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Thermodynamic and multifractal spectra of chaotic scattering are investigated at abrupt
bifurcations leading from fully developed chaotic to regular scattering as the particle energy E
passes through a critical value F,,. For processes with uniform scaling, the spectra of Lyapunov
exponents, entropies, and partial dimensions diverge, stay constant, and vanish, respectively,
when the energy approaches F,, from below. To characterize processes also having scattering
angles close to 90°, a new quantity is introduced, the partial topological entropy depending on
the concentration of single scatterings with angles close to 90°. Multifractal spectra are proved
to be universal in the sense that they depend on topological properties only. In particular,
the generalized dimensions scale as Dy = dq/| In(Em — E) | for ¢ of order 1/|In(Em — E) |,
otherwise, Dy is finite and zero in the negative and positive g ranges, respectively. Our approach
thus justifies a conjecture of Bleher, Ott, and Grebogi [Phys. Rev. Lett. 63, 919 (1989)] for
¢ = 0, and yields explicit expressions for the coefficients d,. Phase transitions arising at the
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bifurcation point are analyzed.

I. INTRODUCTION

Chaotic scattering processes are common in the realm
of unbounded Hamiltonian systems! 38 (for reviews see
Refs. 10, 28, and 35). As a system parameter, most typi-
cally the particle energy FE, is varied, transitions between
classically regular and chaotic behavior might take place.
In two-degree-of-freedom potential scattering one of the
main scenarios leading to chaos is the abrupt bifurcation
described in Ref.18. In this bifurcation a strange chaotic
set (repeller) underlying the classical scattering process
arises abruptly as E decreases from above a critical value,
E,,, to below. E,, is one of the maxima of the potential-
energy function which is supposed to consist of several
potential hills. Below the critical value, the strange set
is hyperbolic and bounded orbits can be coded by a com-
plete symbolic dynamics on a finite number of symbols;
the chaotic scattering is fully developed.®

We investigate the behavior of thermodynamic and
multifractal properties of scattering processes around
abrupt bifurcations. In general, these properties can be
studied by measuring the deflection function or the delay
time distribution as a function of the impact parame-
ter, and analyzing their singularities which sit on a frac-
tal set.?3 The fractal dimension of this set—which coin-
cides with the partial fractal dimension of the chaotic
repeller—can also be extracted from differential-cross-
section data.37 (Certain classical characteristics like the
average lifetime of chaotic trajectories or the fractal di-
mension can be deduced even from quantum cross-section
measurements lying in the semiclassical regime.20:37)
Unfortunately, the region around abrupt bifurcations is
difficult to access experimentally or in a numerical sim-
ulation due to a singular behavior: As the particle en-
ergy approaches E,, from below, the chaotic set shrinks

4

to zero, the average lifetime vanishes, and trajectories
become extremely unstable. A theoretical approach is,
however, well suited for studying this region, and the re-
sults might be used as guides in direct measurements.
By means of the thermodynamic formalism we derive
how different characteristics scale with the particle en-
ergy around FE,,. Moreover, certain results are universal
in the sense that they depend only on topological prop-
erties of the dynamics determined by the arrangement of
the potential hills in the scattering center.

A quantity of central interest which reflects the hierar-
chical organization of chaotic scattering processes is the
free energy F(B). It characterizes the scaling behavior
seen by following trajectories with an increasing num-
ber n of collisions inside the scattering center.?3 The free
energy is introduced in the spirit of the thermodynamic
formalism of dynamical systems 3°~42 via the relation

n)# _ n
lef W = BF(B) , (1)

2

where £ is any real number and n >> 1. 15") denotes the
lengths of intervals Ii(") defined along a straight line cho-
sen arbitrarily in the configurational space: Trajectories
started out of these intervals with a given velocity vec-
tor have at least n collisions with the potential hills (see
Fig.1). In other words, Ii(") are the intervals where the
delay function, measuring the number of bounces from
hills experienced by the particle, is greater or equal to
n. Equivalently, one can also use the length scales gener-
ated on a straight line in a Poincaré plane by considering
trajectories which do not leave a certain neighborhood
of the chaotic set earlier than the nth step.?3 Note that
both Ign) and F'() depend on the particle energy E as a

1034 ©1991 The American Physical Society



4
scattering cenfer
I:n)
©) %
FIG. 1. Schematic diagram for the definition of length

scales IE"). Contours of the potential hills are shown, as well
as a straight line from which particles of unit mass start with
a given velocity (arrow). Points belonging to paths with at
least n bounces between the hills define the intervals If")
whose lengths are the IE")’S. All trajectories starting out of
an interval I‘(") have the same symbolic code up to length

n+1.

parameter. Since the scattering is regular for £ > E,,,
the length scales and the free energy are not necessarily
defined in this region. In what follows we consider the
energy range E < E,,.

