PHYSICAL REVIEW A

VOLUME 40, NUMBER 7

OCTOBER 1, 1989

Nonequilibrium potentials and their power-series expansions

T. Tél* and R. Graham
Fachbereich Physik, Gesamthochschule Essen, Universitdt Essen, D-4300 Essen, Federal Republic of Germany

G. Hu'
Institut fiir Theoretische Physik, Universitdt Stuttgart, D-7000 Stuttgart, Federal Republic of Germany
(Received 26 April 1989)

The analytic properties of nonequilibrium potentials are studied in a class of two-variable models
undergoing a bifurcation of codimension higher than 1. Several methods for the construction of
nonequilibrium potentials are given. Cases are exhibited explicitly where a polynomial expansion
does not exist due to logarithmic terms, even though the potential remains smooth. It is concluded
(i) that the nonexistence of polynomial expansions near bifurcation points of higher order, recently
reported by several authors, does not imply the nonexistence of a smooth potential, and (ii) that
even in cases where the Hamilton-Jacobi equation has a particular solution in the form of a power
series, that particular solution may still fail to represent the nonequilibrium potential by failing to
satisfy the necessary boundary condition at the attractor.

I. INTRODUCTION

Nonequilibrium potentials have generally been accept-
ed as important characteristics of stationary processes
taking place far away from thermal equilibrium (for re-
views see Refs. 1-3). Being analogs of the (coarse-
grained) free energy they determine the stationary distri-
bution of the system in the weak-noise limit and play the
role of a Lyapunov function characterizing the stability
and the average lifetime of different metastable states (if
they coexist).

Recently, several authors have dealt with the problem
of high codimensional bifurcations when the real parts of
more than one eigenvalue of the linearized process disap-
pear at the bifurcation point."'*8 In Refs. 4, and 6-8 the
conclusion has been reached that, generally, the none-
quilibrium potential cannot be of a polynomial type in
these cases. More or less explicitly it has also been sug-
gested that no smooth potential can exist at all at the
aforementioned bifurcation points. The aim of this paper
is to show that even in such cases a smoothly
differentiable nonequilibrium potential exists (although
not in a polynomial form around its minimum).

The nonexistence of a polynomial solution, of course,
implies the nonanalticity of the potential in the sense that
it cannot be expanded into a Taylor series around its
minimum. For the sake of clarity we mention that this
type of nonanalyticity is completely different from that
discussed earlier in the literature.®~!” The latter implies
discontinuous first derivatives of the potential and occurs
due to either chaos (nonintegrability) of a Hamiltonian
system associated with the weak-noise limit of the sto-
chastic process,” !> or nontrivial (e.g. toroidal) topology
of the phase space and coexistence of metastable states
(i.e., attractors of the deterministic system)."!3~!7 The
regions of nondifferentiability lie always far away from
the local minima of the potential [in the case of a chaotic
Hamiltonian dynamics, e.g., they are situated just around
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the maxima (repellers of the deterministic process) (Ref.
9). In contrast, the nonanalyticity appearing at bifurca-
tion points of codimension higher than 1 is of a much
weaker type and can be observed at the minimum of the
nonequilibrium potential.

Bifurcations of higher codimensions have been con-
sidered in the framework of both master equations®® and
Fokker-Planck equations.*>’ For concreteness we re-
strict our attention to the latter, but the general proper-
ties of the nonequilibrium potential are expected to be
similar for master-equation dynamics, too. We consider
systems, the states of which are specified by n stochastic
variables ¢*, v=1,. . .,n. Their dynamics is governed by
a Fokker-Planck equation

2
K" (@P(g)+Low"— _p(g),
2" d3q*3g"

oP(q) 9

5 5" (1.1)

where K (q) is a drift vector. Here, and in the following,
repeated lower and upper indices imply summation. For
simplicity, the diffusion matrix Q** is assumed to be con-
stant. The dimensionless number 7 is a measure of the
noise intensity. The nonequilibrium potential ®(g) can
be read off the stationary distribution P (q) in the weak-
noise limit 7—0, where

P (q)~exp[ —®(q) /7] (1.2)
holds. Our aim is to study ®(gq) for bifurcations of codi-
mension higher than 1.

