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†Department of Civil Engineering Mechanics, Technical University of Budapest, Müegyetem rkp. 3, H-1521 Budapest, Hungary; ‡Marine Physical Laboratory,
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Hydrodynamical phenomena play a keystone role in the popula-
tion dynamics of passively advected species such as phytoplankton
and replicating macromolecules. Recent developments in the field
of chaotic advection in hydrodynamical flows encourage us to
revisit the population dynamics of species competing for the same
resource in an open aquatic system. If this aquatic environment is
homogeneous and well-mixed then classical studies predict com-
petitive exclusion of all but the most perfectly adapted species. In
fact, this homogeneity is very rare, and the species of the commu-
nity (at least on an ecological observation time scale) are in
nonequilibrium coexistence. We argue that a peculiar small-scale,
spatial heterogeneity generated by chaotic advection can lead to
coexistence. In open flows this imperfect mixing lets the popula-
tions accumulate along fractal filaments, where competition is
governed by an ‘‘advantage of rarity’’ principle. The possibility of
this generic coexistence sheds light on the enrichment of phyto-
plankton and the information integration in early macromolecule
evolution.

In most natural habitats numerous competing species are able
to coexist, while generally only few resources limit these

communities. This contradicts classical studies predicting com-
petitive exclusion of all but the most perfectly adapted species for
each limiting factor in homogeneous environments. A typical
example of ecosystems where competitive exclusion (1, 2) con-
tradicts observations are phytoplankton communities (3). Nu-
merous investigations have suggested resolutions for this para-
dox by showing that there are several different mechanisms,
environmental heterogeneity, predation, disturbance, coevolu-
tion that maintain the diversity (4, 5). In this paper we provide
a hydrodynamical explanation for the spatial and temporal
heterogeneity of resources and populations in the presence of
imperfect chaotic mixing (6–8).

One can meet a surprisingly similar problem in early evo-
lution of genetic replication. Most probably, at the dawn of life
there was a phase of evolution when the only evolutionary
units were certain self-replicating nucleic acids (9). They were
competing for a few limiting resources and making copies of
themselves without any specific enzyme. Consequently, the
copying accuracy could not be very high. Estimating the
selective superiority of the best replicator and the copying
accuracy per nucleotide, one can conclude that the maximum
length of these molecules is about 100 nucleotides (10). In a
well-mixed homogeneous environment, as the prebiotic ocean
is often assumed to have been, there are only a few winners of
the selection, the most-fit macromolecule surrounded by its
closest mutants (10, 11). But how can we surmount the gap
between these primitive replicators with 100 nucleotides and
the most simple RNA viruses with 4,000–5,000 nucleotides?
Specific replicase enzymes are needed to increase the copying
fidelity, and thus the length of the replicator, but these
replicators are too short to code specific enzymes. This is the
“Catch 22” of the prebiotic evolution (12). This catch can be
resolved if a mechanism maintains the coexistence of several
different replicator molecules and therefore the information
necessary for more accurate multiplication can be coded by the

union of smaller information carriers. Current theories point
out coexistence of replicators moving on a surface in a
constrained manner (13, 14), preferring thus the concept of
‘‘prebiotic pizza’’ against the concept of ‘‘prebiotic soup’’ (15).
We show that chaotic advection also can provide an alternative
explanation for information integration in early evolutionary
systems.

In aquatic systems of large extension, on the time scales
characteristic to the life cycle of microorganisms and replicators,
the hydrodynamical f lows are locally open, i.e. there is a net
current flowing through the typical observation region trans-
porting both competitors and nutrients. It is even more obvious
that the flow is open in the wake of islands surrounded by strong
ocean currents (16) and around the deep sea hot springs where
the cradle of life probably swung (17).