The escape rate &, which is just the reciprocal value
of the average lifetime = (measured in the number of
bounces) in the interaction region, describes the expo-
nential decay of the total interval length ", IE") with n.
Consequently,

K::%:F(l). (2)

Since the chaotic set is hyperbolic, length scales and nat-
ural measures of the intervals are proportional. There-
fore, the free energy also contains relevant information
concerning metric properties. We shall be interested in
the multifractal spectra of Lyapunov exponents 43 (Ag)s
entropies 44~%6 (K,), and partial dimensions 47 (D,)
taken with respect to the natural measure of the repeller.
Due to the Hamiltonian character of the system, the par-
tial dimensions along both stable and unstable directions
coincide, and we consider one of them only. (The total
dimension of the chaotic set on a Poincaré plane is simply
2D,.) All spectra mentioned above can then be expressed
in terms of the free energy according to the rules

A== Q1-9)FQ1-q)/a, (3)
_ a[F(9) — «]
K, = T—l-—-—, (4)
and
BF(B) lp=g-(-1)D,= K4 (5)

as described in Refs. 23 and 29. Quantities with sub-
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scripts 0 correspond to the averaged Lyapunov exponent,
the topological entropy, and the partial fractal dimension.

The behavior of the free energy around the abrupt bi-
furcation can be deduced from knowing how the length
scales change for £ — E,,. For simplicity, we assume
that the potential possesses circularly symmetric local
maxima. A simple calculation in classical mechanics 18
yields then a relation between the deflection angle ¢, im-
pact parameter 2, and energy difference with respect to
the hill maximum:

2$0
t —_— ———
M= F S~ B’ ©)

valid in the limit when the particle energy approaches the
top of a single potential hill with quadratic maximum,
and zo goes to zero. This shows that the scaling of zg
depends strongly on whether the deflection angle ¢ is
close to 90° or not. If tang is of order unity,

for ¢ # 90° )

follows from (6), and if | tan ¢ |>> 1,

2o =~ (Ep — E)Y? for ¢~ 90° (8)

is found.'® The intervals I,-(n) contain all impact parame-
ter values with given types of collision sequences. Thus,
all trajectories starting out from a certain interval pos-
sess the same symbolic code (of length n+1). The scaling

of the lengths I,(") can, therefore, be computed by mul-
tiplying the energy dependent factors (7) or (8) of each
single scattering together.

We shall derive here how the free energy and spec-
tra (3)-(5) scale as E — E,,. For scattering processes
with uniform scaling, i.e., when all single scatterings
contribute according to (7), it has been shown!® that
D, = dy/|In(E,, — E)|. Our considerations complete
this statement by yielding the entropy K, as the propor-
tionality factor d,. Furthermore, we point out that the
Lyapunov exponents diverge, while the entropies stay F
independent when E — E,, (Sec. II).

Mixed processes where both scaling (7) and (8) appear
are of particular interest, since in such cases the scaling is
not uniform: to each parameter 3 or q other subdynamics
give the relevant contribution. We propose to character-
ize this effect by introducing a new kind of multifractal
spectrum, that of partial topological entropy belonging to
trajectories with a fized ratio of single scatterings scaling
according to (7) and (8). To leading order in E — E,,,
spectra (3)—(5) turn out to be expressible in terms of the
partial topological entropy.

