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We investigate the evolution of particle ensembles in open chaotic hydrodynamical flows. Active processes
of the typeA+B—2B and A+B—2C are considered in the limit of weak diffusion. As an illustrative
advection dynamics we consider a model of the vomniam vortex street, a time-periodic two-dimensional
flow of a viscous fluid around a cylinder. We show that a fractal unstable manifold acts as a catalyst for the
process, and the products cover fattened-up copies of this manifold. This may account for the observed
filamental intensification of activity in environmental flows. The reaction equations valid in the wake are
derived either in the form of dissipative maps or differential equations depending on the regime under con-
sideration. They contain terms that are not present in the traditional reaction equations of the same active
process: the decay of the products is slower while the productivity is much faster than in homogeneous flows.
Both effects appear as a consequence of underlying fractal structures. In the long time limit, the system locks
itself in a dynamic equilibrium state synchronized to the flow for both types of reactions. For particles of finite
size an emptying transition might also occur leading to no products left in the }&@63-651X99)04905-3

PACS numbds): 47.52:+j, 47.70.Fw, 05.45-a

I. INTRODUCTION reach either the far upstream or the downstream regions. A
characteristic quantity of the saddle is its escape rate
Active processes taking place in chaotic hydrodynamicalvhose reciprocal value is the average chaotic lifetime. The
flows have attracted recent interddt—8]. By chaotic we far upstream and downstream regions are foliated by the sad-
mean time-dependent but nonturbulent velocity fields withdle’s stable and unstable manifold, respectively. The saddle’s
chaotic tracer dynamicéLagrangian chags[9,10]. In the unstable manifold directs tracers ever approaching the saddle
simplest approximation we can assume that the advected pdp the far downstream region. Though both the saddle and its
ticles undergo certain chemical or biological changes but denanifolds are not space-filling fractal objects, it has been
not modify the fluid flow. The motivation for such studies pointed ouf13—-23 that the unstable manifold is the avenue
has been to understand the effects of imperfect mixBlg of propagation and transport in such flows. It is the pro-
due to the underlying chaotic particle dynamics. The impli-nounced fractal structure of such floshich is not present
cations can be perceived in laboratory experim¢Btg1], in closed flow$ that makes them specially interesting cata-
but the effects are perhaps more striking in environmentalysts of active processé$].
flows. In particular, there is increasing evidence of filamental In this paper we consider the advectionastive particles
structures in the product distribution of environmental pro-in flows with asymptotic simplicity in which the activity is
cesses both in the atmosphere, such as ozone reactioassumed to be of chemical or biological origin in the sim-
[4,5,7, and in the sea, such as evolution of microorganisnplest possible form. The reaction is a kind of “infection”
populationgplankton distributions[12]. Our aim is to show leading to a change of certain properties, such as color of
that these structures might be consequences of the fractedacting particles. Particles with new properties arepifoel-
structures of the reaction-free flo8]. ucts Since it is in the close vicinity of the chaotic saddle and
Here we shall consider open flows with asymptotic sim-its unstable manifold that the particles spend the longest time
plicity in which the velocity field in the far upstream and close to each other, it is there where the effect of the activity
downstream regions is uniform. A well-knowiitime- is most pronounced. It is then natural to expect that the prod-
periodig laboratory example is the flow around a cylinder. ucts should accumulate along the unstable manifold and
Its actual realization can be observed in environmental flowstrace out this fractal object.
like, e.g., in the fluid motion in the wake of a pillar or in the  In our work we support this conjecture and present a de-
motion of air behind an isolated mountain. A unique featuretailed analysis of such active processes. We show that the
of such open flows is the pronounced and stable fractal feainstable manifold of the chaotic saddle is ghkeletorof the
ture associated with the chaotic tracer dynanit3—22, reaction. The newly born components cover the branches of
which is clearly measurable in experimef28]. The central the unstable manifold with a well-definederage widthe*.
object governing the dynamics is a nonattracting chaoticThus, an effectivdattening upof the fractal set takes place
saddle[24] containing an infinite number of periodic and due to the activity of the tracers. This implies that on linear
nonperiodic tracer orbits which remain bounded and nevescales smaller than this widté*, fractality is washed out,
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but a clear fractal scaling of the material with a dimension

D, can be observed on larger scales. This fractal dimension

is the same [ as that of the unstable manifold in the —
reaction-free flow. Although the fractal set itself is a set of
measure zero, the amount of chemical productsoszero
due to the fattening-up process of this manifold. —

A consequence of the fractal skeleton is that the amount
of the reaction product follows a singular scaling law with
irrational D j-dependent powers of the number of product
particles, signaling aingular enhancement of productivity
[6]. (The enhancement of activity is meant in comparison
with nonchaotic, e.g., steady flowsThis singularly en-
hanced rate of activity has profound practical consequences. FIG. 1. Schematic diagram of a uniform flow of velocity
It may account for the observed filamental patterns of intenswith autocatalytic reaction. A single se&ds kept fixed at the left
activity in environmental flow$4,5,7], an effect that cannot corner of the gray triangle occupied by matefatvhich lies in a
be explained if one considers diffusion processes alone. Ifgyer of whiteA particles. The observation region is a unit square
this work we show how small-scale structures are generatedashed ling
in the dynamics of active particles, and how these dynamical
structures are responsible for the enhancement of activity. Parameter will be the ratio between the time lag and the

In summary, the effect of the chaotic saddle producing2verage chaotic lifetimer= 7/(1/k)= r«. This can also be
this activity is twofold: (i) to keep the reacting particles considered to be the dimensionless reaction time, whose re-
longer in the interaction region, ari) to concentrate them ciprocal value tells us how many reaction events occur on
on the saddle’s unstable manifold. the characteristic time of chaos.

