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Chemical or biological activity in open chaotic flows
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We investigate the evolution of particle ensembles in open chaotic hydrodynamical flows. Active processes
of the typeA1B→2B and A1B→2C are considered in the limit of weak diffusion. As an illustrative
advection dynamics we consider a model of the von Ka´rmán vortex street, a time-periodic two-dimensional
flow of a viscous fluid around a cylinder. We show that a fractal unstable manifold acts as a catalyst for the
process, and the products cover fattened-up copies of this manifold. This may account for the observed
filamental intensification of activity in environmental flows. The reaction equations valid in the wake are
derived either in the form of dissipative maps or differential equations depending on the regime under con-
sideration. They contain terms that are not present in the traditional reaction equations of the same active
process: the decay of the products is slower while the productivity is much faster than in homogeneous flows.
Both effects appear as a consequence of underlying fractal structures. In the long time limit, the system locks
itself in a dynamic equilibrium state synchronized to the flow for both types of reactions. For particles of finite
size an emptying transition might also occur leading to no products left in the wake.@S1063-651X~99!04905-3#

PACS number~s!: 47.52.1j, 47.70.Fw, 05.45.2a
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I. INTRODUCTION

Active processes taking place in chaotic hydrodynam
flows have attracted recent interest@1–8#. By chaotic we
mean time-dependent but nonturbulent velocity fields w
chaotic tracer dynamics~Lagrangian chaos! @9,10#. In the
simplest approximation we can assume that the advected
ticles undergo certain chemical or biological changes but
not modify the fluid flow. The motivation for such studie
has been to understand the effects of imperfect mixing@3#
due to the underlying chaotic particle dynamics. The imp
cations can be perceived in laboratory experiments@3,11#,
but the effects are perhaps more striking in environme
flows. In particular, there is increasing evidence of filamen
structures in the product distribution of environmental p
cesses both in the atmosphere, such as ozone reac
@4,5,7#, and in the sea, such as evolution of microorgani
populations~plankton distributions! @12#. Our aim is to show
that these structures might be consequences of the fr
structures of the reaction-free flows@6#.

Here we shall consider open flows with asymptotic si
plicity in which the velocity field in the far upstream an
downstream regions is uniform. A well-known~time-
periodic! laboratory example is the flow around a cylinde
Its actual realization can be observed in environmental flo
like, e.g., in the fluid motion in the wake of a pillar or in th
motion of air behind an isolated mountain. A unique featu
of such open flows is the pronounced and stable fractal
ture associated with the chaotic tracer dynamics@13–22#,
which is clearly measurable in experiments@23#. The central
object governing the dynamics is a nonattracting cha
saddle@24# containing an infinite number of periodic an
nonperiodic tracer orbits which remain bounded and ne
PRE 591063-651X/99/59~5!/5468~14!/$15.00
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reach either the far upstream or the downstream region
characteristic quantity of the saddle is its escape ratek
whose reciprocal value is the average chaotic lifetime. T
far upstream and downstream regions are foliated by the
dle’s stable and unstable manifold, respectively. The sadd
unstable manifold directs tracers ever approaching the sa
to the far downstream region. Though both the saddle and
manifolds are not space-filling fractal objects, it has be
pointed out@13–23# that the unstable manifold is the avenu
of propagation and transport in such flows. It is the p
nounced fractal structure of such flows~which is not present
in closed flows! that makes them specially interesting ca
lysts of active processes@6#.

In this paper we consider the advection ofactiveparticles
in flows with asymptotic simplicity in which the activity is
assumed to be of chemical or biological origin in the si
plest possible form. The reaction is a kind of ‘‘infection
leading to a change of certain properties, such as colo
reacting particles. Particles with new properties are theprod-
ucts. Since it is in the close vicinity of the chaotic saddle a
its unstable manifold that the particles spend the longest t
close to each other, it is there where the effect of the activ
is most pronounced. It is then natural to expect that the pr
ucts should accumulate along the unstable manifold
trace out this fractal object.

In our work we support this conjecture and present a
tailed analysis of such active processes. We show that
unstable manifold of the chaotic saddle is theskeletonof the
reaction. The newly born components cover the branche
the unstable manifold with a well-definedaverage width«* .
Thus, an effectivefattening upof the fractal set takes plac
due to the activity of the tracers. This implies that on line
scales smaller than this width«* , fractality is washed out,
5468 ©1999 The American Physical Society
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PRE 59 5469CHEMICAL OR BIOLOGICAL ACTIVITY IN OPEN . . .
but a clear fractal scaling of the material with a dimens
D0 can be observed on larger scales. This fractal dimen
is the same D0 as that of the unstable manifold in th
reaction-free flow. Although the fractal set itself is a set
measure zero, the amount of chemical products isnonzero
due to the fattening-up process of this manifold.

A consequence of the fractal skeleton is that the amo
of the reaction product follows a singular scaling law w
irrational D 0-dependent powers of the number of produ
particles, signaling asingular enhancement of productivity
@6#. ~The enhancement of activity is meant in comparis
with nonchaotic, e.g., steady flows.! This singularly en-
hanced rate of activity has profound practical consequen
It may account for the observed filamental patterns of inte
activity in environmental flows@4,5,7#, an effect that canno
be explained if one considers diffusion processes alone
this work we show how small-scale structures are gener
in the dynamics of active particles, and how these dynam
structures are responsible for the enhancement of activit

In summary, the effect of the chaotic saddle produc
this activity is twofold: ~i! to keep the reacting particle
longer in the interaction region, and~ii ! to concentrate them
on the saddle’s unstable manifold.

We derive the correspondingreaction equationsin the
form of maps or differential equations depending on the
gime under consideration. Such processes are generaliza
of classical surface reactions@25#, but, by contrast, in our
case the surface is a fattened-up fractal. The reaction e
tions contain new termsnot present in the traditional well
stirred reaction model of the same process. In spite of
passive tracers’ Hamiltonian dynamics, these reaction eq
tions turn out to be ofdissipativecharacter possessing attra
tors.

We find that the chemical activity and the advection
the hydrodynamical flow are in permanentcompetition. Due
to this competition, most typically, a kind ofsteady statesets
in after sufficiently long times. In the case of time-period
flows of periodT, the asymptotic state is typically also per
odic with T, i.e., the reaction becomessynchronized to the
flow, in spite of the chaotic particle dynamics.

To be more specific, we consider simplekinetic models
@1# with disklike particles. Two particles of different kind
undergo a reaction if and only if they come within a distan
s, which is the reaction range. Due to the incompressibi
of the fluid ~which is always a good approximation for ve
locities much below the speed of sound!, two-dimensional
flows arearea preserving. We emphasize again that particle
are assumed to have no feedback on the flow. Furtherm
the advection dynamics is purely deterministic, i.e., we w
in the limit of weak diffusion where the reaction range i
cludes the diffusion distance, too.

We shall consider both an autocatalytic process,A1B
→2B, and a collisional reactionA1B→2C. In both casesA
is considered to be the background material which cov
initially the full infinite layer of observation. In the autocata
lytic process a single seed of particleB is sufficient to trigger
reactions while in the collisional reaction a continuous fe
ing of materialB is necessary.

