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To characterize chaos in systems subjected to parameter drift, where a number of traditional methods do not
apply, we propose viable alternative approaches, both in the qualitative and quantitative sense. Qualitatively,
following stable and unstable foliations is shown to be efficient, which are easy to approximate numerically,
without relying on the need for the existence of an analog of hyperbolic periodic orbits. Chaos originates from
a Smale horseshoe-like pattern of the foliations, the transverse intersections of which indicate a chaotic set
changing in time. In dissipative cases, the unstable foliation is found to be part of the so-called snapshot attractor,
but the chaotic set is not dense on it if regular time-dependent attractors also exist. In Hamiltonian cases stable
and unstable foliations turn out to be not equivalent due to the lack of time-reversal symmetry. It is the unstable
foliation, which is found to correlate with the so-called snapshot chaotic sea. The chaotic set appears to be
locally dense in this sea, while tori with originally quasiperiodic character might break up, their motion becoming
chaotic as time goes on. A quantity called ensemble-averaged pairwise distance evaluated in relation to unstable
foliations is shown to be an appropriate tool to provide the instantaneous strength of time-dependent chaos.
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I. INTRODUCTION

Although chaos theory might be seen to be completely
understood by now, the field of systems subjected to param-
eter drift is yet to be fully explored. Here, basic methods of
standard chaos cannot be applied, in particular, periodic orbits
do not exist due to the lack of strict recurrences, thus the
efficient tool of periodic orbit expansion [1] cannot be utilized.
Furthermore, long-time limits are not meaningful since the
system might become qualitatively different from the original
one even after short times. As a consequence, the traditional
definition of Lyapunov exponents [2] remains ill-defined. It is
thus a basic question how to identify chaos in such systems.
An entropy-based answer was given in [3]; here we address
the question from the point of view of phase space struc-
tures, concentrating on time-dependent foliations and Smale
horseshoes [4]. Additionally, a quantity describing the time-
dependent sensitivity to initial conditions is proposed.

Some notable literature on drifting problems include tip-
ping phenomena [5–7], aperiodically driven Hamiltonian
systems [8], epidemics under changing vaccination coverage
[9], advection in flows of changing intensity [10,11], as well
as climate change (see, e.g., [12–17]). For a review, see [18].

The key element of traditional chaos (of undriven or peri-
odically driven systems) is the existence of a Smale horseshoe
[4]. This implies the intersection pattern of the interwoven
unstable and stable manifolds of hyperbolic cycles. The set
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of transverse intersection points, called a chaotic saddle [2],
is the fundamental set governing the dynamics. An equally
well-known concept, used only rarely in the physics literature,
is that of unstable and stable foliations [19–21]. They are
defined as curves whose tangents point in the local stretching
direction of the forward and backwards dynamics, respec-
tively. A practical method to generate them is to scatter a large
number of small balls in the phase space and iterate them
forward or backward over long time intervals. These balls
will deform into elongated ellipsoids whose increasing axes
(still small) determine the local unstable or stable directions.
Surfaces tangent to these directions constitute the foliations,
and typically produce transverse intersections. As this algo-
rithm implies, foliations are obtained without relying on the
existence of hyperbolic orbits.

In systems subjected to parameter drift, both the analytic
and numerical determination of distinguished hyperbolic or-
bits is hopeless, although, in special cases, perturbative results
are available [18]. The unstable or stable manifold-based con-
struction of horseshoes appears thus to be hopeless. We show
here that the other, foliation-based approach is, by contrast,
feasible, and leads to the construction of time-dependent foli-
ations, which we call snapshot foliations. They can effectively
be used to illustrate the existence of a time-dependent snap-
shot horseshoe and a snapshot chaotic saddle. Due to the
impossibility of using long-time limits, all the results are, in
a sense, approximate, but with the potential for improvement
within certain limits.

Concerning dynamical instability we show, by extend-
ing recent results [8,18], that the so-called ensemble-
averaged pairwise distance (EAPD) can be considered as a
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generalization of the concept of Lyapunov exponents since the
local slope of this function can be interpreted as an instanta-
neous Lyapunov exponent.