It became clear in the past decade that the motion of passive
tracers advected by open hydrodynamical f lows is typically
chaotic (18–22) even for simple, time-dependent f lows, which
are not turbulent. These f lows, characterized by strong im-
perfect mixing, lead to a fractal spatial distribution of advected
particles, also observed in laboratory experiments (20). Recent
studies of chemical reactions superimposed on such f lows (23)
revealed that chemical activity is concentrated along fractal
filaments, and that the reaction typically reaches a steady state.
More importantly, due to the small scale inhomogeneities, the
kinetic equation derived for the macroscopic distribution of
the chemical components strongly deviate from that valid in
well-stirred containers. A kinetic differential equation was
derived (23) for an autocatalytic reaction in two-dimensional
(i.e. practically depth-independent) time periodic f lows that
describe the accumulation of the product on the surface of
fractal filaments (of the so-called outf low curves). In each
horizontal layer of the f low these filaments move periodically
in time but have a fractal dimension D, (1 , D , 2), which is
time-independent. The kinetic equation gives the rate of
change of the number B(t) of the autocatalytic reagent B in
time t as

dB
dt

5 2kB 1 nRB2b. [1]

The first term on the right describes the exponential decay of the
species with a decay rate k, which is due to the outflow from the
fixed region of observation. The next term is the production
term, which contains the velocity nR of the reaction front within
one fluid layer, while b 5 (D 2 1)y(2 2 D) . 0 depends
uniquely on the fractal dimension D of the filaments. This
nontrivial, singular scaling with the negative exponent 2b is due
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to the enhancement of the perimeter with decreasing area, a
characteristics of filamental fractals. The reactions are speeded
up by the presence of the dynamical fractal catalyst. This leads
to an advantage of rarity, because the loss due to outflow is
reduced if the amount of reagents is small (first term), while the
reactions are strongly enhanced (second term). These properties
reflect an enhancement of chemical activity catalyzed by the
spatial fractal structures. Therefore, one expects similar char-
acteristics of the biological interaction of advected species along
the fractal filaments. Note that Eq. 1 describes a dissipative
area-dynamics with a (nonzero) stable steady state B* 5 (nRy
k)1/(b11). The role of the quantity nR as the velocity of the
reaction front is especially clear in nonchaotic f lows, when the
dimension of the outflow curve is D 5 1 and hence b 5 0. In the
steady state the broadening by nR is exactly compensated by the
escaping product of amount kB*.

We are mainly interested in the dynamics of competing
advected species in relatively slow, time-dependent but not
turbulent flows, such as in the wake of rocks, islands, or
peninsulas. For our analysis we consider the flow around a
cylinder. For moderate inflow velocities there is a periodic
detachment of vortices in the wake with period T, which forms
the von Kármán vortex street (18–20). The flow in the wake is
time-dependent but still spatially regular. The numerical simu-
lations were performed with a two-dimensional analytic model
of this f low (19, 21). It is a specific model in the broad class of
spatially extended systems (24, 25), but here the motion of
individuals is determined by well-known physical (hydrodynami-
cal) laws. Technically, we do not study a partial differential
equation or cellular automaton governing the dynamics of
populations as in most available approaches (24, 25) but follow
the interaction of individuals whose motion is driven by the
advection of the hydrodynamical f low (26).

We consider a simple kinetic model (23, 26) of replication
and competition with passively advected point like individuals
of type B and C, multiplying themselves instantaneously after
certain replication times. This kinetic model is similar in spirit
to the one used in ref. 27 for modeling chemical reactions in
closed f lows. In our open f low, there is a constant inf low of the
resource material A into the system, which the different species
B and C compete for. In addition, there is a spontaneous
mortality of individuals. Therefore two autocatalytic processes
A 1 B 3

gB 2B, B 3
dB A and A 1 C 3

gC 2C, C 3
dC A represent the

replication and competition process in our model in an im-
perfectly mixed environment. The kinetic coefficient g(d)
gives the birth (mortality) rate, i.e., number of individuals
being born (dying) in unit time in a homogeneous environ-
ment. An important feature of the advection dynamics is its
deterministic nature. Concerning the population dynamics this
implies that we work in the limit of weak diffusion and assume
that the mutual diffusion coefficient between any pair of the
constituents is small. The resource A is the only common
limiting factor for both species B and C, thus by the traditional
theory (1, 2) species with lower gyd ratio would be outcom-
peted in a homogeneous, well-mixed environment.