The only statement accessible in the literature which
concerns such cases conjectures '® that the above rule
given for D, is valid for the fractal dimension (¢ = 0).
Our thermodynamic approach of mixed cases (Sec. III)
verifies'the conjecture, and shows that this rule also holds
for generalized dimensions but only in a restricted range
where ¢ is of order 1/| In(E,, — E) |, and yields explicit
expressions for the coefficients d;. For g values out of
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this range, Dy = 0 for ¢ > 0 and D, is of order unity for
g < 0. Similarly, drastically different scaling behaviors
in different ¢ ranges follow for the spectra of Lyapunov
exponents and entropies. These lead then at £ = E,, to
nonanalyticities, to so-called phase transitions (Sec. IV).
A method for computing the partial topological entropy
is given in the Appendix.

II. PROCESSES WITH UNIFORM SCALING

Let us consider first potentials the geometry of which
does not allow for the existence of scattering angles near
90° in bounded trajectories around the bifurcation point.
The case of three identical Gaussian hills arranged on the
vertices of a regular triangle ¢ provides an example. In
such situations each single scattering contributes a factor
E,, — E, and since each If") contains initial points of
trajectories with n collisions, each Ig")
(Em — E)*. We can then write

is proportional to

™ = D AE)" ©)
with
E,—-F
A(E) = T, By (10)

where Ey < E,, is an arbitrarily chosen energy value
(still close to the critical E,,). This form ensures that
Ig",-) can be interpreted as the interval lengths just at the
reference energy Eo. Substituting (9) and (10) in (1) one
finds

BF(B) =B |In A(E) | +BFo(B). (11)

Fo(B) denotes here the free energy function belonging to
particle energy Fo. In the limit £ — E,,, BF(f) is a
rapidly varying function of the inverse temperature.

At the bifurcation point we obtain from (11)

—oo for B<0
—Ky for =0 (12)
+oo for B> 0.

BF(B) =

The jump in the free energy at 8 = 0 can be interpreted
as a zeroth-order phase transition (for a discussion see
Sec. 1V).

For a finite but small energy difference

k =|InA(E) | +ko, (13)

where kg stands for the escape rate at Fy. This relation

tells us that the average lifetime of chaotic trajectories is

decreasing and reaches zero at the bifurcation point.
From relations (3) and (4) we obtain immediately

A =|InA(E) | +Ao,q, (14)

K, = Ko, (15)

where quantities with subscript zero belong to the ref-
erence energy. Note that the E dependence drops out

when taking in (4) the difference F(8) — &, which leads
to (15).

The general dimensions are expected to be small
around the bifurcation point; therefore, one can expand
Eq.(5) to find an explicit expressions for D,:

(¢ = 1)Dy[gF(q)] = q[F(q) — K] (16)
from which in the limit £ — E,,
K
D, =—a
* = T A(E) | an

follows. This energy dependence of the order-q¢ dimen-
sions was first derived in Ref.18; our approach specifies
also the prefactors as just the order-q entropies.

Results (14), (15), and (17) illustrate the fact that al-
though the spectra A, K, and D, are not independent
(all are derivable from the free energy), they describe
completely different aspects of the dynamical system and
exhibit completely different behavior around the bifurca-
tion point. Lyapunov exponents characterize the insta-
bility of the chaotic set. Their divergence at E,, for all
¢ means that all bounded hyperbolic orbits are infinitely
unstable just when they appear, and become more stable
with decreasing particle energy. Entropies reflect prop-
erties of the strange set’s symbolic organization and of
the symbol sequence distribution. Their energy indepen-
dence shows the robustness of these properties around the
bifurcation. Dimensions describe fractal aspects. Equa-
tion (17) tells us that the chaotic repeller is completely
rarified when created, and becomes less sparse as the en-
ergy is decreased.

IIT. MIXED PROCESSES

A. General setup

To describe the scaling of processes including single
scatterings with angles close to 90° one has to know
some details concerning the symbolic organization of the
strange set. The reason is that in view of relations (7) and
(8), single scatterings with angles close to 90° yield a scal-
ing factor completely different from those far away from
90°. Consequently, the length scales lg") scale in a dif-
ferent way with particle energy E' if trajectories starting
out of the corresponding intervals have different numbers
of single scatterings with angles close to 90°. As exam-
ples we shall consider cases with potential hills of equal
heights on the vertices of 2 rectangle (example I) and of
a right-angled triangle (example II) ( see Appendix).

