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The interpretation of the dynamical scaling indices for transient chaos is given. The spectrum
of these scaling indices is calculated in an exactly solvable example of chaotic repellers and, by
means of a perturbative method, in a class of chaotic attractors in crisis. An approximate form of
the universal spectrum related to the universal chaos function is derived. We point out a degen-
eracy in the spectrum appearing in an intermittent situation.

It is a recent observation that strange sets covered by a
stationary probability distribution possess, in general,
several coexisting singularities, and are, consequently,
characterized by a spectrum of scaling indices.!”3 A mul-
tifractal analysis investigating this spectrum has already
been applied to several systems!~® ranging from fully
developed turbulent flows and diffusion-limited aggregates
to strange attractors. Furthermore, the concept has been
generalized for dynamical properties of chaotic sys-
tems.!®!! In this paper, our aim is to study the spectrum
of dynamical scaling indices in one-dimensional maps
Xn+1=f (x,), modeling higher dimensional systems in the
presence of strong dissipation,!? and to carry out explicit
calculations. We also discuss how to extend the formalism
to the problem of transient chaos.!3-2°

The dynamical scaling indices A are defined (Eckmann
and Procaccia!l) by writing the probability of very long
but finite paths of length n as exp(—nrA), and the path
probabilities are to be calculated by partitioning the space
into small boxes and using discrete time  (inherent in
maps). Different paths may, of course, have the same
scaling index. The number of times A takes on a value be-
tween A’ and A'+d A’ is proportional to

explng (A)1dA' n

where n is fixed and g(A) is a smooth function.!! From
the scaling form (1) then follows that the generalized en-
tropies'®21:22 can be expressed through the spectrum g (A)

as
K,=lgA(g)—g(A(g))]/(g—1) , ©))
where A(q) is defined by the relation
dg(A) L _ )
q . 3)
dA @

Consequently, g (A) is related to (g — 1)K, by means of a
Legendre transformation.

First, we deal with the interpretation of the scaling in-
dices in the case of transient chaos. Since the number of

S

boxes the system can visit is increased by a factor | f'(x;) |
after the jth step, the total number of such boxes is pro-
portional to TT1/=§|f(x;)|. Here and in the following,
derivative is denoted by a prime. Without any escape, the
reciprocal value of this number would be proportional!!+23
to the probability of the path {xj}(’)"l. Transient chaos,
however, means that trajectories escape from any finite in-
terval with the exception of a set of measure zero. Those
points from where no escape occurs form a Cantor set, the
so-called repeller.!!” Long chaotic trajectories spend a
long time in a small neighborhood of it. The number of
available boxes for such trajectories is obtained, therefore,
by multiplying I17=¢ | f'(x;)| with the probability that
the trajectory has not yet escaped after n steps. The latter
quantity we write as exp(—a,n), and call a, the escape
rate. (For n— oo, a, goes over to a, the escape rate de-
fined in Refs. 15 and 16.) The probability of a path stay-
ing close to the repeller is thus proportional to
[I17=6 | f'(x;) |1 ~'exp(ann) and, consequently,

A=\, —a, , @)

where A, =n "' ¥ "Z{1In| f'(x;) |, the finite time Lyapunov
exponent. (The Lyapunov exponent A is obtained as
lim, . »A,.) Since A —a is the Kolmogorov entropy for a
motion around a re:pcllcr,17 the scaling index A can be con-
sidered as a quantity measuring the fluctuation of the
metric entropy. In case of an attractor a, =0, and the re-
sults of Ref. 11 are recovered.

In order to calculate the path probability for a motion
around a repeller, it is essential to know that there exists
an invariant distribution for this strange set. It was shown
in Ref. 19 that the stationary density P(x) for a coarse
grained repeller is the solution of the iteration scheme

Ppi(x)= Y MD_ , (5)

x € fU(x") If’(x) l 0

obtained in the limit » — oo with any smooth initial func-

tion Po(x). The exponent Dy is the fractal dimension of
the repeller.