The paper is organized as follows. In Sec. II a mechan-
ical analogy is presented and it is shown that the non-
equilibrium potential must always be smooth around its
local minima. A general expression is derived for ® in
the framework of a perturbation expansion when the sys-
tem slightly deviates from one possessing an exactly
known potential. A method for specifying a polynomial
approximant to ®(q) is described in Sec. III for two vari-
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able processes indicating that no polynomial form exists
at bifurcation points where (the real parts of) both eigen-
values vanish. An illustrative example is worked out in
Sec. IV. We can here follow how the radius of conver-
gence of a Taylor-series expansion around the origin
shrinks as the bifurcation point is approached. At the bi-
furcation point logarithmic terms survive making the po-
tential not expandable in a power series but remaining
smooth. Beyond the bifurcation the actual minimum is
shifted away from the origin and the radius of conver-
gence around the minimum increases with the control pa-
rameter. A novel feature of the model is the nonanalyti-
city of the potential at the origin which is a repeller
beyond the bifurcation, although the Hamiltonian dy-
namics is nonchaotic in this case. We conclude in Sec. V
by mentioning the shortcomings of a direct search for po-
lynomial approximants to the nonequilibrium potential
and suggest that such investigations always be completed
by other methods.

II. THE NONEQUILIBRIUM POTENTIAL
AS AN ACTION

A. A general setup
A Hamiltonian of type
H(g,p)=3Q0"p,p,+K"(q)p, ,

a so-called Fokker-Planck Hamiltonian, can be associated
with any stochastic process (1.1).!73 The mechanical
motion described by the canonical equations

(2.1

¢"=Q"p,+K"q), (2.2a)
oK H#
D, = ) (2.2b)
p 3q" TPu
at total energy
E=0, (2.3)

can be used to construct the nonequilibrium potential
®(q). Based on the path-integral solution of the Fokker-
Planck equation, or on the above-mentioned mechanical
picture,’ one can show that ®(q) appears as the action
along a special Hamiltonian trajectory. This special tra-
jectory has the property that it ends at a certain time ¢, at
q and starts at an infinitely earlier time, i.e., for t;— — 0,
on the attractor A4 of the deterministic system
¢"=K"(g).? The attractor A must lie on the p =0 hyper-
plane of the Hamiltonian phase space, as follows from
(2.2). In other words, the trajectory ends at ¢ and must
belong to the unstable manifold of the hyperbolic object
(g€ 4,p =0). If the end point ¢ =g* is a repeller or a
saddle of the deterministic dynamics it can be reached
only asymptotically for ¢t,— . With the exception of
such isolated points, ¢, is finite and, in autonomous sys-
tems, can be chosen to be zero. The deterministic motion
possesses at least one attractor; otherwise the stationary
distribution is not normalizable. For the sake of simplici-
ty, we assume that there exists a single attractor only.
The nonequilibrium potential can then be expressed as’
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t=0,9(0)=¢q
=min [,

oo qui e 4 LG4 (D)L

(2.4)
L (q,q) is here the Lagrangian associated with H(q,p).
The min selects the absolute minimum of the action in-
tegral if it is multivalued. Explicitly,

L=10,'[¢"—K"(@]Il¢"—K*¢q)],

where we made use of the fact that Q** is positive definite
and is, consequently, invertible. [For positive
semidefinite diffusion matrices, nevertheless, a positive
Lagrangian can be found which depends then also on
higher than first-order temporal derivatives of g (¢) (Ref.
14).] As a consequence of (2.4) and (2.5) the potential is
minimal on the attractor g € 4.

By using the fact that the motion takes place on the
hyperplane (2.3), we find L =p,q". Therefore, we can
write, equivalently,

.4

min f e P
where p,(q) is the equation specifying the unstable mani-
fold of the object (¢ € A,p =0).