In order to achieve a more detailed description, we in-
troduce some new quantities. Let N(®)(m) denote the
number of trajectories with n collisions containing ex-
actly m (m = 0,1,...,n) single scatterings with angles
close to 90°. Similarly, let us divide the length scales
Ig") into subsets {Ig:)(m)},im =1,2,.., N (m) accord-
ing to number m. As a consequence of (7) and (8), the
energy dependence is given by
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™ =1 (a@E) (18)

At this point we make two conjectures, in the spirit of
the theory of large deviations, 48 which will be essential
in what follows. We expect for large n and m the scaling
behavior

N(m) ~ @), (19)
where
z=m/n (20)

is the concentration of single scatterings with angles close
to 90° in bounded trajectories. h(x) is a one-humped
function (see Fig.2) and can be interpreted as the partial
topological entropy for trajectories with concentration z.
The maximum of h is obviously the global topological en-
tropy Ko. Note that h(z) is a purely geometrical quantity
that can be obtained for whole classes of scattering ar-
rangements from combinatorial arguments. The way this
can be done is described in the Appendix.

Furthermore, we also expect that the partial partition
sum based on the length Ig"i)m(m) exhibits a scaling that
depends on m through the concentration x only, i.e., for
n large

N™)(m) 5
ST (m)) ~ emPTo@Pn, (21)
im=0

where Fy(z, ) is the partial free energy, at particle en-
ergy FEy, characterizing trajectories with concentration
z.
Putting these forms together we find for the total par-
tition sum

=z,
ePF@I o 5 o~l(=/DPlin AB)+0Fo(z )], (22)

=0

Here z. is the largest possible concentration in the sys-
tem. It is not obvious that there exist trajectories con-
taining solely single scatterings with angles close to 90°.
In fact, in the triangular geometry the highest possi-
ble concentration is z, = % provided by a periodic or-
bit bouncing along the shorter sides of the right-angled
triangle. In the rectangular arrangement the maximum
concentration is accessible (by an orbit passing around
the sides all the time), and . = 1 in this case.

The free energy F(B) is obtained by finding the dom-
inant contribution from sum (22) for n — oo [A(E),B
fixed]. Since the behavior depends essentially on the ra-
tio of the two terms in the exponent, we have to discuss
two regions separately: (i) 8 is of order unity and (ii)
B | InA(E) | is of order unity. Although the latter is
very narrow for £ — E,,, it cannot be neglected because
the free energy exhibits a nontrivial behavior there from
which quantities like the fractal dimension Dy or topo-
logical entropy K, also follow.
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FIG. 2. The partial topological entropy. (a) Example
I: rectangular geometry, (b) example II: right-angled tri-
angular geometry. Arrows mark the largest possible con-
centrations z.. A good approximation of h(z) is ob-
tained by taking a smooth curve passing through the points
k(m/150) = In [N°9)(2mm)/ N(1%%)(m)]/150, m = 0,1, ...,150
where N(™)(m) is the numerical solution of recursions (A1)-

(A3) and (A6)-(A9).
B. Results for inverse temperatures of order 1

In this range the dominating contribution is deter-
mined by the first term in the exponent of (22).

We first consider positive values of 8. The largest expo-
nent then belongs to the largest possible « value. There-
fore, we have

BF(B) = (1 - %) B | n A(E) | +BFo(z., B)

for =0(1)>0. (23)

Consequently, the escape rate is obtained as

=(1-%
= (1 2) | In A(E) | +50o (24)
with k9 = Fo(z¢,1). From relations (3)-(5) one then
finds

L

A = (1 - 7) | In A(E) | +o,q

for (1—¢)=0(1) >0, (25)

where
N = Kot (g—=1DFo(ze,1~4q)
0, — 1]
q
furthermore,
K, = Q(F°(’;°’_‘1)1“ £0)  for g=O(1) > 0, (26)
and
K
Dy = ! forg=0(1)>0. (27)

(1-=z./2) | InA(E) |

These results are formally very similar to (14), (15), and
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(17), simply a new factor 1 — z./2 shows up due to scal-
ing (8). The actual behavior is, however, much simpler,
since in typical cases only one single periodic trajectory
(or a few equivalent ones) can possess the critical con-
centration z.. The free energy for a periodic orbit is
independent of # and equal to the Lyapunov exponent
of this orbit. Therefore Fy(z.,3) = Ao where Ag is the
Lyapunov exponent of the trajectory with concentration
z. taken at the reference energy Fp. As a consequence of
(23), ko = Ao = Ag,q, and both dimensions and entropies
vanish:

Ky=Dyg=0 for ¢=0(1)>0 (28)

as follows from (26) and (27).