II. MODEL

The understanding of drifting chaotic dynamics requires a
strong revision of a number of traditional concepts, therefore,
we stick throughout the paper to a single, but paradigmatic
system: the Duffing equation [22,23], where the driving am-
plitude is chosen to linearly increase in time.

The dimensionless (scaled) equation of motion is

ẍ = x − x3 − 2β ẋ + (ε0 + αt ) cos ωt, t � 0, (1)

where β is a damping constant and ω is the driving frequency.
The driving amplitude is time dependent: ε0 is its initial value
and α > 0 is the rate of the parameter drift. We define a
scenario, starting at time t = 0 as the evolution of the driving
amplitude set by parameters ε0 and α. For convenience, we
use a stroboscopic map by observing the system at integer
multiples n of the period T = 2π/ω. Besides the time of
observation, n, we will also need an auxiliary time interval,
denoted by k, also defined on the stroboscopic map. This will
measure the time spent in the scenario relative to n.

We shall stick to scenarios with small driving ampli-
tudes: εmax = ε0 + αtmax < 1 where tmax = nmaxT denotes the
longest time permitted by the validity of the model [24]. This
restriction is kept to be able to compare the numerics with
perturbative analytic expressions obtained in [18] for a few
distinguished orbits. For our analysis, we choose εmax = 0.25
and ε0 = 0.08. Note that, although the driving amplitude is
small, we are not in the adiabatic limit, which would imply
αtmax � ε0. Instead, in the investigated cases the maximum
change αtmax is comparable to ε0.

III. DISSIPATIVE CASE

Equation (1) will be studied with β = 0.01 and ω = 1,
similarly to [18]. It is worth emphasizing that in the range
ε0 � 0.25 no chaotic attractors exist at all in the drift-free
(α = 0) case [18]. It was shown earlier [25] that any long-
lasting chaoticity appearing in systems with parameter drift
originates from chaotic transients [26] of the drift-free case.

A. Unstable foliation

The algorithm of following the evolution of small circles,
although cumbersome, is applicable in drifting problems, as
well. Furthermore, a transverse stable foliation is expected
to exist as well, with an exponential convergence along it
towards the unstable one. Thus, we can follow a simpler
and more global approach, starting with a large number N
of points distributed uniformly on a not infinitesimally small
interval of length dl [27]. There is no need to specifically
choose the orientation of this segment since images of it will
quickly turn towards the instantaneous unstable direction, as
a consequence of strong chaotic stretching.

To obtain the foliation belonging to discrete time instant
n, the initialization has to be at n − k � 0 [28]. The result
obtained with an initially vertical segment about phase-space

FIG. 1. Snapshot unstable foliation and its relation to the snap-
shot attractor in the scenario ε0 = 0.08, α = 0.0005 (β = 0.01,
ω = 1) at time n = 25. The filaments are generated from N =
50 000 points on a vertical segment of length dl = 0.2 centered at
(a) (−1, 0.8) and (b) (0.85, −0.5), marked by purple lines in both
panels. The (a) green and (b) brown dots are the k = 10th images
of the segments initiated at instant n − k = 15. The small light blue
intervals are obtained from subintervals of length (a) dl = 4 × 10−4

and (b) dl = 2 × 10−3. (c) The snapshot unstable manifold (yellow)
of the SHP (red cross), overlaid with the foliations of (a) and (b)
at the same time instant. The unstable manifold was generated us-
ing N = 50 000 points and with dl = 5 × 10−7. (d) The snapshot
attractor (blue dots) at n = 25, evolved from an initially uniform
distribution of N = 40 000 points on a square of edge length 0.8
centered at the origin at time 0. Two disks of radius 0.2 are cut out
from the shape of the ensemble about (±1, 0).

point (−1, 0.8) after k = 10 steps is shown in Fig. 1(a) at
instant n = 25. The first observation is that this is a fractal-like
filamentation resembling chaotic foliations of traditional sys-
tems [29]. The small light blue segment is obtained from a tiny
subinterval to illustrate that sufficiently short segments indi-
cate directions touching the foliation tangentially. Figure 1(b)
is an analogous picture where the initial segment is chosen
to be centered at (0.85,−0.5). Despite the considerable dif-
ference between the centers of the line segments, the resulting
curves are practically identical. This is also the case with other
positions and orientations. Not even with a larger value of k
would one perceive any difference. We have, therefore, the
right to call the union of all such curves an (approximate)
snapshot unstable foliation.