For computational convenience we assume that the r
tions are instantaneous and take place at integer multiple
a time lagt. We shall see that an important dimensionle
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parameter will be the ratio between the time lag and
average chaotic lifetime:n[t/(1/k)5tk. This can also be
considered to be the dimensionless reaction time, whose
ciprocal value tells us how many reaction events occur
the characteristic time of chaos.

The case of time-continuous reactions is obtained in
limit t→0 ~or n→0) by keeping thereaction front velocity
v r finite. In this limit we also assume that the average d
tance«0 between particles goes to zero, and we obtain
continuous distribution of particles. We call this limit th
chemical frame. A fractal product distribution is then ex
pected to appear if the reaction isslowcompared to the flow
(v r!kL with L as a characteristic length!. An example for
time-continuous reactions is related to the depletion of oz
at the polar vortex: the trimolecular reaction of ClO wi
NO2. In late winter and early spring the polar vortex exhib
high concentrations of ClO and very low concentrations
NO2 while outside the vortex the situation is typically re
versed with relatively high concentrations of NO2 and low
concentrations of ClO. Thus the reaction ClO1NO2
→ClONO2 is a natural candidate to produce a filamen
ClONO2 distribution along the edge of the polar vorte
@5,7,26# on the time scale of a few days, where the molecu
diffusivity is negligible.

In order to contrast our work with the conventional d
scription of chemical processes, we briefly discuss now
continuous time dynamics of the autocatalytic surface re
tion A1B→2B in a uniform flow. Let us observe the flow
moving to the right with velocityv0 in a unit square~fixed to
the observer at rest!. A seed particle of typeB is kept fixed
about the middle of the left boundary. Particles of typeA are
distributed with uniform density everywhere on the surfa
of the flow ~also upstream!. The seed particle starts to inte
act with its A neighbors transforming them intoB. SinceB
particles are transported away, more and moreA particles are
converted intoB. Let us assume that at timet theB particles
cover a triangle across the square which is symmetric abo
horizontal line~Fig. 1!. For simplicity, we consider the hal
anglea to be small. The areaAB occupied byB is simplya.
The change in this area during timedt is due to a horizontal
displacementv0dt and a vertical increasev rdt of both
fronts, wherev r is the reaction front velocity. The gain of th
areaAB is just 2(2v0a1v r)dt52(2v0AB1v r)dt. The

FIG. 1. Schematic diagram of a uniform flow of velocityv0

with autocatalytic reaction. A single seedB is kept fixed at the left
corner of the gray triangle occupied by materialB which lies in a
layer of whiteA particles. The observation region is a unit squa
~dashed line!.
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5470 PRE 59GYÖRGY KÁROLYI et al.
differential equation governing this area is thus

ȦB522v0AB12v r . ~1!

It has a steady solution, corresponding to a stabilized tr
gular distribution ofB particles of areaAB* [a* 5v r /v0. We
shall see that the presence of a saddle in a time-depen
nonuniform flow results in a slower decay and a faster p
duction @2v0 is replaced by the escape ratek and the pro-
duction term will contain a factor with a negative power
the area itself due to the fractality of the unstable manifo
cf. Eq. ~12!#.

For generality, we also investigate cases where the t
lag t is finite so that its dimensionless versionn is of order
unity or larger. Ifn exceeds a critical value, we find that n
product remains, i.e., anemptying transitiontakes place. Be-
cause of the finite values oft, and the discrete character o
the particles («0 might also be considered as the size
particles!, this latter effect might be of relevance to biolog
cal processes accompanying advection. An example can
crude model of the dynamics of plankton populations@12# in
the presence of a time-dependent flow. The so-called z
planktons~B! have a daily rhythm: they sink down durin
night time but come up to the surface of the sea again du
day time when they eat up phytoplanktons (A), reproduce
themselves, and then grow in number.

This paper is organized as follows. In Sec. II, we pres
the model and the algorithm used in simulations. The
merical results for both reaction types are shown in Sec.
A detailed theory based on these observations is derive
Sec. IV. The concluding Sec. V gives remarks on proper
expected to be valid in more general models of active p
cesses in open flows.

II. THE MODEL AND NUMERICAL PROCEDURE

In this section we first define the open flow chosen
support the activity, and the numerical procedure to repre
this flow. Next we turn to the description of the active pr
cess. The algorithms for the reaction types considered
given in two subsections. Finally, the basic assumptions
summarized.

The flow chosen to illustrate the fractal active dynamics
an example of a two-dimensional, incompressible tim
periodic fluid motion, the case of the von Ka´rmán vortex
street in the wake of a cylinder@14–23#. The radiusR of the
cylinder and the periodT of the flow are taken as the lengt
unit and the time unit, respectively. In what follows we ke
the flow parameters constant, implying a fixed value of
escape ratek, and investigate the dependence of the reac
outcome on parameters like the reaction range (s) and time
(n).

For simplicity, we use an analytic model for the strea
function introduced in Ref.@16# ~the explicit form of the
stream function can also be found in Sec. III of Ref.@20#!.
This model has been motivated by direct numerical simu
tions at Reynolds number of about 250@15#, and has been
used successfully to reproduce qualitative features of
tracer dynamics. The escape rate of the particles in
reaction-free flow isk50.36 and the fractal dimension of th
n-
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unstable manifold isD051.61, while the background flow
velocity is v0514 @16,20#.

Since the flow is periodic, we fix the ‘‘phase’’ of th
reaction relative to the flow. We consider time zero,t50, to
be the instant when a vortex is born close to the surface
the first quadrant of the cylinder and, simultaneously, a fu
developed vortex is detaching in the fourth quadrant of
surface@16,20#.

For convenience, we carry out the simulations on a u
form rectangular grid of lattice size«0 covering both the
incoming flow and the mixing region in the wake of th
cylinder. This«0 also corresponds to the average distan
between nearest-neighbor particles. If there is a tracer in
a cell, it is always considered to be in its center. This p
jection of the tracer dynamics on a grid essentially define
mapping among the cells.

The course of the reaction starts with nearly all cells o
cupied by speciesA, the background material. Few cells co
tain B distributed according to the initial conditions chos
for the type of reaction under consideration. One iteration
the process just described consists of two mappings in in
lution. The first mapping models the advection of the p
ticles on the chosen grid, while the second models the ins
taneous active process~e.g., chemical reaction! occurring on
the same grid of cells. Due to the grid, the reaction rang
bounded from below by the lattice size:«0<s. In fact, in
any closed region considered there is a loss of the prod
due to the advection but also a gain in the product amo
due to the reaction. The simulation consists of a repea
application of advection and reaction steps. We apply diff
ent algorithms for different reaction types.

A. Autocatalytic reaction: A1B˜2B

If a tracer starting from the center of a cell is advect
into another one after timet, then the latter cell is considere
to be the image of the first one with respect to the dynam
After an application of the map, a cell will be considere
occupied by reagentB if it is an image of at least oneB cell.
Otherwise the cell is considered to contain speciesA after the
mapping. In addition, if a cell containsB at the time of the
reaction, all of the eight neighboring cells are infected byB.
Consequently, the lattice size«0 plays the role of the inter-
action ranges in our simulation.