We next consider negative values of the inverse tem-
perature. The dominant contribution to sum (22) is then
given by the maximal exponent belonging to z = 0.
Thus,

BF(B) = B |In A(E) | +8Fo(0,5)

for = 0(1) < 0. (29)

This is simply the free energy of a restricted dynamics in
which no single scattering with angle close to 90° occurs,
and is formally of the same type as Eq. (11). Since,
however, the escape rate differs from (13), we now obtain
in the limit £ — E,, for spectra (3)—(5):

A, = (1 - %) | In A(E) | +o,
for (1-¢)=0(1) <0 (30)

where Ao 4 is given as in (25) but Fp is taken now at
z =0,

xc‘l/z

K, = ot | In A(E) | +¢1[F0(0,<1) — Ko

q—1
for g =0(1) <0, (31)

and

z:q/2
g—1

¢[(1 — z./2)Fo(0, g(1 — z¢/2)) — Ko]
|In ACE) (g — 1)

D, =

for g =0(1) < 0. (32)

We see that for negative values of ¢ the entropies di-
verge and the dimensions stay finite around the bifurca-
tion point, which is a completely new effect in comparison
with uniform scaling (Sec. II).

C. Results around zero inverse temperature

The free energy changes very rapidly at g = 0 if the
particle energy is close to the critical value. This behav-
ior, however, cannot be linear in the present case, as can
be seen by comparing (23) and (29). Thus, a nontrivial
free energy is expected to exist in the range where G is
of order 1/| In A(E) |.
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FIG. 3. The Legendre transform H, of the partial topo-
logical entropy h(z) obtained via (36): (a) example I, (b)
example II.

It is worth enlarging this region formally by introduc-
ing a rescaled inverse temperature b via

b

p= [InA(E) |

(33)
and assume that b is of order unity. Since § is small,
the partial partition sum (21) is practically the number
N(™)(m) of trajectories with concentration z. Therefore,
in this range

BFo(z, B) = —h(=), (34)

the free energy is of entropic origin, and BFp(f) is tem-

perature independent. Consequently, the total partition
sum (22) appears as
=z

e—ﬁF(ﬁ)n ~ Z e—[(l—-a:/Z)b—-h(:v)]n. (35)

z=0

It is clear from this form that the = value belonging to
the dominant contribution for n — co will now be deter-
mined essentially by the parameter b, since both terms
in the exponent are of the same order. This means that,
depending on b, different symbolic subdynamics that are
neccessarily incomplete yield the mean contribution to
the free energy. It is also clear that the total free energy
is specified by h(z) and b in this range and is, therefore,
independent of metric properties.

To be more specific, let us introduce the Legendre
transform H, of h(z) as

dh(z)
dz

H, is a monotonically increasing function that goes to
saturation for r — oo (see Fig.3) since h(z) is finite at
the origin. For large negative r, H, = z.r.

By applying the saddle-point approximation to sum
(35) we find that the main contribution comes from a
term where b’ = —b/2. Thus, the free energy turns out
to be expressible with the Legendre transform of h as

BE(B)ip=s/jn a(Ey = b+ Hr=—p/2- (37)

H, = zr — h(2),

=r. (36)
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FIG. 4. The free energy (37). (a) Example I, (b) example
IL. .

Note that the right-hand side at 8 = 0 is —Kj, as ex-
pected, since the maximum of h is just the global topo-
logical entropy. The asymptotic slopes for large positive
and negative b values are 1 and 1 — z./2, respectively,
ensuring smooth interpolation to formulas (23) and (29)
(see also Fig.4).