The accumulation of knowledge on nonlinear (chaotic)
dynamical systems'® has led also to a more detailed un-
derstanding of general properties of nonequilibrium po-
tentials.””'? In phase spaces of higher than three dimen-
sions (in stochastic processes with more than one vari-
able) Hamiltonians [e.g., (2.1)] are generally nonintegr-
able. The existence of wildly oscillating stable and unsta-
ble manifolds is generic.!® Consequently, the action
fL dt=fpvdq" is multivalued and the min in equa-

tions (2.4) and (2.6) leads to a piecewise differentiability of
the potential.’ This type of behavior is characteristic for
regions away from the attractor A (generally close to
some repeller R), since even in generic cases the unstable
manifold p,(q) is smooth around (g € 4,p =0). There-
fore, the nonequilibrium potential ®(q) is locally always
smooth around the attractor.

(2.5)

q)dq” (2.6)

B. Perturbation theory

As known from classical mechanics, the action cannot
always be evaluated explicitly. The formalism is, howev-
er, well suited for perturbative calculations.

Let us assume that the drift K¥(q) appears as a sum

K"(q)=Kg(q)+eK{(q), (2.7

where the nonequilibrium potential ®,(q) associated with
K {(q) is explicitly known and is smoothly differentiable
everywhere. € is here a dimensionless small parameter.
Up to first order in € the Lagrangian (2.5) can be written
as

L(q,q)=Ly(gq,q)+eL,(q,q9), (2.8)
with

0(4,¢)=20'[¢"—K§(@)]l¢"—Kf(g)],  (2.8a)

L(¢,9)=—Q.'[¢"—K§(q)]KH(q) . (2.8b)
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The nonequilibrium potential is then, up to the same or-
der,

P(g)=Py(q)+eP(q), (2.9)
where
. t=0,g(0)=gq
Polg)= [, Lola(o,qtde . 2.9

A, denotes the attractor of the unperturbed deterministic
equations ¢ "=Kg(g). Our aim is to express ®,(g) in
terms of K {(g) and the unperturbed motion.

First, let us note that the Hamiltonian trajectory in
zeroth order is a solution of a first-order differential equa-
tion. According to (2.6), p, =3®,/dq" holds for the spe-
cial trajectory we need in (2.9a) and, consequently from
(2.2a)

od
q"(t)=Q"“—#+K0(q) . (2.10)
This equation is to be solved with the condition
g(t =0)=gq. Since by p,=0®,/dq" the trajectory is on
the unstable manifold of (¢ € 4,,p =0), this trajectory
automatically has the property that it started on the at-
tractor, i.e., for t,— — 0 g¥(¢() € A,.

Denoting by €8q*(¢) the difference between the solu-

tions of (2.2) and (2.10), we can write ®, as

t=0 aLO d 6L0
P,(g)= - 8q" | dt
1'q f,04.~ aq‘ dt aqv q .
aLO t=0
+ 8q"
aq~v f0—>~oc
. t=0,q(0)=gq .
tminf T e Filago)ar, @11

where (2.9) and the calculus of variation have been used.
The first two terms represent the difference between the
action of L, calculated along the first order and the un-
perturbed trajectory, while the last term is the action of
L, taken along the unperturbed trajectory. The first in-
tegral vanishes according to Hamilton’s principle. The
second term does not contribute at ¢t =0, since both tra-
jectories end at g. There is a finite 8q*, however, at
to— — oo due to the difference of the attractor in zeroth
and first order. Nevertheless, this contribution also van-
ishes since dL, /3¢ =p,, which is zero on the attractor
A,. Finally, by taking into account (2.8b) and (2.10) we
find

t=0,9(0)=gq
®,(q) mmf I L,(q(t),q(2))dt
- ady(q)
—min [° l~ Of Kl(g) di
o™= dq g =q"(1)
(2.12)

where the integral is to be taken along the solution of
(2.10). ®,(q) is thus nothing other than the action of L,
evaluated along the unperturbed trajectory. Although
the principle of perturbation theory has often been used

in calculating the nonequilibrium potential,”!° the com-
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pact formula (2.12) has not yet appeared in the literature.
It is worth stressing again that, in spite of the smoothness
of @, and K], the integral might be multivalued far away
from the attractor.