Thanks to the smallness of ε0 and α, as mentioned be-
fore, a distinguished hyperbolic trajectory was analytically
determined in [18], within the framework of a perturbative
approach. On the stroboscopic map, it is represented by a
so-called snapshot hyperbolic point (SHP). The unstable man-
ifold of this point can be determined in an analogous way,
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just now the initial segment (not shown) is centered on the
SHP and oriented in the local unstable direction. The result
is shown in yellow in Fig. 1(c) overlaid with the foliations
of Figs. 1(a) and 1(b). They all run parallel to each other, in
a nearly indistinguishable way. The figure makes it plausible
that the set of all unstable manifolds of all the SHPs, if known,
would also coincide with the snapshot unstable foliation.

B. Snapshot attractor

The concepts adequate for the description of attractors
in systems subjected to parameter drift are those of snap-
shot [30] or pullback [31] attractors. These concepts were
used to understand a variety of time-dependent phenomena
both in physics [32–34] and in relation to climate (see, e.g.,
[12,14,15,35,36]). We are going to stick to the snapshot in-
terpretation since this remains applicable in the realm of
Hamiltonian systems where the concept of pulling back is
meaningless.

The determining feature of snapshot attractors is that
they are generated by means of initially extended ensembles
because individual time series are known [37] to be not rep-
resentative. In addition, such attractors are not ergodic [38]
due to the drift. After a convergence time, the distribution
of the ensemble becomes independent of the initial one, the
use of the term attractor is thus well founded. Under these
conditions, the snapshot attractor is represented by the instan-
taneous shape and distribution of the ensemble.

Several snapshot attractors identified thus far exhibit a frac-
tal appearance, and because of their analogy with traditional
cases they were considered to represent chaotic dynamics
[12,35,37]. Our results show that a refinement of this view
is necessary, and propose to call snapshot attractors of fractal
appearance strange snapshot attractors. We show that these
need not be fully chaotic as they might incorporate compo-
nents of regular dynamics as well.

The snapshot attractor of our Duffing system belonging
to instant n = 25 is shown in Fig. 1(d) (the convergence
time is about five periods) in blue. Due to the filamentary
arrangement of the points, this is a strange snapshot attractor.
A comparison of the blue dots with those of the foliation
reveals that the numerically obtained unstable foliation is an
approximation of the snapshot attractor (up to a few scattered
points). This feature appears to be the generalization of the
fact that traditional chaotic attractors are known to be the
closures of the unstable manifolds of all the hyperbolic cycles,
lying densely on the attractor [2].

C. Stable foliation

In analogy with the unstable case, the iteration runs over
k periods backward in time from discrete time instant n + k
to n [39]. The result obtained with initial intervals around
different points is shown in pink in Fig. 2(a) at instant n = 25.
These, as well as the stable manifold of the SHP (not shown)
all run parallel to each other. Remarkably, the shape and
apparent fractality of the foliation would remain practically
unchanged if a larger value of k were used, although it would
extend more into ranges outside the region investigated in
Fig. 2. There is thus a kind of convergence observed in the
investigated area, and it appears that the snapshot stable foli-

FIG. 2. The snapshot stable foliation, its relation to regular snap-
shot attractors, and a snapshot chaotic horseshoe at time n = 25 for
the scenario used in Fig. 1. (a) The foliation is generated from three
vertical segments of length dl = 0.2, each containing N = 50 000
points, centered at (−1, 0.8), (0.25, 0), (0.85, −0.5), initiated at time
n + k = 35, obtained after k = 10 backward iterations, and marked
by pink dots. The “basins of attraction” in green and yellow of the left
and right SNPs (red dots), respectively, are overlaid with the stable
foliation at time n = 25. The basins are obtained by generating the
kb = 15th inverse image of two circles of radius 0.2 about the SNPs,
taken at the n + kb = 40th iterate. (b) Snapshot chaotic horseshoe
obtained by overlaying the unstable (stable) foliation of Fig. 1(c) and
[Fig. 2(a)] marked with green (pink) initiated k = 10 steps earlier
(later).

ation is fractal-like, leaving white bands free of any points of
the foliation.