The spectra (3)—(5) can then all be expressed in terms
of H,. Since f is restricted to be of order 1/| In A(E) |,
the variables ¢ are to be scaled accordingly. We thus find
the generalized Lyapunov exponents and entropies as

k

Ag =kt k= Heopp for —1=7msy (38)
and
k k
Ko=ag= s for 0= ay
(39)

respectively, where the parameter k is of order unity. An
implicit condition follows for the dimension from (5). By
writing

dy k

= ——— f — ——— 40
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k
FIG. 5. The reduced dimension dx defined by (40). (a)

Example I, (b) example II.
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one obtains an equation for the reduced dimensions dj, in
the form

Zc
(Hr = 20) | _(k4ay)/2 = (1 - ‘2‘) k. (41)

The spectrum dj, is shown in Fig.5. Note that for z, = 0
all results of this section must coincide with those ob-
tained for the uniform case.

D. Multifractal spectra to leading order

The multifractal spectrum f(a) (Ref. 49) belonging
to the generalized dimensions D, (¢ arbitrary) can even
be expressed explicitly with the partial topological en-
tropy h(z). To see this, let us recall that the natural
measure of an interval Ii(") is proportional to the length
of this interval times exp (xn).22 Using (24) and the scal-
ing 1™ (m) ~ [A(E)]"(l_x/” [see (18)], we conclude that
the measure for intervals belonging to concentration z is
proportional to [A(E)]"(xc_a:)/z. The crowding index «
is the ratio of the logarithms of measure and length, so
that we find in leading order

T, — &
2—z°
Furthermore, as the number of intervals with crowd-
ing index a (or concentration z) is proportional to
I(")(m)~f(a), and this is the same as N{)(m), we con-
clude that

He) = Al(E) l (1 ’i(z)ﬂ)

Results obtained for examples I and II are plotted in
Fig.6.

In particular, since the maximum of f is the frac-
tal dimension Dy, it follows from here that the reduced
fractal dimension dy [cf. (40)] is just the maximum of

h(z)/(1 - /2):
do = (-i—’i(_a;)/_%) max. (44)

(42)

a =

(43)

z=(zc.—2a)/(1-a)

[tna(E)| fla)
S o o = =
£ o [ -] o N

PR T TN N T S |

o
N

0.0

0 01 02 03 04 05

FIG. 6. The f(a) spectrum obtained via relation (43).
(a) Example I, (b) example II. Dots at the end of the spectra
illustrate that the crowding indices dmin = 0 and @max = /2
belong to a continuum of ¢ values (see text).



1040 TAMAS TEL 44

By means of relation (44), we found in example I that
do = 1.30 (see Appendix). This value is consistent with
a direct numerical computation of the fractal dimension
for a square-symmetric, four-hill potential with equal hill
maxima [see Fig. 5(b) of the first item of Ref.18 and take
into account error bars]. It is worth emphasizing, how-
ever, that the same reduced fractal dimension dy holds
for all rectangular geometries with circularly symmetric
local maxima and does not even depend on the widths
of hills, as follows from the definition of h(z). In exam-
ple IT dy = 0.76 is obtained for all three-hill problems
(with cylindrical hills of equal heights) on right-angled
triangles.

We mention that Eq. (44) implies that the fractal di-
mension is still connected with some kind of topological
entropy but now the partial topological entropy is rele-
vant. For z. = 0, dy = Ky follows.

Taking the Legendre transform of f(«) one recovers
(41) if ¢ is supposed to be of order 1/|In A(E) |. This
assumption, however, has not been used in the above
argument, and Eq.(43) is expected to be the complete
multifractral spectrum in leading order for A(E) — 0. In
fact, for ¢ of order unity, we must distinguish two cases.
For negative ¢ values there is a single crowding index
Omax = /2, yielding in leading order D, = z.q/[2(q —
1)], in agreement with (32). For positive g values ay,, =
0 from which D, = 0 follows.

Similarly, f(a)-like spectra belonging to entropies and
Lyapunov exponents can also be expressed, in leading or-
der, in terms of h(xz). Here we give only the dynamical
multifractal spectrum #%:59 fo(ap), the Legendre trans-
form of (¢ — 1)K,;. One obtains

Jo(@o) = h(2) le=z.~2a0/)In AE)| - (45)

This is consistent with (39). For ¢ values of order unity
it yields Ky = z.q/[2(¢ — 1)]| In A(E) | and K, = 0 for
¢ < 0 and g > 0, respectively.