For the sake of completeness and in order to make fur-
ther comparison possible we mention that the nonequili-
brium potential, if it is smoothly differentiable, can be
evaluated from the Hamilton-Jacobi equation. Since
®(q) is an action and by using (2.1) and (2.3) one obtains

') dd(g )+K,/(q)8¢(?)
dg”  dg* dg"

which is to be solved with the boundary condition that
®(g) be minimal on the attractor A4,

g =0, (2.13)

=minimal . (2.14)

A |

P(q)

The perturbation scheme can again be easily worked
out. In first order in € we obtain from (2.13) and (2.7) for
&, the linear equation

ad,(q)
dq"”

Dy(q)

o d w ody(q)
aq"

Ki(q) .
3q" 1'q

+K(q)

(2.15)

By noticing that the large parentheses denote just ¢ for
the unperturbed motion [see (2.10)], the left-hand side ap-
pears as d ®,(q) /dt along (2.10). Consequently,

=0 P (q)
®i(g10)=— f, #

t

dt (2.16)

is a solution of (2.15) for any choice of t,. This is , how-
ever, only a particular solution and, in general, does not
fulfill the boundary condition (2.14). The general solution
of Eq. (2.15) is obtained by adding the general solution
®,,(g) of the homogeneous equation, i.e.,

D(q)=D(q,ty)+D,,(q) . (2.17)

In order to single out the solution satisfying the bound-
ary condition (2.14), ®,, has to be chosen in such a way
that ®,+€e®, is minimal on the attractor (specified up to
first order in €). In particular, a comparison (2.12) with
(2.16) and (2.17) shows that, for
®,,(g)=const. Another interesting special choice of ¢,
corresponds to t,— oo. By time reversal, one immediate-
ly convinces oneself that

10———>—OO,

Dy(g)t+ed(g,ty— o)

is an action generated by trajectories starting with
to— — o on the repeller R of the deterministic system.
However, this function is not minimal on the attractor 4
and, moreover, need not even be an approximant to the
nonequilibrium potential in the vicinity of the repeller.
In this case the addition of a ®,,(g)¥const is unavoid-
able, if one is interested in the nonequilibrium potential,
and not, in other particular solutions of the Hamilton-
Jacobi equation (2.13).
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III. CONSTRUCTION OF NONEQUILIBRIUM
POTENTIALS AS A POWER SERIES

If the potential is analytic near the attractor it can be
obtained in this region by directly expanding the left-
hand side of the Hamilton-Jacobi equation (2.13) in a
power series. For the sake of concreteness, let us consid-
er the case of two degrees of the freedom. We put

q1=x, 4=y . (3.1)
For simplicity and clarity, we assume
Q=8 . (3.2)

The approach can easily be extended to more general
cases.
Suppose that the origin is an attractor, namely,

K%0,0)=K?0,0)=0. (3.3)
We may then expand the drift and the potential as
Klx,y)= > a,,x",
n,mz=0
K¥x,y)="3 b,x"y", (3.4)
n,m=0
P(x,y)= > P,.xy",
nmz=0
with
Dy =Pp=0. (3.5)

Inserting (3.4) into (2.13), each term in the power-series
expansion of the potential can be specified order by order.
First of all, the coefficients of the quadratic terms of the
potential can be obtained independently from higher-
order terms as

Dyp=(a1ot b )[b1olag; —bio)—alay+be)]
X[(ayo+bo P+lag —byp)?]™",

Doy =—(aptbo +Py) ,

D= —2bo+2Py0(ag —big)apt+by) ",

(3.6)

under the assumption that a,y+b,, is different from
zero. Based on (3.6), the coefficients of the power-series