B. Collisional reaction: A1B˜2C

In this case, a cell is considered to be the image of ano
one with respect to the dynamics if its center’s preimage
inside this other cellt time earlier @27#. This defines the
mapping among the cells due to the dynamics. After
action of the mapping, the reaction can modify the cell co
tents: Any cell containingA ~B! before the reaction become
C, if there is aB ~A! cell within a radiuss from its center.
Otherwise the cell keeps its content. Numerically we foun
convenient to store the configuration of the lattice just bef
reactions only. Then the content of a cell at the time j
before a reaction can be deduced from its preimage and
neighbors of the preimage according to the following cri
rion: If, t time earlier, among the preimage cell and
neighbors there were both typesA and B present, then the
cell must have becomeC during the last reaction; if all of
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PRE 59 5471CHEMICAL OR BIOLOGICAL ACTIVITY IN OPEN . . .
them were of one type only~apart fromC, which is inert!,
the cell inherits the type of its preimage. This means that
unify the advection-reaction process in one mapping c
necting the cell contents just before reactions. In all exp
ments the reaction ranges is on the order of the lattice siz
«0.

The basic features of the complete model are~i! unifor-
mity of the flow at infinity with time dependence in a mixin
region to ensure chaotic advection and the existence of m
folds with dimensions strictly less than two,~ii ! passivity of
particles in the sense that they have no feedback on the fl
~iii ! purely deterministic advection neglecting effects of m
lecular diffusion,~iv! activity of particles in the sense tha
they change some of their properties upon collisions, w
being closer to each other than the reaction ranges. The
assumption of a ‘‘kicked’’ activity taking place at intege
multiples of a time lagt is only partially due to numerica
necessity, because it might mimic certain biological p
cesses. Using a finite lattice size«0 is unavoidable in the
numerics and corresponds to dealing with particles of fin
size. The model is expected to provide a faithful continu
description if«0 is much smaller than the smallest macr
scopic length@which will be the average width«* (t), cf.
Sec. III, and Eq.~8!#. If, in addition, a continuous time limit
is of interest, the time lag should be chosen to be m
smaller than the lifetime in the mixing region:t!1/k, which
corresponds ton→0. Finally we mention that the basic pa
rameters of activity are the reaction ranges and the time lag
t, and they~or combinations of them! are therefore expecte
to appear in the gain terms of the reaction equations.

III. RESULTS

Here we summarize the most essential findings of the
merical simulations of the model for each reaction type se
rately.

A. Autocatalytic reaction: A1B˜2B

Initially, we introduce a seed of reagentB in front of the
cylinder. Since there are only two species in the system,
monitor only reagentB. Values referring to materialA inside
the computational domain can be obtained from mass~in our
two-dimensional model, area! conservation. Figure 2 dis
plays the spreading of reagentB ~black! in the course of
time. Note the rapid increase of theB area and the quick
formation of a filamental structure that becomes steady a
a few time units, but changes periodically with the period
the flow.

To support this qualitative observation, Fig. 3 shows
number ofB particles in the computational domain as a fun
tion of time. After four periods, a self-repeating time depe
dence sets in. This means that the chemical reaction t
over the flow’s basic periodicity and reaches a steady st
the number of cells being born in the reaction is the sam
the number of cells escaping due to the advection dynam
In fact, owing to a special symmetry, which is not present
the case of general obstacles, the flow is reflection symme
with respect to thex axis after a time shift of one-half. There
fore, the product distribution is of period 1/2@28#.

The outcome of the dynamics depends strongly on
initial position of the seed particle. If the initialB droplet is
e
-

i-

ni-

w,
-

n

-

e

h

u-
a-

e

er
f

e
-
-
es
e:
as
s.

ric

e

off axis @as in Fig. 4~a!#, it does not penetrate the mixin
region in the wake of the cylinder, and the initial droplet
just simply stretched before the whole amount ofB is
washed downstream. One can observe that the size of
compact patchB increases due to the autocatalytic process
time goes on. Note that in this case no materialB remains in
the mixing region and the reaction dynamics dies out in a
fixed observation region of finite size. To sharpen the c
trast, in Fig. 4~b! we display theB distribution of Fig. 2~j! in
a much longer region downstream. This clearly indicates t
material B is now present atany instant of time atany x
value in the wake. The gradual broadening of the stripes
product downstream is due to the autocatalytic feature of
process~and would not be present in the case of collision
reactions!.

In what follows we focus on such nontrivial cases
which the droplet penetrates the mixing region. To und
stand the dynamics of Fig. 2, we recall that the tracer dyna
ics is governed by a chaotic saddle in the wake of the cy
der. Passive tracers coming close to the chaotic saddle s
a long time in the mixing region before being advected aw
along the unstable manifold of the chaotic saddle@cf. Fig.
5~a!#. Thus tracers having spent long time in the mixing r

FIG. 2. Time evolution of a seed of 400B particles ~black!
placed in the flow in front of the cylinder~on a square of linear size
0.2) at time 0. As the autocatalytic reaction evolves havingA as the
background particles~white!, the amount ofB increases and trace
out a complicated object in the wake of the cylinder. After som
initial increase, a steady state sets in. The snapshots~a!–~j! are
taken at timest50, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.6, 2.0, an
3.0, respectively, right before a reaction takes place. The comp
tional domain23,x,5 and 21.5,y,1.5 covers both the in-
coming and mixing regions. The time lag between reactions it
50.2, consequentlyn50.072, and the lattice size is«05s50.01.
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gion accumulate on the unstable manifold. A comparison
Figs. 2~i!, 2~j! and 5~a! provides numerical evidence for th
accumulation of materialB in stripes of finite widths along
this manifold.

In order to gain more insight into the reaction dynami
Figs. 5~b! and 5~c! show the reagent distribution just befo
and just after the autocatalytic reaction takes place, res
tively, in the steady state. In the first case, theB distribution
has a rather scanty appearance, while right after the auto
lytic reaction most of the filaments of the manifold a
washed out due to a sudden widening. The two pictures
respond to two different coverages of the fractal manifo
Just before the reaction, the unstable manifold is cove

FIG. 3. The dependence of the numberA B
(n)(t)/«0

2 («05s) of
B particles in the computational domain of Fig. 2 on timet5nt
right before the reaction events. Note the steady time-periodic
havior reached after about four time units.

FIG. 4. ~a! Time evolution of a droplet of the same size as us
in Fig. 2~a! but placed off axis fort50.2 and lattice sizee05s
50.01. The distribution ofB particles is shown at instantst
50, 0.2, 0.4, and 0.8. NoB particle is in the wake of the cylinde
after a time 1.0.~b! The same as Fig. 2~j! just in a more elongated
frame. Note the downstream widening of the filaments.
f

,

c-

ta-

r-
.
d

with stripes of average width«* (t), while just after the re-
action with«* (0).«* (t). The sudden increase of the co
erage width at certain times is due to our modeling of
chemical reaction as a ‘kicked’ process. In the case of tim
continuous reaction obtained in the limitt→0 this feature is
not present, but the fact that materialB occupies a
fattened-up fractal remains unaltered.

One of the most interesting quantities to follow is th
change of the number ofB particles with the time lagt ~or
n) in the steady state, as shown in Fig. 6. Observe the mo
tonic decrease and observe that for relatively larget values
(t.tcrit) no particle remains in the wake. This indicates t
existence of an ‘‘emptying transition.’’ For reactions takin
place rather seldomly, the effect of the advection by
background flow is so strong that noB particles survive the
time lag t in the wake of the cylinder, and therefore, n
reaction takes place in the mixing region. Such empty
transition occurs ift is on the order of the chaotic lifetime
and hencencrit'1.

