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We calculate the fractal dimension of the strange attractor in the map x' = ax — sgn(x) + bz, 2’ = x. The method is based
on the construction of the unstable manifolds of period-two points. The critical case characterized by heteroclinic tangents

is investigated.

The fractal dimension [1,2] is a basic property of
strange attractors. There have been several attempts for
the estimation or numerical calculation of this quantity
in different chaotic systems [3—12]. Since it has been
recognized that for piecewise linear two-dimensional
maps analytic calculations become possible [13—18],
it is natural to search for an exactly solvable example
among this type of maps.

The well-known transformation

x'=f(x)+bz, z'=x, 1)

describes a broad class of two-dimensional maps; with
a quadratic f it reduces to the famous Hénon model
{19,20]. The piecewise linear map specified by f(x)
=1 —alx| [13—15] shows in the structure of its invari-
ant curves a topological similarity to that of the Hénon
‘model [16—18]. For finding, however, a strange attrac-
tor the fractal dimension of which can be easily calcu-
lated, it is more convenient to consider the map de-
fined by the function

f(x)=ax —sgn(x), @)

where sgn(x) denotes the sign of x. Inspite of the fact
that the one-dimensional (b = 0) limit of the two piece-
wise linear cases are quite similar, the two-dimensional
extensions differ qualitatively. An essential new fea-
ture of the map associated with (2) is that its strange
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attractor consists of parallel straight line segments only
(fig. 1a).

This property follows from the equations describing
the invariant curves of periodic points of (1) [18]:

@ =1@)+bfi-1¢), i=1,..,n. 3)

They express that the invariant curve x = f;*(z) around
the period-n point G; is mapped onto x = f7} ;(z), the
invariant curve around G;, 1, the next element of the
n-cycle. In our case the fixed points Hy 5y : (x*

=t(g + b — 1)L, x*) lie outside the strange attractor
(fig. 1b). They play a similar role as the fixed point
H_ of the Hénon model [4] or of the piecewise linear
map introduced by Lozi [13]. The period-two points
Fioy: (e = £(1 +a - b)~1, —x,), however, do be-
long to the strange attractor. Writing the branch of the
invariant manifold going through F; () in the form

f 1* (2)(2):
where the upper index belongs to f;*, we obtain from
(3)

A=a+b/\, 5)

x=x, +Mz +x,), 4

which has two solutions

AUO) = [2 + (a2 + 4b)1/2))2 . (6)

Restricting our considerations to the regiona >1 — b,
AU (with the positive sign) is greater than 1, while [AS|

< 1. Therefore, the branch with A" belongs to the un-
stable manifold of F5), while that with A5 to the
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Fig. 1. (a) The strange attractor of map (1), (2) obtained in a
numerical simulation after 3000 points. 2 = 1.35, b = 0.5. (b)
The first branches of the unstable manifolds of F; as obtained
after 3 steps of construction.

stable one. As the inverse of the first branch has a
slope 1/), eq. (3) generates new straight line segments
with a slope @ + b/X, but, due to (5), this means that
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the new branches run parallel to the first one. A simi-
lar argumentation shows that the unstable (stable)
manifolds of the fixed points and other periodic
points, too, consist of straight line segments with
slope A% (A%) only.

The strange attractor obtained in the computer
simulation is related to the unstable manifolds of the
period-two points. Fig. 1b shows a few branches of
the unstable manifold of F; obtained by the method
sketched above. It is an asymmetric object. Together
with its inverted image, however, they give already a
good approximation of the numerical result (fig. 2c¢).
Similarly as in other cases [4,21,22], the strange attrac-
tor is expected to be the closure of the aforementioned
unstable manifolds.

The construction makes it possible to calculate the
fractal dimension of the strange attractor. We proceed
as follows. The first branch going through F| intersects
the x axis at Py (c*,0), where

=1+ N)x, =1+c*h/A", @)

while that going through F, at FI,O : (—c*, 0). We shall
use the convention that P denotes the inverse of the
point P, and P; , stands for the nth image of P; . The
map (1), (2) is lmear within one half-plane only, there-
fore, the validity of (4) is restricted to z < 0 in the

case of f1" and to z >0 in the case of f5. The inverse
functions are thus defined for z <¢* and z 2 — ¢*, re-
spectively, and this means through (3) that the right
endpoint of the branch going through F, is ISRE : (ac*

— 1, ¢*), while the left end-point of the other one is
Pl 1- Further steps do not create segments outside
these branches (see fig. 2a—c), they are the outermost
lines of the strange attractor. Starting with (4), eq.

(3) generates two new branches P 5P, o and P 2, oP12
where the x-coordinate of P, , is given byl —c *Bb/AY,
which form the innermost lines of the strange attrac-
tor. Thus, the region outside the band Py oPy 1P 2P) o
and its inverted image cannot belong to the strange at-
tractor. To find such a forbidden regime is essential in
calculating the fractal dimension. It follows from (7)
that the width of the bands is 2¢*b/[A¥(1 + Av2)1/2],
q = b/\" times the width of the parallelogram
Pl,OI—)l,lPl oP1,1- Their area is 2¢*2b, b times the area
of P Py 1 Py Py 1, in accordance with the fact that
the modulus of the jacobian of the map is b. The new
branches generated by (3) in the next step intersect the
x axisat £[1 £ (1 — ¢*b/A")b/N\V]. Since the image of
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the forbidden region is again forbidden, the bands
covering the strange attractor after this step have a
width 2¢*(1 + A¥2)~1/2¢2 and an area 2c*2b2. After
n steps we shall have bands of width 2¢*(1
+\u2)~1/2g7 and of a total area 2c*2b7. Taking then
small squares of side €,, €, ~ ", the area can be
covered by NV, such squares, where NV, ~ (b/g?)n.
Thus, we obtain for the fractal dimension
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Fig. 2. Simultaneous construction of the unstable manifolds
of the period-2 points. The shaded region does not belong
to the strange attractor. Dotted and dash-dotted lines denote
the images of the segments Py oP; 1,P1 oP; 5 and Py oPy o,
Py oP2 0, 1espectively (a = 1.35,5 = 0.5).