We conclude that the multifractal spectra in leading or-
der depend only on the partial topological entropy. This
is a consequence of an anomalous property of the free en-
ergy: It exhibits completely different £ dependence in re-
gions where trajectories having no single scatterings with
angles close to 90° are relevant and where one periodic
orbit with maximal concentration z. gives the dominant
contribution. Furthermore, the energy dependence is so
strong that it suppresses the contribution coming from
the length scales I((,::-) for 8 < 0. The universality we find
is, therefore, a special feature of mixed cases and is not
present in scatterings with uniform scaling.

IV. DISCUSSION

It is useful to discuss the singularities (phase transi-
tions) that arise in the spectra when £ — E,, and to
compare them with ones known to exist in dissipative
systems.50—5%

The function BF(B) develops a jump at 8 = 0, ex-
pressed by (12), in both uniformly scaling and mixed
cases [see Egs. (23) and (29)]. This is due to the fact

that the length scales vanish, leading to an energy de-
pendence proportional to 8| In A(E) | . A similar kind of
transition has been found in one-dimensional maps with
complete topology containing a fixed point with infinite
slope %138 since the length scale belonging to this fixed
point has a much faster decrease then the others. There-
fore, BF(B) = —oo for negative 3 but, in contrast to our
case, BF(P) is finite in the range § > 0 for such maps.

No singularity shows up in spectra (3)—(5) of scatter-
ing processes with uniform scaling since the escape rate
and the free energy F(8) possess exactly the same E de-
pendence. Consequently, the natural measure of boxes
becomes independent of the particle energy. Thus no in-
terval can have an extremely small or large measure.

The situation is different in mixed cases. As a conse-
quence of inhomogenous scaling, the natural measure of
intervals with concentration z scale as [A(E)]"®<~)/2,
The crowding indices are, therefore, of order unity. The
least and most probable intervals are thus characterized
by a crowding index amqaz = /2 and amin = 0, respec-
tively. Since f(«) vanishes for E — E,,, one has at the
bifurcation point

D, = { gci‘él[?‘gq;—ol)] for ¢ <0 (46)

expressing the coexistence of two phases with amin, and
@max- The ¢/(¢ — 1) dependence seems to be general for
all systems possessing a nontrivial crowding index on a
set of zero dimension. An elementary example °6:4%:%4
is a function of type z=1*% z > 0. At the singular-
ity the crowding index is z, and is 1 otherwise, so that
(¢ — 1)D; = min(zq,q — 1). In our case, when a peri-
odic trajectory with concentration z. dominates, it has
a Dirac-6-like measure with a vanishing ap,;, and, there-
fore, Dy = 0 for ¢ positive.

As another consequence of having intervals with very
small measures, one finds the entropy spectrum at the
bifurcation point to have the form [see Eqs. (28) and

(31)]:

oo forg< 0

Ky forg=0 (47)
0 for ¢ <O.

Kq =

The phase ¢ < 0 is familiar from one-dimensional fully
developed chaotic maps with an infinite slope at one of
the fixed points 3! and is due to the fact that the symbolic
code belonging to this fixed point is much less probable
than all others.

The singularities in dimensions and entropies express
the fact that the measure is rather unevenly distributed
on the repeller when it is created. These phase transi-
tions show that the chaotic set cannot be considered to
be hyperbolic at the bifurcation point, although it is
hyperbolic for all particle energies below E,.

Interestingly, there is no singularity in the spectrum of
Lyapunov exponents: A; = oo expressing that all peri-
odic orbits are infinitely unstable at the bifurcation point.

In conclusion, we have worked out how thermodynamic
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and multifractal characteristics of chaotic scattering pro-
cesses scale with the particle energy around abrupt bifur-
cations. Mixed cases containing single scatterings with
angles close to 90° required a special approach. It has
been useful to introduce a new spectrum, that of partial
topological entropies having a universal character which
is transferred to other quantities, too. This approach
illustrates that the thermodynamic formalism can be a
powerful tool also for deducing how properties of chaotic
systems scale with an external parameter, in our case the
particle energy.
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APPENDIX: COMPUTATION OF THE
PARTIAL TOPOLOGICAL ENTROPY

In general, one cannot hope to find an exact expres-
sion for N(®)(m), and we have not been able to derive
a closed equation for this quantity. It is useful, how-
ever, to consider a somewhat more detailed description
and specify trajectories according to their final position.
This is always possible since the rule of the symbolic dy-
namics is simple: around abrupt bifurcations leading to
fully developed chaotic scattering the global topology is
complete.!® At this level, a closed set of recursions can
be found which can be solved numerically.