J
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expansion can be calculated systematically order by or-
der. Generally, we have

To(n)=—f(n), (3.7)
with
T=xG |— | +yG 2
113 BASST ax
+xGy; +yG,, 5 , (3.8)
G =at+2Py, G =ay+Py, (3.9)
Gy =bio+ Py, Gp=by +2P,,
and

n—2
f(m)= 3 [K(m)+1iV®(m +1)]-V&(n —m +1)
m=2

+K(n —1)-V&(2), (3.10)
where V denotes the gradient operator and
K'im)= 3 a,,xty,
ptrv=m
K*m)= 3 b,x"y", (3.11)
ptv=m
P(m)= 3 D, xHyY.
ptv=m

A detailed derivation of (3.6)-(3.11) can be found in Ref.
7.

A remarkable feature of the procedure is that the ex-
pansion starts with quadratic terms of the potenial since
the drift has nonzero linear terms. When we deal with
the potential around a singular point of order p with
p > 2, the situation will be completely different. For in-
stance, in case of second-order singular points
(codimension-2 problems)

a;=0, b;=0, i+j<1

the power series expansion of ® must start with cubic
terms. Equation (2.13) is then fulfilled if

[(ay0+ 3®30)x >+ (a); + @y y)xpy +(ag + 1P,y ]3Py x 2+ Dyyxpy + 1D, y2)

F[(byo+ LDy )x 2+ (b +P)xpy +(bgy +3P3 )y J(1D, x 2+ D ,xpy + 2Dy, y2) =0

holds, which implies a set of five nonlinear algebraic
equations for four variables. It is apparent that they pos-
sess no solution other than zero unless the coefficients
Qpm>bum,n +m =2 satisfy a special constraint. Con-
straints for the existence of polynomial expansions at bi-
furcation points of higher codimension have been derived
in Ref. 7 (see also Refs. 6 and 8). In the general case
when these constraints are not satisfied the potential at

(3.12)

[
the bifurcation point cannot be of polynomial form.
What happens to the potential as it loses its Taylor ex-
pandibility at singular points of order p (p = 2), i.e., at bi-
furcation points of codimension higher than 1? This
question, obviously, cannot be answered by a direct appli-
cation of the polynomial expansion. However, the ques-
tion can be answered in cases where the perturbation
theory of Sec. II B is applicable. In Sec. IV this will be



40 NONEQUILIBRIUM POTENTIALS AND THEIR POWER-SERIES . . .

done for a simple model chosen in such a manner that it
still contains all relevant features.

IV. THE MODEL

A. Statement and perturbative analysis

In order to illustrate the connection between the non-
equilibrium potential and its polynomial approximant we
consider a simple two-variable problem. Let

X=q, Yy=4q,,
K'x,y)=ax—x3, (4.1
K¥x,y)=ay—y3—ex?y

be the drift and Q**=56"* the diffusion matrix. For a <0
the deterministic system possesses a point attractor

A=(0,0) . (4.2)
For a> 0 a pair of attracting points

A=(£a'? +ta'*(1—€)'?) (4.3)
appears and the origin itself becomes a repeller

R =(0.0) . (4.4)

As the deterministic system ¢"=K "(q) is invariant under
the transformation ¢ — —g¢q and as the diffusion matrix is

4069

The Hamiltonian trajectory (2.10) is then specified by the
equations

x=—ax+x3, y=—ay+y?’. 4.6)
Note that these are just the time-reversed deterministic

equations of the unperturbed problem. Their solution is
easily found to be

-1/2
2 2
x(t)=x X4 1= |e2e s
a a
- 4.7
)2 ) 172
y()=y |+ |[1—= |e**
a a

This trajectory ends at x,y at t =0 and starts on the at-
tractor. Really, for t=ty;——o we have x(¢,)
=y(t,)=0, as long as a <0, and x*(t,)=y%(t,)=a for
a >0, which is the equation for the attractor in zeroth or-
der. In the latter case end points x,y with x =0 or y =0
cannot be reached from the attractor up to r =0, while
points with x or yp arbitrarily small but finite can be
reached. Therefore, end points with x =0 or y =0 must
be treated in this case by taking the limit x —0 or y —0
after the limit z,— — o has been taken.