Traditionally, the stable foliation shades the basin of at-
traction of a chaotic attractor in a space filling way. This
is in stark contrast to what we see here. To resolve this,
we first need to mention that two time-dependent attracting
points, called snapshot nodal points (SNPs), are known to
exist about x = ±1 whose perturbative locations are given in
[18]. The generated strange snapshot attractor [Fig. 1(d)] thus
certainly appears to coexist with these regular attractors. We
can try constructing the “basins of attraction” of these SNPs.
Since only finite-time properties can be investigated, most
trajectories do not come really close to the regular attractors,
therefore, we approximate by choosing two disks about the
SNPs, and look for initial conditions which fall into them
after some kb number of forward iterations. Figure 2(a) also
contains these basins superimposed on the snapshot stable
foliation. From this, we conclude that the gaps in the foliation
tend to be filled out with the “basins of attraction” of all
existing SNPs.

D. Chaotic horseshoe and saddle

In drifting systems, one should pay attention to the fact
that the snapshot foliations used for the horseshoe construc-
tion should belong to the same instant, n. This means that
the unstable (stable) foliations should be initialized some k
steps earlier (later), and then overlaid with each other [40].
This results in a snapshot chaotic horseshoe, while the set of
intersection points between the foliations gives the snapshot
chaotic saddle. This set inherits the properties of homoclinic
and heteroclinic intersections in classical Smale horseshoes
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since points of it come from chaos and go into chaos as our
initial segments overlap with chaotic regimes [41].

The foliation-based snapshot horseshoe belonging to time
instant n = 25 is shown in Fig. 2(b). One clearly sees that a
large number of transverse intersections exist. It is surprising
to see that the intersection points are not dense along the
unstable foliation, in strong contrast to what is known about
traditional chaotic attractors. Thus, the strange snapshot at-
tractor supports only transient chaos. Note that, in parameter
ranges where no SNPs exist, snapshot attractors might even
be permanently chaotic, with a stable foliation expected to be
space filling (Figs. S1 and S2 in [42]). Such attractors we call
chaotic snapshot attractors.

The two disks cut out form the snapshot attractor in
Fig. 1(d) contain a spiraling pattern towards the SNPs, as
Fig. S3 of [42] illustrates. Thus, the strange snapshot attrac-
tor is not only partially (transiently) chaotic, it is partially
fractal-like, as well. Without this cutting-out, one also sees
that the strange snapshot attractor includes the regular snap-
shot attractors [42]. The unstable foliation also approaches the
SNPs, albeit more slowly. We thus conclude that it is appro-
priate to consider the strange snapshot attractor a single entity
containing both a chaotic component, the snapshot chaotic
saddle, and regular ones, the SNPs, connected via the unstable
foliation. Consistently, the union of the “basins of attraction”
of chaos (i.e., the snapshot stable foliation) and of regular
dynamics would fill the phase space, just as in drift-free cases.