The competitive dynamics starts with the full surface occu-
pied by the background material A. Initially, we place two
droplets of individuals from species B and C into the f low in
front of the cylinder with C being the weaker competitor. The
fixed region of observation is a rectangle containing the
cylinder and the wake. We monitor the number of individuals
present in this region during the competition process. After an
initial rapid increase the number of B and C cells becomes
synchronized with the f low (see Inset of Fig. 1a). We empha-
size that species B and C coexist in spite of their very different
gyd ratio. The filamental structure shown in Fig. 1 is reminis-
cent of the patterns found in mesoscale plankton models
(28–30), which do not study competition, and in remote

sensing images of chlorophyll concentration in the wake of
islands (16). Field observation in the same region (31) indicate
increase of biomass belonging to Cyanobacteria and Phyt-
oflagellates taxa in monthly averages.

The explanation of the coexistence of species is based on
concepts of the theory of chaotic advection. To have an intuitive
understanding of the complexity of the advection dynamics, let
us first imagine how a droplet of dye behaves in a simple uniform
flow when it is advected past an obstacle of small spatial extent
like a fixed needle. The dye particles that touch the needle
remain attached, but the bulk of the droplet moves further

Fig. 1. (a) Spatial distribution of species B (green) and C (red) are shown
on a snapshot taken after 24 periods T of the flow. They both cover a fractal
curve and are present at all times in the wake of the cylinder. The initial
position of species B and C is a rectangle of linear size 0.07 3 0.76 centered
around x 5 2 1.36, x 5 2 1.10, and y 5 0, respectively. (The length is
measured in units of cylinder radius R.) (Inset) The percentage nB (nC) of
species B (C) present in the wake is shown by green (red) line as a function
of time, measured in units of T. Note the steady time-periodic behavior
reached after about 40 time units. The simulation was performed on a
rectangular grid of size « 5 2 3 1023 times the cylinder radius. Species B and
C are passively advected during time lags tB 5 0.6T, and tC 5 0.8T,
respectively, then they reproduce instantaneously, with new individuals
being ‘‘born’’ within a distance sB 5 sC 5 1y500 of the ‘‘parent’’ if there is
resource A available there [gB ; sBytB 5 1y(300T), gC ; sCytC 5 1y(400T)].
Additionally, at each time lag tB (tC) B (C) individuals die with a probability
tBdB (tCdC) [dB 5 dC 5 1y(10T)]. In our model sB (sC) also plays the role of a
diffusive length scale. There is efficient diffusive mixing within this dis-
tance, and there is thus no need to introduce an additional stochastic noise
to mimick diffusion (33). (b) A high-resolution image of the small rectan-
gular region from a indicates self-similarity. The grid size is « 5 8 3 1024.
The total area covered by B and C in the wake follows a fractal scaling with
dimension D < 1.6, the same as in the autocatalytic chemical model (23).
Note that the increase of the resolution does not alter the coexistence, only
reveals more details of the fractal structure.
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downstream. As the droplet f lows past the needle, its shape starts
to change, developing tongues on both sides of the needle. These
tongues are becoming ever longer and narrower and asymptot-
ically the droplet traces out a line extending downstream to
infinity. We call it the outflow curve. Geometrical points of the
fluid surface from where dye particles can reach the needle form
another straight line, the inflow curve extending upstream. If the
needle is oscillating perpendicularly to the direction of the flow,
both the inflow and outflow curves become bent and take on a
wavy shape. Having infinitely many needles, all moving in a
complicated manner in a finite region of the flow, the inflow and
outflow curves of all these needles form a complicatedly inter-
woven striation of the fluid.

If a circular cylinder is placed in a moderately fast uniform
flow, there is a periodic detachment of vortices from the upper
and the lower segments, UR and RL, respectively (Fig. 2). A
close analysis shows (19) that the periodic vortex shedding
generates never escaping periodic paths in the wake, i.e., particle
motions that return to their original positions after the full
period of the flow, or an integer multiple of it. Naturally, these
paths are unstable. Each such periodic orbit plays the role of a
moving needle: they can be reached along some inflow curves
(red lines in Fig. 2), particles can remain hung up on them, and
droplets f low away from them along their outflow curves (blue
lines in Fig. 2). A close analysis shows that there is an infinity of
different periodic paths, all unstable arranged in a fractal set in
the wake. Therefore their inflow and outflow curves are com-
plicatedly winding in the wake and can even intersect each other
at a given time, as indicated schematically in Fig. 2. Because the
particle motion around the infinitely many periodic orbits is
irregular, chaotic, the union of all the periodic orbits is called the
chaotic set of the advection dynamics. The bundle of inflow and
the outflow curves (called stable and unstable manifolds in the
jargon of dynamical system theory) provides a fractal foliation of
the fluid surface.