By using the general result (2.12) and introducing a
new integration variable, we find
@ (xy)=min ['° 2[—a+yX0x(yAndt

0

—

constant, the nonequilibrium potential will be a function =min lim a¥ —a+y?)x3y? (4.8)
of x% and y? only. Taking into account this symmetry fo= 7
property the two attractors appearing for a >0 can be a du
considered as being identical. X f s 2 20 4y My (g —x D) +alx2—p2)]
The unperturbed system (e=0) is characterized by the yiria—yhe o uula —x a(x"=y7]

nonequilibrium potential (4.9)

Dy(x,y)= —a(x2+y2)+%(x4+y4) . 4.5) Performing the integral explicitly, one obtains

J
. a—y*la a—x? (x*—y?a e
Q,(x,y)= lim x’y’——— |—————ln |l+-——5— : (4.10)
ty——o x°—y u x°—y (@a—x")u u=p2+(a—pe 0

Here the min has been dropped since the integral is single
valued for x50, y7*0. We have to consider, however,
the cases a <0 and a > 0 separately, since the lower limits
are drastically different for these cases.

B. Nonequilibrium potential before bifurcation

For a <0 the lower limit is ¥ — — o and, consequent-
ly,

2 2 2

a—y a—x a—y
D, (x,y)=x%? 1— In
noy Y x2—yp? x2—y? a—x?

(4.11)

Let us now discuss the result. First, we note that, al-
though this form seems to be rather singular for x =y, it
is not, as is best seen from the integral form (4.9), or by

expanding (4.11) around x =y. In fact, for any a <0,
D\(x =y)=1x*, (4.12)

and ®(x,y) is a smooth function of its variables. The

correction ®,(x,y) can be expanded in a power series
around the attractor 4 =(0,0). As (4.11) suggests, the
radius of convergence is given by the condition

x%¥/lal, y*/lal<1. (4.13)

By expanding the logarithm up to third order terms we
find
<I>,(x,y)=%x2y2+glzz—xzyz(xz—yz) (4.14)
as a polynomial approximant.
Applying the method of Sec. III a direct calculation of

a polynomial approximant at any value of € yields up to
sixth order:

(I>(x,y)=—a(x2+y2)+%(x4+y4)+—§-x2y2

€ €?

6a  12a (4.15)

x2p2x2—yp?) .
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By keeping leading order terms in € only we find again
(4.14) showing that the polynomial approximation and
the perturbation expansion are consistent for a <O0.

C. Nonequilibrium potential at the bifurcation point

From (4.11) we obtain at a =0

2 2

y
1+ In
x2—p?  x?

x2y4
x2__y2

D, (x,y)=— (4.16)

This form is not analytic in the sense that it cannot be ex-
panded in a Taylor series around the origin due to the
presence of logarithmic terms, which is in harmony with
the comment made after (3.12). The breakdown of a po-
lynomial approximation at the bifurcation point a =0 is
reflected also in the fact that certain coefficients of ex-
pression (4.15) diverge for a —0, and the radius of con-
vergence of the power series expansion is vanishing at
a =0. Nevertheless, as expected, the potential is smooth.

D. Nonequilibrium potential after bifurcation

For a >0 the lower limit of the integral (4.9) is u =y2.