IV. HAMILTONIAN CASE

Now we study the dissipation-free (β = 0) case of Eq. (1),
corresponding to the Hamiltonian

H (p, x, t ) = p2/2 − x2/2 + x4/4 − x(ε0 + αt ) cos ωt . (2)

In the drift-free case, besides the Kolmogorov–Arnold–Moser
(KAM) tori, macroscopic chaotic seas are found to exist
in the full range of small driving amplitudes [8,18]. Under
parameter drift, the divided nature of the phase space can
only be followed if special initial subensembles are taken,
corresponding to either KAM tori or chaotic seas of the drift-
free (α = 0) map. Following them under Eq. (2) we observe
that the chaotic sea changes its shape, while the tori start to
deform but remain closed curves until a certain point, where
they break up and their dynamics become chaotic [8]. We
call these ensembles snapshot chaotic seas and snapshot tori,
respectively, while their joint ensemble is called the snapshot
phase portrait [18]. Because of this structure, when applying
the process described in the previous section to unstable or
stable foliations belonging to time n, we need to consider
small initial segments that are inside the snapshot chaotic sea
at time n ± k as initial ensembles.

In Fig. 3 we show a Hamiltonian snapshot unstable
[Fig. 3(a)] and stable [Fig. 3(b)] foliation, both belonging
to n = 25 with k = 20, initiated from three initial segments
fulfilling the above requirements. The foliations started from
different initial intervals run parallel to each other in the
Hamiltonian case as well. The perturbative SHP remains
well defined here, and its unstable and stable manifolds
(not shown) are also parallel to the respective foliations. In
Fig. 3(c) we see the Hamiltonian snapshot chaotic horseshoe,

FIG. 3. Hamiltonian snapshot foliations (ω = 1). (a) Unstable
and (b) stable foliation in the same scenario as in Fig. 1 (with
β = 0) belonging to n = 25 with k = 20. The initial segments are
the same three as in Fig. 2 (but with N = 10 000) for both foliations.
(c) Snapshot chaotic horseshoe at time n = 25 with k = 20 obtained
by overlaying the foliations in (a) and (b). The intersection points
correspond to the snapshot chaotic saddle. (d) Snapshot phase por-
trait at n = 25 containing the same four snapshot tori as panel (c),
as well as a snapshot chaotic sea initiated from the stationary phase
portrait at n = 0. These are generated from the initial conditions
x0 = −0.7, 0.95, 1.56, 1.65, v0 = 0 for the tori, and x0 = 0.1, v0 = 0
for the chaotic sea, respectively.

as well as some snapshot tori which survived the scenario as
closed curves. Figure 3(d) shows the snapshot phase portrait
at n = 25, with an extended snapshot chaotic sea and the same
snapshot tori as in Fig. 3(c).

The first observation from Figs. 3(a) and 3(b) is that we
can certainly make out an area which both foliations appear to
densely shade, a trait that does not change with larger values
of k or dl either. The unstable foliation possesses a perhaps
more fragmented border, giving it a fractal-like appearance. It
is striking to see that the two foliations do not shade the exact
same area, in strong contrast to traditional cases.

Surprisingly, the stable foliation is of somewhat larger ex-
tension than the unstable one. The consequences of this can
be clearly seen in Fig. 3(c): when constructing the horseshoe
structure, one finds that, because the unstable foliation is
inside the stable one, it appears that the intersection points,
i.e., the snapshot chaotic saddle coincides with the snapshot
unstable foliation.

Comparing the latter to the snapshot chaotic sea in
Fig. 3(d), we can see that the two are very similar, and in a
first approximation can be regarded identical. Thus here we
can conclude that both the snapshot unstable foliation and the
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FIG. 4. EAPD curves of unstable foliations in the scenario ε0 =
0.08, α = 0.0001. The location of the initial vertical segment in both
images is the same as in Fig. 1(a). The displayed (rounded-up) λ

values are a few instantaneous Lyapunov exponents. (a) Dissipative
case with β = 0.01. The dynamics is chaotic up to n ≈ 50 with
a positive but ever decreasing instantaneous Lyapunov exponent,
followed by a phase of negative slope. (b) Hamiltonian case: The
upper curve represents the unstable foliation. For completeness, on
the lower curve we show the case of a snapshot torus initiated from
the KAM torus of initial conditions x0 = −0.53, v0 = 0 started from
n = 15.

snapshot chaotic sea are locally space filling, with fractal-like
edges.