B. Collisional reaction: A1B˜2C

Initially the flow consists of materialA, into which we
inject reagentB continuously, along a line segment of leng
l perpendicular to the background flow in front of the cyli
der. As time evolves, materialC is produced. Figure 7 dis
plays typical snapshots of the surroundings of the cylind
The narrow stripes of constituentC ~black! separating the
areas occupied by background materialA ~white! and reagent
B ~gray! are clearly visible. BothB and C stripes are now

e-

d

FIG. 5. ~a! The unstable manifold of the chaotic saddle in t
reaction-free flow generated by distributing 20 000 passive p
particles ~black dots! on short segments along the local unstab
direction of three basic fixed points of the Lagrangian dynam
and iterating them forward in time over several periods.~b! and~c!
show theB particle distribution att510.0 just before and just afte
the reaction, respectively. Note the accumulation ofB along the
unstable manifold and note its sudden broadening from~b! to ~c!.
The parameters are as in Fig. 2.
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pulled along the unstable manifold of the chaotic sad
forming lobes behind the cylinder. This implies again th
the reaction essentially takes place along this manifold@cf.
Fig. 5~a!#.

Figure 8 shows the time evolution of the number of ce
occupied byB andC. After a short transient, a saturation
reached. This means that the number ofC cells born in the
reaction is the same as the number ofC cells escaping due to
the emptying dynamics. As in the autocatalytic reaction,

FIG. 6. Dependence of the numberAB* (t)/s2 of B particles just
before reaction in the steady state on the time lagt ~all other pa-
rameters are as in Fig. 2, with the exception of the reaction ra
which iss5«050.003, and of that a boundary layer of width 0.0
has been cut out around the cylinder surface!. Note the sudden
decrease aroundt3'3(n3'1.1), leading to a complete disappea
ance ofB from the mixing region, indicating an emptying transitio
aroundtcrit56. The dashed line is fitted to Eq.~8! with g55.5, k
50.36, D051.61, ands50.003.

FIG. 7. Time evolution for the collisional reactionA1B→2C.
Snapshots~a!–~d! of the surroundings of the cylinder are taken
times 0.5, 1, 1.5, and 2, respectively, right before the reactio
The region23,x,5, 21.5,y,1.5 is shown. Initially the flow
consists of materialA, into which we introduce reagentB along the
line segmentx522, 20.05,y,0.05 (l 50.1). White area de-
notes the background materialA, gray is reagentB, while black is
the productC separating the former constituents. The reaction ra
is s50.011,«050.01, while the time lag ist50.05. These imply
an injection rate of 14.000 particles per unit time.
e
t

e

approached steady value ofC depends on the reaction rang
s and the reaction timen. The number ofB cells also con-
verges to a steady value after sufficiently long time that
pends not only ons andn, but also on the velocityv0 of the
background flow, and on the widthl since the amount of
inflowing B per unit time isv0l . The number ofB cells
increases, in spite of the reaction that consumesB, due to the
flow that brings initially more and moreB particles into the
mixing region. A periodic pulsation can be observed af
saturation has set in, just like in the autocatalytic case.
increasing the time lagt, we observe that materialB is not
arranged along a fractal set in the wake, or does not reach
wake at all, due to the finite resolution of the grid. Th
already happens for not too large values of the lattice size«0.
Because we are interested in the pronounced fractal st
tures formed, we keep the dimensionless reaction time c
siderably below unity in order to ensure that activity exten
into the wake along the unstable manifold.

IV. THEORY

Based on the numerical evidence presented, we give
a detailed theory of these active processes in continu
space~i.e., for lattice or particle size«050). For both reac-
tion types we give a ‘‘kinematic’’ derivation of the discret
time reaction equations, and then work out the continu
time limits. For the autocatalytic reaction we also presen
theory of emptying transition which is due to the finitene
of «0, and it is only characteristic for this reaction typ
Whenever possible, the theory is compared with further
merical results.

A. Autocatalytic reaction: A1B˜2B

1. Basic dynamics

Let AB(t)[A B
(n)(s) denote the area occupied by reage

B. HeresP@0,t# is the time after thenth reaction. Thus the

e

s.

e

FIG. 8. Time evolution of the number of cells occupied byB
~shown by diamonds! and C ~crosses! right before the reaction in
the numerical experiment of Fig. 7. Note the asymptotic stationa
reached by both components.
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total physical time ist5nt1s. During the time interval of
length t only the dynamics of the chaotic flow controls th
motion of the two components. In a fixed region of obser
tion, say in a rectangle in the wake,A B

(n)(s) decreases ac
cording to the escape ratek of the chaotic saddle as

dA B
~n!

ds
52kA B

~n! , 0<s,t ~2!

provided the material is distributed along sufficiently narro
stripes around the unstable manifold ats50. Solving this
equation we find that the area occupied by materialB at the
end of the intervalt is

A B
~n!~t !5A B

~n!~0!e2n, ~3!

with n5kt @29#.
In order to determine the new areaA B

(n11)(0) right after
the (n11)th reaction, we recall that after sufficiently lon
time from the onset of the reaction@when the exponentia
decay law~3! holds# the area ofB is pulled into narrow
stripes of more or lessconstantwidths along the unstable
manifold @cf. Fig. 9~a!#. In other words, the fractal unstab
manifold isfattened upwith materialB which has anonzero
area. Let«(t)[« (n)(s)!1 denote theaveragewidth of the

FIG. 9. Schematic diagram of the components’ distribut
along the unstable manifold~bold line! before and after thenth
reaction. The borderline between the components is denote
solid ~dashed! lines before~after! the reaction.~a! Autocatalytic
reaction.~b! Collisional reaction. Here all reagentsA andB within a
distances are transformed intoC in the course of reaction. The
broadening of the half-width of eachC stripe at reactionn11 is
denoted byz (n11)>0.
-

stripes at timet5nt1s. This means that on scales long
than or equal to« (n)(s) the territory occupied byB appears
to be a fractal of the same dimensionD0 as the unstable
manifold. Covering the full area occupied byB at any time
instant by squares of linear size«>« (n)(s), the number of
boxes needed for this coverage behaves asN(«)5H«2D0.
HereH is a constant characterizing the geometry, the
calledHausdorff measure~or area! of the manifold. It can be
obtained by determining the~unstable! manifold of the ad-
vection dynamics of the reaction-free flow. In what follow
we assumeH to be known.

It is worth noting that although the dimension is indepe
dent of the instant at which the snapshot is taken, the Ha
dorff measure is not. Since the flow is periodic,H is periodic
with the period of the flow:H(t)5H(t11). ~In fact, due to
the special reflection symmetry explained in Sec. III A,H is
periodic with period 1/2.!

For convenience, we choose the period of the flow to b
multiple or a divisor of the time lag:Mt51, whereM or
1/M is an integer, respectively. Which of the two options
taken depends on the time lag itself. For time lags sho
than the flow’s period (t,1), the period contains an intege
number of reactions, otherwise (t.1! the time lag is an
integer multiple of the period. This way we ensure tha
periodic behavior with the period of the flow appears a
fixed point or as a periodic cycle~and not as a quasiperiodi
motion! on the ‘‘stroboscopic’’ map taken in the instants
the reaction.