As an example, where the spectrum g(A) can be ex-
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plicitly calculated, we consider the map producing chaotic
transients defined by

1—aix, x>0,
fG)= 1+ax, x <0, (6)

and 1 <a;<ay, ai ' +a; ! <1. The stationary distribu-
tion P(x) turns out to be constant, as follows from (5)
with a; 2°+a; ?°=1.1 Consequently, one can easily
show that the ratio of probabilities of finding a point mov-
ing on the repeller in the right (x > 0) or left (x <0) re-
gion is ay/a,. Therefore, the probability of a path of
length n > 1, which is close to the repeller and which hap-
pens to be m times in the right region, is given by

ar ™ad (a7 Va7 ). )

The corresponding scaling index is then

A=

%lna1+[l—'—:-] lnaz} +In(a; Y +asl) . 8)

By taking into account that the escape rate a is known to
be —In(a;"! +a; ') in this system,'”?° Eq. (8) appears as
a special form of the relation (4). Furthermore, the num-
ber of paths having the same probability, i.e., the same A,
is (%) for a fixed n. A use of Stirling’s formula and of Eq.
(1) then yields g as a function of m. After eliminating m
through (8) we find

g (A) =InA—A7'[(A = Apin) In(A — Apmin)
+ (Amax —A) In(Apax — A, (9)
where
A=Amax ~ Amin
Amin=In(1+ay/a;) ,
Amax=In(1+a/a3) .

10)

Figure 1 displays g vs A at different values of the ratio
ai/a;. The maximum of g(A) is always In2, correspond-
ing to a topological entropy In2. The graph of g(A)
touches the line g =A at A=A —a =K, [cf. Egs. (2) and
(3)1 which depends on a;/a;. From g(A) then immediate-
ly follows, via Eq. (2), the complete set of generalized

:
g g=A
N log 2
0 A
0 2

FIG. 1. Plot of the g (A) spectrum (9) (bold lines). The num-
bers at these lines denote the ratio ai/a2. Arrows mark the
values A(1) =K, =X — a, where g (A) =A.

entropies:
Ky=0—g) 'Inl@d +af)/(a1+az)] .

It is worth mentioning that for a;” ! +a5 ! — 1 the re-
peller goes over into a chaotic attractor. In this limit, Egs.
(9) and (10) go over into those valid for the attractor, and
formally coincide with the results valid for the baker trans-
formation.!! [Note that the quantity g in the example of
Ref. 11 corresponds to g (A) — A in our notation.]

We now turn to the investigation of the spectrum in ful-
ly developed chaotic (FDC) single humped maps, specified
by the condition that the attractor is mapped two to one
into itself. We consider the generator partition which
divides, at the maximum point of f(x), the attractor into
two intervals Io,/;. The paths in the corresponding sym-
bolic dynamics consist of binary sequencies. A common
refinement!? of this bipartition leads, after 7 steps, to a set
of intervals 11("), 1=0,...,2". The probabilities of paths
of length n are then given by the invariant measure of the
interval they start from.'? It is convenient to introduce the
transformed map f (x), where

FG) =ulf '], an

since f turns out to be an everywhere expanding map and
since the invariant measure of it is the Lebesque one?*
[u(x) in (11) stands for the invariant measure of the in-
terval (0,x)]. Consequently, the order-g entropies'®?!:2?
can be expressed as

1 : _1_ 7(n)yq
I—qnli»mwnln;(ll )e

Kg= (12)

where I{” denotes the intervals obtained by the common
refinement of the binary partition of f. For large n the in-
tervals 1 1(") are short and one can write??

S dme= [ T@cONax a3
]

where 1™ (x)=I{" if x € I{”. Furthermore, by using

the Markov property of the partition one finds??