An interesting additional feature can be observed in
Fig. 3(c). We see that parts of some surviving snapshot tori
are inside the stable foliation. Such an overlap would be im-
possible in an autonomous map, but not here. The reason for
this is that by our definition, the points of the stable foliation
at n will be in a chaotic regime at n + k. This means, that
the stable foliation intersecting with snapshot tori signals that
those tori will have broken up by moment n + k: the motion
of their points will have became chaotic-like [8], as will also
be illustrated by Fig. 4(b).

V. MEASURE OF TIME-DEPENDENT CHAOS

Several different methods were suggested to quantify chaos
in systems subjected to parameter drift [3,25,35,36]. As a
particularly simple concept, we use here the one first sug-
gested in [8] which enables an easy characterization of the
time-dependent strength of chaos. The so-called ensemble-
averaged pairwise distance (EAPD) is defined as

ρn = 〈ln rn〉, (3)

where the average is taken over an ensemble of trajectories
for which rn is the distance between a test particle and an
ensemble member at discrete times n, being at a distance
r0 to each other initially. In earlier cases this ensemble was
chosen to be that of a snapshot torus [8] or a snapshot attractor
[18]. The slope of the EAPD curve can be considered as an
instantaneous Lyapunov exponent λ, a quantity that can be
used to describe time-dependent chaos.

Here we extend this concept to foliations, and take as
ensemble the N initial conditions along the line segments of
length dl used earlier. The results for the unstable foliation
is shown in Fig. 4. To have a large number of data points,
a slower scenario is taken than the one used so far. The

evaluation of the EAPD starts with the initialization of the
foliation at n = 15 and goes until n + k = 115 while α =
0.0001, meaning that the scanned amplitude range is similar
to that of the previous scenario. The r0 initial distance between
point pairs is

√
2 × 10−10, i.e., we add 10−10 in both directions

to the coordinates of the ensemble members.
Figure 4(a) shows a dissipative case. We see that the mo-

tion is chaotic over several periods, but at around n = 50 the
slope becomes zero, chaos disappears from the system. As
mentioned before, the unstable foliation approaches the SNPs,
and in this scenario it does this fast enough to turn the average
motion from chaotic to regular, as evidenced by the small
negative slope. The shape of the curves has little dependence
on the location of the initial segment. If we follow the EAPD
of the ensemble of the strange snapshot attractor, the curve
would have a similar shape (see Fig. S4 in [42]).

In Fig. 4(b) we see a Hamiltonian case. The upper curve
again represents the unstable foliation, and in this case it levels
off around 0, indicating a scattering of all points in a macro-
scopic phase space region, i.e., pronounced chaos. Evaluating
the EAPD for the snapshot chaotic sea started from n = 15,
we would get a qualitatively similar curve (not shown). The
lower curve represents a snapshot torus that breaks up during
the scenario, demonstrating that this is indeed a process that
turns regular motion into chaotic, with a finite instantaneous
Lyapunov exponent, which is found to be similar to that of the
snapshot chaotic sea at the moment of the break-up (n ≈ 70),
see Fig. S5 in [42].

VI. CONCLUSION

We have shown that chaos in systems subjected to pa-
rameter drift is best described using approximate unstable
or stable foliations, which are easy to obtain numerically.
These constitute a Smale horseshoe structure, as well as a
chaotic saddle, which govern the details of time-dependent
chaotic dynamics. It is the unstable foliation which turns
out to be strongly related to the relevant chaotic sets. The
time dependence of the strength of chaos can be effectively
followed by evaluating the EAPD. Although our illustrative
example is low-dimensional and periodically driven, most of
the ideas presented here apply in nondriven cases, as well.
In [18,43] the dynamics of the decay caused by dissipation
was studied in problems lacking any energy input, while in
[27] nondriven conservative motion with time-dependent pa-
rameters was investigated on a Poincaré map. The ideas can
also be generalized to higher-dimensional systems. Foliations
can be generated by iterating small hypersurfaces forward and
backward, which then possess common points, the analogs
of snapshot chaotic saddles. The evaluation of the EAPD is
straightforward for high-dimensional chaotic sets and can, in
principle, be worked out in large-scale climate models as well.
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