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We present an equation describing invariant curves associated with periodic points of period two in a wide class of two- 
dimensional invertible maps. Several branches of the unstable manifolds for the map Xn+ ! = 1 - a IXnl + bzn, Zn+ x = Xn are 
constructed in a situation when they are related to a two-piece strange attractor. 

Stable and unstable manifolds play an essential role 
in non-integrable systems [ 1,2]. For chaotic behaviour, 
however, not only the invariant curves associated 
with fixed points are important, but the invariant 
curves of  the periodic points as well [3]. By varying 
one parameter in a dissipative system, for example, it 
may happen that homoclinic points cease to exist 
along the invariant manifolds of  the hyperbolic fixed 
points. The strange attractor may then be related to 
the unstable manifold of  hyperbolic points of period 
two [3,4] and, therefore, it consists of two parts. 

Here, we introduce an equation for the invariant 
curves associated with periodic points of period two 
in two-dimensional invertible maps and present a 
method of  solution which, by specifying a piece of 
the curve, generates further parts of  it. It is an exten- 
sion of the method we proposed in ref. [5] for solv- 
ing the equation for the invariant manifolds of  the 
fixed points. For the piecewise linear map [6,7] the 
method allows explicit constructions of the invariant 
curves (see also ref. [5]). 

We consider the class of  two-dimensional invertible 
maps with a constant jacobian defined by the recur- 
sion relations 

Xn+ l = f ( x n ) + b z  n , Zn+ l = x  n , (1) 

where f denotes a single-humped symmetric function 
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and b is assumed to be positive. For f (x)  = 1 - a x  2 

we recover H6non's map [8], while the choice 

f ( x )  = 1 - a i x l ,  ( 2 )  

which we shall use as a particular example, corre- 
sponds to the piecewise linear map introduced by 
Lozi [61. 

When deducing an equation for the invariant curves 
associated with the fixed points of  (1), one assumes 
that each of  the curves is described by a continuous 
(generally multi-valued) function, x = f*(z) ,  in the x , z  

plane. From the invariance property of  the curve it 
follows that f*  fulfills the relation f * ( z )  = f ( z )  + 

b/"*-l(z) .  Starting from the inverted map, a similar 
equation can be obtained: .f*(z) = f ( z ) / b  + f * - l ( z ) /  

b, where x = .f* (z) represents an invariant curve 
after performing the coordinate change x '-, - z .  
The first of  these equations has been used by Bridges 
and Rowlands [9] to obtain an approximate expres- 
sion for the shape of the Hdnon attractor, and latter 
by Daido [ 10] to approximate other invariant mani- 
folds in the same model. Sim6 used a similar equation 
in his calculation [3]. 

Turning now to the invariant curves associated 
with points of  period two, we note that they would 
be one-piece objects (consisting of a single continuous 
line) in the second iterated map. In the original map 
(1), however, they consist of two parts mapped into 
each other. Their description, therefore, requires two 
continuous func t ionsf~ , f~  with the property that 
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the first image of the curve given by x = f{(z) is x = 
f~(z) and vice versa. That is, f~  and f~ fulfill the rela- 
tion 

f'~(z) = f(z) + bf~2 - 1 ( z ) ,  (3 a) 

= [(z)  + (3b) 

A similar relation follows from the inverted map. The 
generalization to invariant curves associated with 
points of  higher periodicity is straightforward. 

We illustrate the solution o feq .  (3) with the ex- 
ample of  the piecewise linear map defined by (2), 
where analytic calculations are possible. In more gen- 
eral cases, e.g. for the H~non model, these equations 
can be used to obtain approximate expressions for 
the invariant curves of  the points of  period two in a 
similar way as for those of  the fixed points in refs. [9, 
10]. 

The periodic points F1, F 2 of period two are the 
images of  each other. Therefore, it follows from the 
second equation o f ( l )  that the coordinates o f f  2 are 
Zl,X 1 .  * provided those o f F  1 are x~, z~. Furthermore, 
x~ and z~ satisfy the equations 

= / ( z ; ' )  + bx';, 
= + bz '. (4 )  

In the case of  the piecewise linear map the only solu- 
tion differing from the fixed points is specified by 