ThusH (n)(t)5H (n11)(0)[H (n) is M or 1/M periodic
as a function ofn. Since« (n)(s) is the smallest box size with
which the fractality of the reagent can be felt, the ar
A B

(n)(s) of B can be written at any time as

A B
~n!~s!5H ~n!~s!@«~n!~s!#22D0. ~4!

To determine the dynamics of the covering wid
« (n)(s) we observe that, at any reaction, there is a cha
due to the sudden increase of the product area@see Fig. 9~a!#.
Since the filaments are locally smoothlines, this widening is
proportional to the reaction ranges. We can thus write

«~n11!~0!5«~n!~t !1sd~n!. ~5!

If the widening were exactly orthogonal to the manifold, a
all the stripes occupied byB were nonoverlapping, the coef
ficient d(n) would be 2. After some time, however, initiall
distinct stripes start to overlap. This leads to a change in
effective free surface available for the reaction. The pheno
enological factord(n) introduced in Eq.~5! describes both
the effect of the geometrical shapes~stripes being tilted! and
the effect of overlap, on the average. It depends on the t
instantn, and on the flow parameters. The time evolution
the shape factord(n) is unknown a priori. We shall see,
however, that the theory becomes consistent with the
merical observations if, after a long time, the shape fac
takes over the period of the flow. Thus we assume thatd(n) is
alsoM or 1/M periodic inn.

By taking into account Eqs.~3! and ~4!, the area
A B

(n11)(t) before the (n11)st reaction can be written as

by
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A B
~n11!~t !5H ~n11!@«~n11!~t !#22D0

5e2nH ~n!@«~n11!~0!#22D0.

From this we find that the average widths« (n11)(t) just
before reaction (n11) are proportional to« (n11)(0), the
width right after thenth reaction:

«~n11!~t !5«~n11!~0!Fe2nH ~n!

H ~n11! G 1/~22D0!

.

Then from Eq.~5!, a closed recursion relation follows for th
widths just before the reactions:

«~n11!~t !5Fe2nH ~n!

H ~n11! G 1/~22D0!

@«~n!~t !1sd~n!#. ~6!

In view of Eq. ~4!, this implies a recursion for theB area as

A B
~n11!~t !5e2n$@A B

~n!~t !#1/~22D0!1g~n!s%22D0. ~7!

This reaction equationis a discrete dynamics forA B
(n)(t)

expressing the amount ofB before a reaction in terms of th
amount before the previous reaction. Since the quantitiesd(n)

andH (n) appear in a specific combination for this map, w
have introduced the shorthand notationg(n)

[d(n)H (n) 1/(22D0). In contrast to the width dynamics~6!,
the area dynamics contains all geometrical contributions
g(n), which is called therefore the geometrical factor.

Equation ~7! belongs to the same class of dynamics
recursion relations of the typexn115 f (xn), such as, e.g., the
famous logistic map@30#. It is one dimensional and strongl
dissipative, therefore it describes the convergence tow
asymptotic motions which are represented by attractors
H (n)[H andg(n)[g is constant, a fixed point of the syste
is found fromAB* (t)5A B

(n11)(t)5A B
(n)(t) in the form of

AB* ~t![H«* ~22D0!5S sg

en/~22D0!21
D 22D0

. ~8!

This is the area occupied by reagentB right before a chemi-
cal reaction takes place in the steady state. The areaB
right after the reaction is a factoren larger.

In the more general case whend(n), H (n), and thusg(n)

are periodic with some integerM, a limit cycle of periodM is
the attractor. The active process becomes thus synchron
to the underlying flow dynamics. Due to the linearity of E
~6!, and the fact that the factore2n/(22D0),1, the limit cycle
attractor of Eq.~7! is always stable~in contrast to the logistic
map!.

Equation~8! can be used to determine approximately t
mean value of the geometrical factorg(n) and its oscillation
amplitude about the mean in a temporally periodic ste
state. For the case of Fig. 3, when the attractor is of perio
we obtaing51663. Note that for integer values oft>1
~when 1/M is integer, too!, d(n) andH (n) are constant since
the periodicity of the flow is unity. Then Eq.~8! holds again
exactly.

We have carried out a series of numerical experiments
such cases to carefully check the validity of Eq.~8!. Figure
ia

s

ds
If

ed

y
5,

r

10~a! shows the scaling of lnAB* (t) vs lns. A scaling expo-
nent of 0.36 emerges that is close to the theoretically p
dicted value of 22D0'0.39.

A quantitative measure of the fractality of theB pattern
can be obtained by computing the ‘box-counting’ dimensio
The number of boxes of linear sizee that contain materialB
is expected to scale ase2D0. Figure 10~b! shows a fractal
scaling with 1.6 fore.e* and a sudden crossover ate* due
to the fattening up of the fractal at small scales. Thise* is
the average width of the coverage of the unstable mani
and is found to bee* 50.00360.0002. A comparison with
Eq. ~8! yields that the shape factord is approximately 0.6.

In Fig. 6 we also plotted a fit of Eq.~8! to the measured
values ofAB* (t). A good quality fit has been obtained wit
the geometrical factorg55.5 up tot'3.

Observe from formula~8! that, in the limit ast→`, the
area of materialB vanishes,AB* (t)→0. This does not nec-

FIG. 10. Scaling properties in the autocatalytic reaction.~a! The
areaAB* [AB* (t) occupied byB in the steady state scales asAB*
;s22D0 at different values of the time lagt ~o, t51; *, t52; 1,
t53) with D051.64, in good agreement with the fractal dimensi
of the unstable manifold of the reaction free flow. Several runs w
carried out with different values of the reaction ranges, which is
set equal to the lattice constants5«0. ~b! NumberN(«) of boxes
of sizee, covering theB material distribution right before the reac
tion, shows a fractal scaling. On the log10 «2N(«) vs log10 « plot an
exponent 0.4 appears, implyingD051.6. The crossover value i
e* '0.003. Below this scale the fractal structure is complet
washed out and a trivial exponent 0 emerges. The parameter
s50.001,t51.
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essarily mean that there is no materialB left in the mixing
region. In fact, there isalwayssome materialB left in this
region, in the form of a fractal set of zero area. Thet→`
limit corresponds to the case where theB set literally coin-
cides with the unstable manifold of the chaotic set. Sin
during a reaction theB set fattens up with average widt
proportional tos, the fattened-upB set should not have van
ishing area ast→`. In fact, assuming thatg(n) is constant,
and using Eqs. ~3! and ~8!, the limit t→` gives
limt→`AB* (0)5 limt→`enAB* (t)5(sg)22D0Þ0. Thus, tak-
ing the limit t→` in Eq. ~8! is only consistent with the
chemical framework, i.e., with a continuous distribution
particles. Of course, the numerics can deal with finite g
size only. However, when the grid size is small enough,
get a good agreement with our formulas, for not too la
time lags, as shown in Fig. 6.

2. Emptying transition

When deriving the theory, we do not make use of t
finiteness of the grid, which can also be interpreted as
finiteness of the particle size. It is this finite size effect whi
leads to theemptying transitionfor large time lags. If during
the advection dynamics of durationt the number of escaping
particles exceeds the number of newB particles created a
the next reaction, then the balance favors the total extinc
of materialB from the wake. This happens at acritical value
for the dimensionless reaction timencrit .

We derive an expression forncrit via defining theproduc-
tivity of the reaction. The productivity of the chemical rea
tion in the steady state can be characterized by the rati
newly born to parent particlesB as

S5@AB* ~0!2AB* ~t!#/AB* ~t!5en21. ~9!