Thus, we find
2

a—
@ (x,y)=x 22
x*=y* |y

21x2
n—

2 —
y a+a2 x2
X"y y

2

(4.17)

We recall that this form is obtained for all points
x70,y70 and that @, in the origin is defined by taking
the limit x —0 or y —0 in (4.17). In the vicinity of the
origin, more precisely in the region x2,y2?< <a, along
any line y =(tana)x of the x,y plane one obtains

1 n tan’a In tan’a

(4.18
(1 —tan’a)? )

1 —tan’a

This means that the correction @, to the potential is con-
stant along any line y =(tana)x around the origin but its
value is direction dependent. It is worth emphasizing
that (4.17) has, therefore, no power series expansion
around the origin which is now a repeller. Consequently,
no solution of the Hamilton-Jacobi equation in the form
of a power series around the origin can be an approxi-
mant to the nonequilibrium potential for a >0, even if
such a particular solution exists (cf. below).

We note that the singularity at x =y50 is apparent
again since

D,(x =y)=Lx*—a?) (4.19)
for any a > 0.

Outside the origin ®,(x,y) possesses a power-series ex-
pansion. In particular, consider the points x?=y2=a
which corresponds to the attractor in zeroth order. Let
now

E=x%*—a, n=y?—a, (4.20)

and let us assume that

T. TEL, R. GRAHAM, AND G. HU
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E/a, m/a<l. (4.21)
Expanding &, in powers of £/a, n/a we find
1
L —a|g+El— L epe—m | . .
Em)=aln a 6a2§n(§ ) (4.22)

Formally, this expression also diverges as a —0 but, of
course, the radius of convergence then shrinks to zero. It
is easy to check that ®,+e®P, is really minimal at
x?=a,y?=a(l—e), i.e., at the attractor specified to first
order in €.

The form (4.22) can, of course also be obtained by the
method of Sec. III requiring (2.14) and keeping leading
order terms in € only.

Finally, we note that the particular solution ®,(q,?,) of
Eq. (2.16) for a >0 and t,— + o yields again the expres-
sion (4.11) but now for @ >0. In fact, like (4.11),
®,(g,ty— ) can be expanded in a power series around
the origin [cf. Eq. (4.14)]. However, as was noted after
Eq. (2.17), ®,(q,t;— o) is not the nonequilibrium poten-
tial, because it does not satisfy the correct boundary con-
ditions (2.14).

V. CONCLUSIONS

We have shown, by using general arguments and an il-
lustrative example, that nonequilibirum potentials are
smoothly differentiable around their minima even if they
are not expandable in a power series in their state vari-
ables there.

In the following we list a few shortcomings of a direct
search for the polynomial approximant to the nonequili-
brium potential. They can all be observed in the example
of Sec. IV.

(i) A low-order polynomial obtained in the region be-
fore or after the bifurcation need not reflect the break-
down of the power-series expansion at bifurcation points
of codimension higher than one since the coefficients of
such a polynomial might stay constant as the bifurcation
point is approached. An example is the result (4.14) if
only powers up to the fourth order are kept.

(i) The polynomial approximant valid before the bi-
furcation can be formally continued through the bifurca-
tion point and remains a solution of the Hamilton-Jacobi
equation also beyond the bifurcation; however, it is not
an approximant to the potential there. No warning of
this danger is given, e.g. via the nonexistence of a power
series solution.

(iii) Beyond the bifurcation a polynomial approximant
of a completely different form exists which can be ob-
tained by making an expansion around the new
attractor(s). In other words, a polynomial approximation
must always be applied together with the boundary condi-
tion that the potential is minimal in the attractor(s). The
radius of convergence cannot be guessed.

Therefore, we conclude that a direct search for a poly-
nomial approximant to the nonequilibrium potential
should always be supplemented (at least in a restricted re-
gion of the parameter space) by other methods. One such
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method is the perturbation expansion in powers of a pa-
rameter, which is much less restrictive than the Taylor-
series expansion, as the latter amounts to a simultaneous
expansion in the n variables ¢',...,¢". The expansion in
a single parameter is well suited also for getting insight
into different kinds of nonanalytic properties of the none-
quilibrium potential and estimating the convergence re-
gions for power-series expansions, if they exist.
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