The physical relevance and observability of the outflow curve
is due to the fact that a droplet of particles initially overlapping
with the inflow curve traces out the outflow curve as it is
advected past the cylinder (19, 20; shown in green in Fig. 2). This
implies that if the tracers are chemically or biologically active, the

active process mainly takes place along the outflow curve
because it is there where the particles spend a long time in the
wake (Fig. 1). The fractal filaments on which reactions accumu-
late are in fact filaments of the outflow curve.

If the initial droplets of both species overlap with the inflow
curve of the chaotic set, they are trapped in the wake, and
accumulate along the filaments of the fractal outflow curve (Fig.
1). This leads to an enhancement of their activity, because the
continuous stretching and folding action of the underlying flow
provides them with increased access to the background A for
which they compete. Consequently, in the steady state, filaments
of B and C along the outflow curve are separated efficiently by
narrow bands of material A (see Fig. 1b).

In analogy with chemical reactions, we find that species with
low concentration replicate with an increased efficiency. Thus
the rare species has an advantage over the common one. Spatial
separation and increased replication activity of the rare species
results in the coexistence of the competing species for a wide
range of the parameter values.

The boundary layer surrounding the cylinder’s surface also
plays an important role. The species populating the boundary
layer is in a favorable position, because it acts as a stable source
for generating offsprings into the wake without being subject
to mixing and competition. To underline this argument we
placed a droplet C upstream close to the cylinder followed by
a droplet B further upstream. We find that in spite of B being
the stronger competitor, it is unable to outcompete C from the
boundary layer. On the other hand, if the B droplet is placed
closer to the cylinder than C, B populates the boundary layer
acting as a strong B source in the wake. In spite of this
favorable position, the weaker species C still survives in the
wake, provided the initial droplet also intersects the inf low
curve of the chaotic set (Fig. 1). The initial conditions thus
determine which organisms occupy the boundary layer after a
long time, but they do not change the fact that both organisms
can survive. Different species can occupy different niches
simply by appearing at different places in the f low. Niches of
both species are narrow bands along the unstable curve. This
underlines again that in open chaotic f low the traditional
picture of well-mixed systems is broken: the weaker competitor

Fig. 2. The topology of inflow and outflow curves and their relation to a passively advected droplet. Schematic drawing of the inflow and outflow curves of
a period-one orbit P at a given instant of time. They are very similar to the inflow and outflow curves of the full chaotic set. The outflow curve (blue line marked
by outgoing arrows) is a complicated winding fractal curve extending downstream to infinity. The inflow curve of this orbit (red line entering P) foliates regions
around the cylinder and upstream to it. The time evolution of a green droplet overlapping initially with the inflow curve of P is also indicated. Its shape is shown
after integer multiples of the flow’s period. Note the convergence toward the outflow curve.
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can even become dominant over the stronger one due to the
advection dynamics.

To check the generic nature of these results, similar numerical
experiments were performed with three different competitors,
competing for the same unique limiting resource A. We found
that in a wide range of the reproduction abilities of the com-
petitors the coexistence was robust, even if randomly mixed
species were starting from the same initial droplet in front of the
cylinder. It was also checked whether coexistence is possible
without the effect of the boundary layer by carrying out further
simulations with the so-called ‘‘baker map.’’ The baker map is
the paradigm of mixing exemplified by its successive stretching
and folding actions (6, 32; see the Inset of Fig. 3). If green (B)
and red (C) regions are covered by nonreproducing individuals,
by successive actions of the baker map the density of species
decays in the unit square with equal rates, and the individuals
staying forever in the unit square cover a fractal set (like in the
wake). If, however, the reproducing B and C species are allowed
to occupy neighboring regions covered by A within certain
different distances, then they compete for this only limiting
resource. The time evolution of the percentage of species B and
C is shown for such a case in Fig. 3. These simulations were
repeated for various parameter regimes and initial conditions
and showed a robust coexistence of the competitors. The bound-
ary layer is thus not necessary for coexistence, but its presence
certainly enhances the effect.