The productivityS, however, cannot be arbitrarily large. A
absolute maximumSmax exists, since the number of cel
inside the reaction ranges is limited. This implies thaten

21<Smax. For n smaller thanncrit5 ln (11Smax) the produc-
tivity of the chemical reaction grows exponentially with in
creasing reaction timet or n. For n.ncrit , however,S does
not grow further. Using Eq.~9! and the fact thatS<Smax, we
haveAB* (0)<(11Smax)AB* (t). Inserting expression~3!, this
leads toAB* (0)<(11Smax)AB* (0)e2n. If the quantity (1
1Smax)e

2n is less than 1, this inequality can only hold fo
AB* (0)50. Thus, forn.ncrit , the area of reagentB quickly
drops to zero in time, and remains only the background m
terial A in the system in the steady state. In our caseSmax
58, thus the critical reaction time lag becomestcrit
52ln 3/k56.10. Indeed, this is confirmed by the measu
ments exhibited in Fig. 6.

The definition of the productivity leads us to another im
portant time value, thecrossover time lagn3 . It represents
the threshold time lag of productivity for which the effects
finite particle size~and grid! come into play. Below this
value, the filaments are ‘‘tightly’’ covered by theB cells, so
on average one particle is responsible forat most twonew-
borns,S52. At n3 , the coverage of the filaments is ju
about to break up, thusn35 ln (11S)5 ln 3, which leads to
t35 ln 3/k5tcrit /253.05. For values oft larger thant3 ,
the theory described in the preceding paragraph breaks d
e

d
e
e

e
e

n

-
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a-

-
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since it does not make use of the finite particle size. Inde
a deviation from Eq.~8! shows up in Fig. 6 byt53.

3. The continuous time limit

Before taking the continuous time limitt→0, it is worth
rewriting the reaction equation~7! in a different form. If the
coverage of the manifold byB is relatively wide, i.e.,
« (n)(t)@g(n)s, we can expand the right hand side of Eq.~6!
to first order to obtain

A B
~n11!~t !5A B

~n!~t !e2n1sg~n!~22D0!e2n@A B
~n!~t !#2b,

~10!

where

b5
D021

22D0
~11!

is a non-negative number~it takes on zero only in nonchaoti
flows!. This equation is equivalent to saying that the react
gain is proportional to the perimeterL of theB area times the
reaction ranges @6#, and that this gain can be expressed
be proportional to a power2b of the area.†With the iden-
tification c[g(n)(22D0), Eq. ~10! coincides with Eq.~3! of
Ref. @6#.‡ Because exponent2b is negative, the equation
contains a singular expression of theB area. The fixed point
~8! for «* is, in general, of the order ofgs, and the condition
leading to this form is typically not valid after a long time
Therefore, Eq.~10! can only hold for a transient period be
fore coming close to the attractor. If, however, the time lag
small enough and decreases,n!1, the region of validity of
Eq. ~10! is increasingly longer. It is thus not surprising th
in the continuous time limit, the differential equation o
tained for theB area is the analog of thesingular map ~10!:

ȦB52kAB1g~ t !~22D0!v r~AB!2b. ~12!

Here AB(t) denotesA B
(t/t)(0) or A B

(t/t)(t) for t→0, and
v r5 limt→0(s/t) represents the velocity of the reactio
front.

A comparison with the case of a uniform flow@Eq. ~1!#
shows that Eq.~12! represents a novel form of reaction equ
tion containing anegativepower of the material content du
to the fractality of the unstable manifold. Its special ca
obtained forD051 describes a surface reaction in the pre
ence of a single isolated hyperbolic orbit in the wake:ȦB
52kAB1g(t)v r . Note that this is already structurall
similar to the traditional equation~1!. But even for a single
periodic orbit the decay is slower than without its existen
because the time scale set by the escape rate~which is now
just the Lyapunov exponent of the orbit! is typically much
longer than the characteristic time of the flow.

Altogether, Eq.~12! deviates in both termsfrom the tra-
ditional reaction dynamics~1!. The decay is slower while
productivity is much greater than in an unstructured flo
Both effects are due to the presence of a chaotic sa
which produces an escape ratek smaller thanv0 and a di-
mensionD0 bigger than one.

Our findings concerning the new form of the reacti
equation are similar in spirit to those of Muzzio and Ottin
@2#. They considered the effect of filamentation on chemi
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reactions in closed containers without finding an expl
form for the reaction equations. The difference with us is d
to the fact that we are studying now open flows with frac
patterns ofD0,2, and our exponentb is therefore unique.

The area occupied byB in a steady state@g(t)5g# fol-
lows from ȦB50 as

AB* [H«* 22D05S g~22D0!v r

k D 22D0

, ~13!

in accordance with thet→0 limit of Eq. ~8!. Equation~13!
has an important consequence for the velocity of a reac
with visible fractal properties. The latter can only be seen
«* is much less than unity~the cylinder radius! which im-
plies, forg factors of the order of one, thatv r!k,v0. Frac-
tal product distributions can only be expected for reactio
which areslow on the lifetime of chaos. In this continuou
time limit the emptying transition does not occur, sinceen

→1, and thereforeen21<Smax is fulfilled.
It is worth mentioning briefly that different continuou

time limits are also possible depending on the assumpt
made on the model parameters. One option is to split
reaction ranges into a ‘‘deterministic’’ parts̄ and a fluctu-
atingds, i.e.,s5s̄1ds. The reaction front velocity is then
defined vias̄, andds/t goes over as a noise termj in the
continuous time limit. So the reaction equation become
stochastic differential equation

ȦB52kAB1g~ t !~22D0!~v r1j!~AB!2b.

Note that the noise termj appears in this Langevin equatio
in a multiplicative form. Its effect is thus also influenced b
the fractality of the underlying manifold.

B. Collisional reaction: A1B˜2C

1. Basic dynamics

The area occupied by the materialsB andC at times after
the nth chemical reaction is denoted byA B

(n)(s) and
AC

(n)(s), respectively. During the time intervalt there is no
reaction, thus only the chaotic advection and the injection
B governs the dynamics of the area ofB andC as

dA B
~n!

ds
5v0l 2kA B

~n! ,

dAC
~n!

ds
52kAC

~n! .

Herev0 denotes the velocity of the inflow far upstream fro
the cylinder, andl is the width of the stripe along which
materialB is being injected in the inflow region. The rest
the inflow consists ofA only. After solving these equation
we find the areas occupied byB andC right before the next
reaction to be

A B
~n!~t !5A B

~n!~0!e2n1
v0l

k
~12e2n!,

~14!
AC

~n!~t !5AC
~n!~0!e2n.
t
e
l

n
if

s

ns
e

a

f

The reactionA1B→2C takes place if the distance betwee
A and B is less than s. Thus, the amountA B

(n11)(0) of
materialB andAC

(n11)(0) of C right after the (n11)th re-
action becomes smaller thanA B

(n)(t) and larger than
AC

(n)(t), respectively.
The geometry is now somewhat more involved than in

autocatalytic case. The branches of the unstable manifold
covered with materialB in stripes of average widths
«B

(n)(s). Adjacent to this, there aretwo stripes of equal
widths «C

(n)(s) containing only materialC @Fig. 9~b!#, while
materialA is outside. Thus,bothmaterialsB andC lie along
a fattened-up copy of the unstable manifold. Note, howev
that the amount of fattening up is different for these mate
als.