17=D[F0)] _ 19" P[P0 _
Fale2) | F @)

After substituting (14) into (12) and (13) and keeping
only those terms which survive for n— o we obtain for
the generalized entropies

IP(x)=

14)

1
Kq=T_~_—qn1me—1nF;"> : 1)
Fq‘"’=f | £ () |1 9dx (16)

(the integral is taken over the chaotic attractor). When
repeating the calculation for the map f, or for any conju-
gated map of it, extra weighting factors appear in inter-
mediate steps, which, however, drop when taking the limit
n— oo in (15). Thus, one finds that the formulas (15)
and (16) hold with any conjugated function of f in (16),
supposing the integral exists. Furthermore, note that a
comparison with the results obtained for the entropy decay
rate y in analytic maps®? yields the relation y=2K3 in this
case. Equations (15) and (16) remain valid in any chaotic
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states; only the bipartition should be replaced by an ap-
propriate Markov partition in the derivation.

Now we apply the general results (15) and (16) to a
family of symmetric maps obtained by perturbing the tent
map f(x)=fo(x)=1—|1—2x|. The perturbed map we
consider is

FG) =folx)+eG (folx)) ,
a7
Gx)=6U—-x) ,

where ¢ is a small parameter. This type of perturbation, if
combined with conjugation, is the most general one around
double symmetric maps (symmetric maps with symmetric
probability density).?* Since f(x) is everywhere expand-
ing and is linear around its maximum, it can be substituted
for any g value into (16). One can then work out a sys-
tematic expansion of K in powers of ¢ (as in Ref. 23) and
one obtains in first nontrivial order

K,=In2—¢%qA4/2 , (18)

where A= f G'(x)%dx. By inverting the relations (2) and
(3) the spectrum is found to be

g(A)=In2—(n2+T/2—A)¥/(r) , 19)

where I'=g24 (see Fig. 2). I is defined as the halfwidth
of the spectrum taken at the height K;. The halfwidth de-
creases with the strength of perturbation, which for e— 0
is consistent with the fact that the spectrum of the unper-
turbed case consists of a single point K; =A =In2. On the
other hand, the form (18) is valid only in the vicinity of
A =In2 since (18) applies only if £2qA is small. This illus-
trates that the end points Apin and Apax of the range of
scaling indices cannot be determined by perturbative
methods.

As an interesting application we consider the biquadrat-
ic map?®

fO)=1—>U—-¢)1—2x)*—e(l —2x)*

which, after conjugation, becomes an element of the fami-
ly (17). In this case the halfwidth is given by I"=g%/8.
Since maps with parabolic maximum possess a universal
FDC map? which is well approximated by the biquadratic
map with &= —0.2629,26 one obtains an approximate
universal spectrum g*(A) in the form of (19), and
™ =8.6396 x 10 ™3 as its universal halfwidth.

[
g
g=A
1K g(A)
2 'K1 \
l’ \\
/ \
A1) A(0) A

-—

r

FIG. 2. Qualitative plot of the spectrum (19).

Among FDC maps, those in which the left unstable
fixed point is marginally stable form a special class.?426-28
We show that in this class a global change occurs in the
shape of the spectrum. Let us denote by I{™ the leftmost
interval generated by the common refinement of the bipar-
tition of f. By keeping the first term only in the sum of
Eq. (12), we find for ¢ > 1 the inequality

L fim Lini® (20)

—gn—en

K, <
77

It can be easily seen?? that for n — oo the size of [ I{" tends
to zero slower than exponentially (power-law behavior)
because of the intermittent situation. Thus, all generalized
entropies for ¢ > 1 vanish. Consequently, the spectrum
g (A) cannot have a continuous part for A <A =K in this
case.

Finally, we emphasize that the parallelism between dy-
namic and static multifractality of chaotic systems has a
deep reason. As pointed out by Farmer,? the path proba-
bilities of paths of length n on a chaotic attractor can be
reprcsented in the space of symbolic dynamics by a distri-
bution p™(x) defined on the interval (0,1). The resolu-
tion of this interval is then m ~", where m denotes the
number of symbols appearing in the symbolic dynamics.
Thus, exp(—nlnm) is the analog of the grid size / used in
static cases.> Furthermore, since the generalized dimen-
sions D, (Refs. 30 and 31) of the distribution P (x)
comc1de with K,/Inm, the quantity g (A)/Inm is analogous
w1th the f(a) spectrum (defined by Halsey et al.?) of

*)(x), the symbol sequence distribution.
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