_
4 W)
_2In[a/2+(@?/4+b)/2] —Inb

In[a/2 + (a2/4 +b)1/2) —Inb

(®)

For small values of b d behaves as 1 — In a/ln b.
We have to emphasize here that it does not follow
from the argumentation that the fractal dimension of
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Fig. 3. Stable manifolds of the fixed points and of the period-2 points (thin lines) as obtained after 4 steps of construction. The
dotted lines form parts of the preimages of the z axis. Homoclinic intersections with the unstable manifolds of the period-2

points can be observed. The parameters are as on figs. 1, 2,

a cross section of the strange attractor would be d — 1.
A similar situation is expected in more general cases,
too.

The stable manifolds can be constructed in an

analogous way. As they are the unstable manifolds of the

the inverted map which after the change x < —z is
given by

x'=f(=x)/b+z/b, z'=x, ()

the construction goes along the same lines as that dis-
cussed above but now (9) is to be used rather than
(1). Fig. 3 shows the stable manifolds of the fixed
points and period-two points, as well as, the strange
attractor. The stable manifolds of the fixed points,
similarly as that of H_ of the Hénon model or of the
other piecewise linear case, determine the attracting
region of the strange attractor.

By varying the parameters of the map, the struc-
ture of the strange attractor changes, and its fractal
dimension is changed as well. Increasing « at a fixed
value of b, a critical configuration is reached, at a
certain g, where the points Pl, 2 just touch the
branch of the stable manifold of H; which goes
through the fixed point. A straightforward calculation
gives

a,=2(1 —p)l2 . (10)
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Above a, transverse heteroclinic points appear, the
unstable manifolds of F;, Fy do not remain confined
to the region defined by the stable manifolds of H;,
H,, the strange attractor ceases to exist. The critical
case 4 = g, has an important meaning. This corre-
sponds to the two-dimensional extension of the diadic
map (or Bernoulli shift) x' = 2x(mod 1). It follows
from (8) that, at a given b, the strange attractor pos-
sesses its greates fractal dimension at ¢.. Fig. 4 shows
d.=d(a = a,) as a function of b.

Finally, we note that in our case the Lyapunov

Fig. 4. The fractal dimension given by eq. (8) ata, = 2(1
— b)Y/2 35 a function of b.
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numbers [4] of chaotic trajectories can be calculated
easily since the strange attractor consists of parallel
straight line segments only. They turn out to be

Ay =In A" and A, = In|[A%], thus, the fractal dimen-
sion may be expressed asd = 1 — A /A, in agreement
with the conjectures of Kaplan and Yorke [3] and
Mori [5], which for two-dimensional maps coincide.

The author is indebted to Professor P. Szépfalusy
for suggesting the investigation of discontinuous maps,
and to Professor R. Graham for helpful discussions
and the kind hospitality.

References

[1] B.B. Mandelbrot, Fractals: form, change, and dimension
(Freeman, San Francisco, 1977).

[2] E. Ott, Rev. Mod. Phys. 53 (1981) 655.

[3] J.L. Kaplan and J.A. Yorke, Lect. Notes in Math. 730
(1979) 228.

[4] C. Simd, J. Stat. Phys. 21 (1979) 465.

[5] H. Mori, Prog. Theor. Phys. 63 (1980) 1044.

[6] H. Mori and H. Fujisaka, Prog. Theor. Phys. 63 (1980)
1931.

PHYSICS LETTERS

S September 1983

[7] D.A. Russel, J.D. Hanson and E. Ott, Phys. Rev. Lett.
45 (1980) 1175.
[8] H. Froehling, J.P. Crutchfield, D. Farmer, N.H. Packard
and R. Shaw, Physica 3D (1981) 605.
[9] P. Grassberger, J. Stat. Phys. 26 (1981) 173.
[10] J.D. Farmer, Physica 4D (1982) 366.
{11} A.J. Chorin, J. Comp. Phys. 46 (1982) 390.
[12] C. Foias and R. Teman, Phys. Lett. 93A (1983) 451.
[13] R. Lozi, J. Phys. (Paris) 39 C5 (1978) 9.
[14] R. Lozi, in: Intrinsic stochasticity in plasmas, eds.
G. Laval and D. Grésillon (Editions de Physique, Orsay,
1979) p. 373.
[15] M. Misiurewicz, in: Nonlinear dynamics (Ann. NY Acad.
Sci. 357), ed. R.H.G. Helleman (The NY Acad. Sci.,
New York, 1980) p. 348.
[16] T. Té€l, Z. Phys. B49 (1982) 157.
[17] T. Tél, Phys. Lett. 94A (1983) 334.
[18] T. Tél, Invariant curves, attractors and phase diagram
of a piecewise linear map with chaos, to be published in
J. Stat. Phys. 33 (1983).
[19] M. Hénon and Y. Pomeau, Lect. Notes in Math. 565
(1976) 29.
[20] M. Hénon, Comm. Math. Phys. 50 (1976) 69.
[21] P. Holmes, Philos. Trans. R. Soc. A292 (1979) 419.
[22] Y. Ueda, J. Stat. Phys. 20 (1979) 181.

223