Ezample I. The case of four hills of equal maxima ar-
ranged on the vertices of a rectangle (of arbitrary aspect
ratio). We introduce the number D()(m) and S (m) of
trajectories ending along one of the diagonals and along
one of the sides, respectively, after the last (nth) single
scattering. Here m = 0,1,...,n is the number of single
scatterings with angles close to 90°. Trajectories ending
along a diagonal can proceed either along the diagonal
or along two of the sides. The next single scattering has,
therefore, in all of these cases an angle different from 90°.
Trajectories ending along a side can proceed along one of
the diagonals, can be reflected, or can be scattered with
an angle close to 90° towards a hill along another side [see
Fig.7(a)]. Thus, one can write down a closed set of re-
cursions for the numbers D(®)(m) and S()(m). Starting
from any of the hills, we find D(V(0) = 3, D((1) = 0,
SM(0) = 4, SMW(1) = 2, and

D+ (m) = DM (m) + S™)(m), (A1)

St (m) = S (m — 1) + S™(m) + 2D (m).
(A2)
The total number N(™)(m) is simply

S (m)
D(n)(m)
S(n)(m) s(n)(m)
S(n)(m)

(n)
1

S, (m)

FIG. 7. The geometry of the examples and hint for defin-
ing the recursion yielding N(™)(m). (a) Example I, (b) exam-
ple I1.

N®(m) = 4[D™(m) + S™(m)]. (A3)

One can easily be convinced that both D(™)(m) and
S5()(m) have the same scaling for large n as N®™)(m),
i.e., D™ (m),S™(m) ~ exp[nh(z)]. For m = 0 one
finds

D+2)(0) — 2D+ (0) — DIV(0) = 0 (A4)

from which h(0) = In(1+v2) = 0.88 follows. Using
Taylor expansions, recursions (A1) and (A2) can be con-
verted into a differential equation for h(z):

eZh-—th' _ eh—(a:+1)h' _ th—rh' + e—h' —1=0. (A5)
The main advantage of this form is that it yields the
maximium value of h (for b’ = 0) as In3, so that Ko =1In3
as expected. Furthermore, assuming that the slope is
infinite at £ = 0 but zh’ vanishes, one recovers the above
value of h(0).

To obtain the whole function it is convenient to iterate
recursions (A1) and (A2) up to n ~ 300 and read off A
via relation (19). This is how Fig.2 was generated. For
the maximum of h/(1 — z/2) we found numerically the
value dy = 1.30. The crowding index associated with the
fractal dimension is ag = 0.37, while the concentration
belonging to the maximum value of h is obtained as zo
= 0.22.

Ezample II. The case of three hills of equal maxima
arranged on the vertices of a right-angled triangle [Fig.
7(b)]. Here three different numbers have been intro-
duced: D(™)(m) for trajectories ending along the hy-

potenuse (orientation irrelevant), as well as, Sg")(m) and

Sg")(m) for trajectories ending along the two short sides
pointing away and towards the vertex with 90°, respec-
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tively. Both D and S; induce at the next level trajectories
of type D and Sy. Sg, however, generates two trajectories
of type S1 one of them with a scattering angle close to
90°. The initial conditions are D()(0) = 4, D1)(1) = 0,
S’gl)(O) =2, Sgl)(l) = 2. The recursions, thus, read

D )(m) = DM (m) + S&")(m), (AS)

S (1) = S5 (m — 1) + S (m) (A7)
with

D(")(m) = Sg")(m). (A8)

The total number is

N®™(m) = DO (m) + Sg")(m) + S%")(m)~ (A9)
For m = 0 we find
D20y — D+ (0) — D (0) = 0 (A10)

yielding h(0) = In[(v/5 + 1)/2] = 0.48. The differential
equation now has the form

eZh—th' _ e’l-—l‘hl _ e—h' —1=0 (All)
and implies that the maximum h value is In2 = Kj.
For the reduced fractal dimension we found in this case
numerically do = 0.76. The crowding index and concen-
tration belonging to the maximum of f(«) and h(z) is
now ag = 0.16 and z¢ = 0.17, respectively.
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