The inclusion of a molecular (or small-scale turbulent) diffu-
sion does not modify the qualitative picture. Due to the presence

of a background flow and a fixed region of observation, diffusion
does not lead to an unlimited broadening because it is balanced
by the shrinking of the filaments due to the escape from this
region. As a result diffusion leads only to a renormalization of
the reaction front velocity vr (33).

We claim that the coexistence of competing species is a
generic feature expected to be found in open flows exhibiting
chaotic advection. We emphasize that the qualitative features of
the fractal patterns (and of the boundary layer), which are
essential for our study, are robust and can be found in any open
time-dependent flow. The shape of the obstacle and the time
periodicity of the flow are considered only for convenience and
the ease of presentation.

Although stratification of aquatic systems often ensures the
planar nature of the f low, we brief ly comment on possible
effects of the third dimension. It has been shown that in the
advection by stationary three-dimensional f lows the third
dimension might play an analogous role to that of the time in
time-dependent two-dimensional f lows (34). The concept of
inf low and outf low curves therefore should be replaced by that
of inf low and outf low surfaces. In f lows with chaotic advection
these are a bundle of highly convoluted, nested sheets. A
periodic time dependence of the three-dimensional f lows
makes these sheets to oscillate. The coexistence of competing
advected species is expected along these outf low surfaces. Any
planar intersection of them exhibits the same filamental
structure as in the two-dimensional models discussed in this
paper.

Typical f luid motions are rarely time-periodic. In a broad class
of flows, however, when the flow field is chaotic in time but
exhibits a kind of structural stability (like in the example of
randomly driven or chaotically moving vortices; refs. 35 and 36)
the topology of the advection patterns remains unchanged. This
means that although the inflow and outflow surfaces move in a
nonperiodic, chaotic fashion, their fractal dimension and the
escape rate of the open flow remains well defined (35).

Although we restricted our discussion to two-dimensional
time-periodic flows, based on these observations we expect to
see coexistence in similar competitive models in three-
dimensional open chaotic f lows and possibly in two-dimensional
turbulence (28) as well.

Finally, we remark that in the absence of enzymes, replicating
macromolecules at high concentrations are bound together
effectively with hydrogen bonds (37, 38). This self-inhibition can
lead to the so-called parabolic growth, implying that competitive
replicators coexist even in a well-stirred environment (39). The
concentrations required are, however, unrealistically high. The
pure hydrodynamic effect we present in this paper shows that the
coexistence is a consequence of the imperfect mixing dynamics
of the flow, and the concentrations of replicators accumulated
along the outflow curve need not reach irrealistically high values
as needed for parabolic growth.

Open chaotic f lows have the role of maintaining diversity in
competing advected populations (e.g. phytoplankton), and also
give a natural solution for the problem of information integra-
tion in early evolutionary units. The issues presented in this
paper are, however, of larger generality. They show that novel
effects and phenomena can arise if a population dynamics is
subjected to an underlying chaotic spatial mixing.
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Fig. 3. Time evolution of the competitor densities in a baker map mixing
model. The percentage nB (green line) and nC (red line) of B and C,
respectively vs. the number of iterations of the baker map on the unit
square. Species B and C occupy neighboring regions of A within a distance
sB 5 2sC 5 1y500, and have mortality rates of dB 5 dC 5 1y5. In spite of C
being outnumbered 9:1 at the beginning of the simulation, C can coexist
with B in the long time limit. (Inset) The stretching and folding action of
one step of the baker map is illustrated. First, the unit square (shown in bold
lines) is compressed by a factor a ( 5 0.4) in horizontal direction and
stretched by 1ya in the vertical direction while keeping the area constant.
Next this stretched rectangle is folded in two over the unit square. This
process is then iterated several times. Note that the “flow” described by the
baker map is open because at each iteration of the map a portion (1 2 2a)
of particles leaves the unit square and is being replaced by regions of the
background material A.
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22. Toroczkai, Z., Károlyi, G., Péntek, Á., Tél, T., Grebogi, C. & Yorke, J. A.
(1997) Physica A 239, 235–243.
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