In an analogous way as for the autocatalytic reaction,
introduce again a phenomenological shape factord(n). Due
to the effects of overlaps and nonstraight geometry of
unstable manifold, we assume that a reaction takes plac
time (n11)t if «C

(n)(t) is smaller than the rangesd(n). Here
d(n) is again dependent on the time instant, beingM or 1/M
periodic inn after sufficiently long times. The broadening o
the half-width of eachC stripe ~which is the same as th
corresponding decrease of theB stripes! in the (n11)th re-
action is

z~n11![sd~n!2«C
~n!~t !.

This leads to the following change of the covering stri
widths:

«B
~n11!~0!5«B

~n!~t !22z~n11!, ~15!

and

«C
~n11!~0!5«C

~n!~t !12z~n11!

52sd~n!2«C
~n!~t !. ~16!

Note that Eq.~15! is meaningful only if the difference on th
right hand side is non-negative. This depends on the rela
between the variablesl and s. For a fixedl, s can be in-
creased independently, and at a certain value, the increa
the width of theC stripes exceeds the width of theB stripes
during a reaction. From now on, we shall takes small
enough, and assume that the situation in Fig. 9~b! is valid at
all times during the process.

Since the fractal scaling still holds for the actual width
B or C, at an arbitrary time, the areas are

A B
~n!~s!5H ~n!~s!@«B

~n!~s!#22D0,
~17!

AC
~n!~s!52H ~n!~s!@«C

~n!~s!#22D0.

If the first equation is also applied to the inflow region, w
have to assume that the widthl of the injection ofB is on the
same order as«B

(n)(s), so that its two-dimensional characte
cannot yet be seen on this scale. Substituting these into
~14!, we find two relations connecting the widths taken
different times:
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A B
~n11!~t !5H ~n11!@«B

~n11!~t !#22D0

5e2nH ~n!@«B
~n11!~0!#22D01

v0l

k
~12e2n!,

and

AC
~n11!~t !52H ~n11!@«C

~n11!~t !#22D0

52e2nH ~n!@«C
~n11!~0!#22D0,

with H (n)[H (n)(t)5H (n11)(0). In view of Eqs.~15! and
~16! we obtain a coupled set of recursions for either
stripe widths or forA B

(n)(t) andAC
(n)(t). The dynamics of

the covering stripe width«C for materialC has the simpler
form

«C
~n11!~t !5Fe2nH ~n!

H ~n11! G 1/~22D0!

@2sd~n!2«C
~n!~t !#.

~18!

Consequently, the change of the half-width is

z~n12!52Fe2nH ~n!

H ~n11! G 1/~22D0!

z~n11!

1sH d~n11!2d~n!Fe2nH ~n!

H ~n11! G 1/~22D0!J . ~19!

The recursion for the stripe width«B covering reagentB is
then obtained from Eqs.~14!, ~15!, and~17! as

«B
~n11!~t !5H v0l

kH ~n11!
~12e2n!

1e2n
H ~n!

H ~n11!
@«B

~n!~t !22z~n11!#22D0J 1/~22D0!

.

~20!

Finally, we find that the recursion relations for the are
are given by the following reaction equations:

A B
~n11!~t !5

v0l

k
~12e2n!1e2nF @A B

~n!~t !#1/~22D0!

12SAC
~n!~t !

2 D 1/~22D0!

22g~n!sG22D0

, ~21!

AC
~n11!~t !

2
5e2nF2g~n!s2SAC

~n!~t !

2 D 1/~22D0!G22D0

.

Here g(n)[d(n)H (n) 1/(22D0) denotes the same geometric
factor as defined for the autocatalytic process. This form
plies that the area dynamics for bothB andC only depends
parametrically ong(n), while the«B and«C stripe dynamics
containd(n) andH (n) as independent parameters.

Note that theC reaction~and «C) is decoupled fromB
~and«B), and componentB simply follows theC dynamics:
the second of Eqs.~21! is independent of theB component,
e

s

-

which may seem surprising at first sight. It was derived w
the assumption thats is small enough, and that the avera
width of materialB is large enough to furnish enough re
agent for each reaction event: theB stripe is not totally con-
sumed during an instantaneous reaction. Thus the dyna
of the reaction productC depends only on the actual width o
the C stripes which separateA from B. Between two con-
secutive reactions, the averageC width decreases, making
possible a widening at the next reaction, and so on. Thus
presence ofB is necessary for producingC, but if theB area
is wide enough, theC reaction becomes independent ofB.

In the case when the Hausdorff measureH and the shape
factor d ~and geometrical factorg) are n independent, we
find a steady state. The average width of theC stripes can be
given explicitly:

«C* ~t!5«C* ~0!e2n/~22D0!5
2sd

en/~22D0!11
. ~22!

Consequently, from Eq.~19! z* 5sd tanhn/(422D0) fol-
lows. For the average width of theB stripes an implicit equa-
tion is obtained,

«B* ~t!22D05
v0l

kH ~12e2n!1e2n@«B* ~t!22z* #22D0.

~23!

Since in this equation all terms are expected to be of
same order of magnitude, we find that«B*
'(v0l /kH)1/(22D0). It means that the coverage width of th
inflow of reagentB is of the order of the average coverag
width in the mixing range, thus our earlier assumption on
validity of Eq. ~17! is fulfilled. The fixed point of recursion
~18! and ~19! is an attractor for any parameter sinc
e2n/(22D0),1.

The fixed point expressions for the areas occupied bB
and C are obtained asAB* (s)5H«B* (s)22D0 and AC* (s)
52H«C* (s)22D0, respectively. Thus,

AC* ~t![2H«C*
~22D0!52S 2sg

en/~22D0!11
D 22D0

, ~24!

and

FAB* ~t!en1
v0l

k
~12en!G1/~22D0!

5AB* ~t!1/~22D0!22gs12SAC* ~t!

2 D 1/~22D0!

.

~25!

Note that although Eq.~24! is in some sense the analog
Eq. ~8!, the particularn dependence is different. This differ
ence is due to the fact that the increase of«C in a reaction
step is not a constant, rather it is proportional toz, which
also depends on«C itself @cf. Eq. ~16!#. From these two
relations ag-independent form follows:
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FAB* ~t!en1
v0l

k
~12en!G1/~22D0!

5AB* ~t!1/~22D0!1~12en/~22D0!!SAC* ~t!

2 D 1/~22D0!

,

~26!

which does not contain any free parameters.
When the periodicity ofH, d, and g is pronounced, re-

cursions~21! typically possess a limit cycle attractor corr
sponding again to a full synchronization to the flow dyna
ics.

The consistency of expressions~24!–~26! with the numer-
ics is verified in different ways~we fixed v0514 and l
50.1). The comparison of the results shown for a period
limit cycle steady state in Fig. 8 with the expression~24!
yieldsg54264 for the geometrical factor. This value is als
consistent with Eq.~25! and the measuredB area. In simu-
lations using different grid sizes«0, we find similar geo-
metrical factor values that are slightly increasing with«0.
We also evaluate the ratio of the left and right hand sides
the fit-free relation~26! at different grid sizes«050.007,
0.01, and 0.013 and time lagst51/80, 1/40, 1/20, and 1/10
The ratio is in all cases between 0.9 and 1.0 with an aver
0.9660.05, 0.9560.04, and 0.9460.03 for the«0 values
investigated, respectively. In view of the fact thatg(n) is not
a constant, since the time lag is definitely below unity,
agreement, within an accuracy of 10% is satisfactory beca
this is exactly the amplitude of fluctuations ing.