_ a + l - b  a - 0 - b )  (5) 
x~ a 2 + ( 1 - b )  2 , - a 2 + ( l _ b )  2 

for typical values of  the parameters x [  > 0, z~ < 0. 
Proceeding as in the case of  the invariant manifolds 

of the fixed points, we start by determining single 
branches of  the invariant manifolds o f F  1 and F 2. 
Assuming, they are given by linear functions in a finite 
neighbourhood of the periodic points we write 

• + h 1 ( z  - z ~ ' ) ,  ( 6 )  f t :  X=X1 

f'~2: X = g~ + ),.2(Z - X ; ) .  (7)  

Substituting (6) and (7) into (3) and using (5) one ob- 
tains 

X u 1,2 = +[a+ (a 2 -- 4b)1/21/2 , (8) 

~'] ,2 = -+ [a - (a  2 - 4 b )  1 /2  ] / 2 .  ( 9 )  
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Fig. 1. The first steps in constructing the solution of eq. (3) 
with f as given by (2). Fat lines denote the branches of the un- 
stable manifolds o f F  1 and F 2 (a = 1.44, b = 0.3). 

It is to be noted that ~1 ~2 is just the eigenvalue of  
the second iterated map at F 1 and F 2. In the region 
of interest: b ~< 1, 1 < a  < 2 the modulus of ks 1,2 is 
less than unity, while that of  XUl,2 is greater than 
unity, provided a > 1 + b. The latter inequality is the 
criterion for the existence of hyperbolic points of  pe- 
riod two in the model. Here we restrict our investiga- 
tions to this region. 

Eq. (3) specifies the range of validity of  the 
branches (6) and (7), too. Let us consider the unstable 
manifolds characterized by slopes given by (8). As- 
suming f~  is described by (6) for negative values of  z, 
it follows from eq. (3b) that f~  can be defined through 
(7) for z ~< c~ only, where c T = x] ~ u . - ~klZ 1 is the 
maximum value along the first branch of the unstable 
manifold emanating from F 1 (see figs. la and lb).  
The restriction in the range o f f ~  then leads to a con- 
finement offa l  in tothe interval [1 -ac~, 0] by eq. 
(3a) as the minimum value o f f ~  at c~ is just f(c~). 
Finally, the minimum value o f f ~  yields a lower 
bound in the range of f ~  (fig. l a). 
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Fig. 2. Unstable manifolds of the periodic points F 1 and F 2 
as obtained after nine steps of construction at parameter 
values a = 1.44, b = 0.3. These values are relatively close to 
the critical point characterized by homoclinic tangents be- 
tween the invariant manifolds of the fixed point, therefore, 
the two pieces are relatively close to each other. 

One cannot stop here, however, as the inverse of  
f~' (fig. lb )  is defined in a longer interval than f t  it- 
self. Eq. (3a) then specifies a new branch in f~' which 
is again a piece of  a straight line (fig. lc).  Considering 
now the inverse o f f t ,  the new branch of  it (fig. ld)  
generates through eq. (3b) a new branch infJ '  (fig. 
lc) ,  etc. The self-generating procedure obtained by 
this way converges in the sense that the new branches 
come close to the previous ones and the neighbouring 
lines become soon indistinguishable due to the finite 
thickness of the drawing facility. 

The stable manifolds, similarly as in the case of  in- 
variant curves of  the fixed points [5], can be con- 
structed most conveniently by means of  the equation 
extracted from the inverted map. 

As an example,  we show the result for the unstable 

manifolds o f F  1 and F 2 (fig. 2) at parameter values 
where no homoclinic points exist along the unstable 
manifolds o f f  1 and F2;  therefore, the closure of the 
latter set is expected to give the (two-piece) strange 
at tractor  [3]. Fig. 2 agrees well with the strange at- 
tractor we obtained in a computer  simulation. 

The method presented here makes it possible to 
follow the modifications of  the invariant manifolds 
of  the periodic points of  period two up to the critical 
situation characterized by homoclinic tangents, be- 
yond which a four-piece strange at tractor  would ap- 
pear. On the other hand, the procedure is not restrict- 
ed for small values of b, therefore it is appropriate for 
studying the conservative limit (b = 1) where the invar- 

iant curves of  F 1 and F 2 become invariant tori. We 
hope to return to a more detailed discussion of these 
questions soon. 

The author is indebted to Professor R. Graham for 
illuminating discussions and the kind hospitali ty.  Dr. 
M. DSrfle's help in introducing the author into the 
use of  the computer  is highly acknowledged. Thanks 
are due to Dr. J. Haus for a critical reading of the 
manuscript.  
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