2. The continuous time limit

Before taking the time-continuous limitt→0, it is worth
again rewriting the reaction equation~21! in a different form.
If the coverage of the manifold byB and C is large with
respect to the amount of broadening, i.e., if«B

(n)(t),«C
(n)(t)

@z (n11), we can expand the right hand sides of Eq.~21! to
first order inz using Eqs.~18! and ~20! to obtain

A B
~n11!~t !5A B

~n!~t !e2n1
v0l

k
~12e2n!

22~22D0!e2n
z~n11!

d~n!
g~n!@A B

~n!~t !#2b,

~27!
AC

~n11!~t !

2
5
AC

~n!~t !

2
e2n

12~22D0!e2n
z~n11!

d~n!
g~n!FAC

~n!~t !

2 G2b

.

Here b is the same exponent~11! as in the autocatalytic
reaction. The fixed point~22! for «C* is, in general, on the
order ofz* and the condition leading to this form is typical
not valid after a long time. Therefore, Eq.~27! can only hold
for a transient period before coming close to the attractor
however, the time lag is small enough and decreases,n!1,
the region of validity of Eq.~27! is increasingly longer.

Next we take the continuous time limit. Letf (t) denote
the t→0 limit of any function which takes the form
-

0

of

ge

e
se

f,

f (n)(s) at time t5nt1s in the discrete time representatio
with t kept fixed. Let us first consider the recursion~19! of z
and divide it by the shape factord. The basic observation is
that due to the minus sign in the first term on the right ha
side, the recursion in the limitt→0 does not go over into a
differential equation forz/d. Rather it shows that this ratio
goes to zero linearly with the time lag. Therefore it is natu
to define a reaction front velocity as

v r~ t !5 lim
t→0

z~n11!

td~n!
.

It should be emphasized that this property means that
broadening of theC stripes should tend to zero in the co
tinuous time limit. Therefore, at any time«C(t)5sd(t)
holds. Thus, in contrast to the autocatalytic reaction, the
action range needs not go to zero now, since another q
tity, the actual broadening, has to. In fact,s is finite, and is
a measure of the front velocity. A substitution of this for
into Eq. ~19! yields the explicit expression

v r5
s

2 F k

~22D0!
1

d

dt
ln g~ t !G .

Sinceg is periodic with the flow’s periodicity, the front ve
locity is also periodic.

From recursion~27! we obtain for the differential equa
tions of theB andC areas in the limitt→0

ȦB52kAB1v0l 2q~ t !~AB!2b,

ȦC/252kAC/21q~ t !~AC/2!2b,

where the coupling constant in both equations is the sa
q(t)52(22D0)v r(t)g(t). The two dynamics become en
tirely decoupled in this limit. Notice the singular terms o
the right hand sides again.

The fixed point value of theC area@for d(t)[d, H(t)
[H, q(t)[q] is AC* 52(q/k)22D0. The B area also has a
fixed point solution, but it is implicit:

AB* 5H«B*
22D05

v0l

k
2

q

k
@AB* #2b.

The front velocity

v r5
sk

2~22D0!
5

q

2~22D0!g

is now a constant entirely determined by the reaction-f
flow’s parameters and the reaction range. This implies«C*
5ds in accordance with then→0 limit of Eq. ~22!.

V. DISCUSSION

First we discuss a few aspects of the nonlinear dynam
which have not been mentioned in the text.

The stable manifold is a fractal curve leading particles
the chaotic saddle. Points lying close to it reach the sad
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rapidly, and their long lifetime is due to a residence time
the neighborhood of the saddle. In other words, initial co
ditions close to or far away from the stable manifold lead
considerable lifetime differences only after the saddle reg
has been reached. Thus, although the role of stable and
stable manifolds seems to be symmetric in the problem,
residence about the stable manifold is not long enough fo
enhancement in activity. Therefore, no fattening up ta
place along this manifold. Anyhow, a nontrivial reaction c
only occur if theB ~and C) initial conditions intersect the
stable manifold. Otherwise, cases like the one shown in
4~a! occur without a fractal product distribution.

The advection dynamics is known to have a considera
nonhyperbolic component consisting of points lying ve
close to the cylinder surface. The nonhyperbolic part is ch
acterized by a nonexponential decay (k50) and space-
filling fractality (D052) @24#. Previous studies@16,17# have
shown, however, that in the von Ka´rmán flow model the
resolution allowed in computer simulations is still too cru
to observe the nonhyperbolic effects away from~but close
to! the cylinder surface. The relative strength of the hyp
bolic component ensures that on the time and length sc
used we are able to work with a nontrivial fractal dimensi
and a finite escape rate. Apart from the nonhyperbolic
seen in the boundary layer around the obstacle, other no
perbolic structures are expected to be seen on very s
scales only. The presence of a finite coverage with wid
«* , however, prevents us from reaching these scales. Th
why the properties of the hyperbolic component play an
sential role in the full process. Therefore, in any fixed fra
in the wake not overlapping with the boundary layer, t
results of the theory presented here are expected to hold@31#.

Next we summarize those features of our model which
believed to be general for active processes accompanie
weak diffusion in open flows with velocities faster than th
of the reaction.

~1! Active processes take place about the unstable m
fold of the passive dynamics’ invariant set. If the dynamics
chaotic, the manifold is a fractal and, consequently, the
action leads to fractal patterns.

~2! Although the fractal itself is a set of measure zero,
chemical products are of finite amount due to t
fattening-up process.

~3! The fractal skeleton results in an increase of the ac
surface, it acts as a catalyst, and generates an enhancem
activity as compared to flows with nonchaotic particle d
namics.

~4! The inclusion of weak molecular diffusion in th
-
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model can be regarded as a random walk superimpose
the deterministic advection. This would result in a furth
fattening up of the fractal set, in a renormalization ofs and
thus of«* .

~5! As a formal consequence of the fractal skeleton,
product of the reaction obeys a singular scaling law.

~6! In spite of the passive tracers’ Hamiltonian dynamic
the active processes’ equations are of dissipative chara
possessing attractors.

~7! Most typically, a kind of steady state sets in aft
sufficiently long times, a state which is synchronized w
the flow’s temporal behavior.

~8! Fractality is independent of whether the tradition
reaction equations are linear or nonlinear since it is a con
quence of the advection dynamics’ strong nonlinearity.

~9! Essential parameters for the chemical reaction in
flow depend on the parameters of the reactionless dynam
the escape ratek and fractal dimensionD0. These in turn
depend on parameters~like the Reynolds number! of the un-
derlying hydrodynamics.

~10! The derivation of the reaction equations is similar
the derivation of macroscopic transport equations from
croscopic molecular dynamics. It seems that the presenc
ever refining fractal structures~which cannot be observe
directly with finite resolution! generates new terms in th
reaction equation, leading to observable macroscopic eff
based on the fractal microstructures. They appear not onl
the averages but also in moments if a stochastic descrip
is used.

All these features are expected to be present in real
chemically or biologically active environmental flows ob
served on finite time scales.
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