We derive the correspondingeaction equationdn the The case of time-continuous reactions is obtained in the
form of maps or differential equations depending on the relimit 7—0 (or »—0) by keeping theeaction front velocity
gime under consideration. Such processes are generalizations finite. In this limit we also assume that the average dis-
of classical surface reactiof5], but, by contrast, in our tancee, between particles goes to zero, and we obtain a
case the surface is a fattened-up fractal. The reaction equﬁOl’ltil’lUOUS distribution of particles. We call this limit the
tions contain new termaot present in the traditional well- chemical frame A fractal product distribution is then ex-
stirred reaction model of the same process. In spite of th@ected to appear if the reactionstow compared to the flow
passive tracers’ Hamiltonian dynamics, these reaction equdv,<«L with L as a characteristic lengthAn example for
tions turn out to be oflissipativecharacter possessing attrac- time-continuous reactions is related to the depletion of ozone
tors. at the polar vortex: the trimolecular reaction of ClIO with

We find that the chemical activity and the advection byNO,. In late winter and early spring the polar vortex exhibits
the hydrodynamical flow are in permanemmmpetition Due  high concentrations of CIO and very low concentrations of
to this competition, most typically, a kind steady statsets NO, while outside the vortex the situation is typically re-
in after sufficiently long times. In the case of time-periodic versed with relatively high concentrations of N@nd low
flows of periodT, the asymptotic state is typically also peri- concentrations of CIO. Thus the reaction GIQO,
odic with T, i.e., the reaction becomeynchronized to the — CIONG, is a natural candidate to produce a filamental
flow, in spite of the chaotic particle dynamics. CIONO, distribution along the edge of the polar vortex

To be more specific, we consider simpmetic models  [5,7,26 on the time scale of a few days, where the molecular
[1] with disklike particles. Two particles of different kinds diffusivity is negligible.
undergo a reaction if and only if they come within a distance In order to contrast our work with the conventional de-
o, which is the reaction range. Due to the incompressibilityscription of chemical processes, we briefly discuss now the
of the fluid (which is always a good approximation for ve- continuous time dynamics of the autocatalytic surface reac-
locities much below the speed of solntivo-dimensional tion A+B—2B in a uniform flow. Let us observe the flow
flows arearea preservingWe emphasize again that particles moving to the right with velocity in a unit squaréfixed to
are assumed to have no feedback on the flow. Furthermoréje observer at restA seed particle of typ® is kept fixed
the advection dynamics is purely deterministic, i.e., we workabout the middle of the left boundary. Particles of typare
in the limit of weak diffusion where the reaction range in- distributed with uniform density everywhere on the surface
cludes the diffusion distance, too. of the flow (also upstream The seed particle starts to inter-

We shall consider both an autocatalytic process;B  act with its A neighbors transforming them in®®. SinceB
— 2B, and a collisional reactioA+B—2C. In both case®  particles are transported away, more and nfoparticles are
is considered to be the background material which coversonverted intdB. Let us assume that at tintehe B particles
initially the full infinite layer of observation. In the autocata- cover a triangle across the square which is symmetric about a
lytic process a single seed of parti@ds sufficient to trigger  horizontal line(Fig. 1). For simplicity, we consider the half
reactions while in the collisional reaction a continuous feed-angle« to be small. The aredy occupied byB is simply «.
ing of materialB is necessary. The change in this area during tirdé is due to a horizontal

For computational convenience we assume that the reaclisplacementv,dt and a vertical increase,dt of both
tions are instantaneous and take place at integer multiples @fonts, where, is the reaction front velocity. The gain of the
a time lag7. We shall see that an important dimensionlessarea Ag is just 2(—vga+v,)dt=2(—vqeAg+v,)dt. The
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differential equation governing this area is thus unstable manifold iDy=1.61, while the background flow
velocity isvy=14[16,20.
S Since the flow is periodic, we fix the “phase” of the
Ap=—2voAp+ ;. @ reaction relative to the flow. We consider time zers 0, to
be the instant when a vortex is born close to the surface of
It has a steady solution, corresponding to a stabilized trianthe first quadrant of the cylinder and, simultaneously, a fully
gular distribution ofB particles of areadf =a* =v,/vy. We  developed vortex is detaching in the fourth quadrant of the
shall see that the presence of a saddle in a time-dependesurface[16,20.
nonuniform flow results in a slower decay and a faster pro- For convenience, we carry out the simulations on a uni-
duction[2v is replaced by the escape rateand the pro- form rectangular grid of lattice size, covering both the
duction term will contain a factor with a negative power of incoming flow and the mixing region in the wake of the
the area itself due to the fractality of the unstable manifoldcylinder. Thise, also corresponds to the average distance
cf. Eq. (12)]. between nearest-neighbor particles. If there is a tracer inside
For generality, we also investigate cases where the tima cell, it is always considered to be in its center. This pro-
lag 7 is finite so that its dimensionless versieons of order  jection of the tracer dynamics on a grid essentially defines a
unity or larger. Ifv exceeds a critical value, we find that no mapping among the cells.
product remains, i.e., aamptying transitiortakes place. Be- The course of the reaction starts with nearly all cells oc-
cause of the finite values af, and the discrete character of cupied by specie8, the background material. Few cells con-
the particles £, might also be considered as the size oftain B distributed according to the initial conditions chosen
particles, this latter effect might be of relevance to biologi- for the type of reaction under consideration. One iteration of
cal processes accompanying advection. An example can betlae process just described consists of two mappings in invo-
crude model of the dynamics of plankton populatiph2] in lution. The first mapping models the advection of the par-
the presence of a time-dependent flow. The so-called zodicles on the chosen grid, while the second models the instan-
planktons(B) have a daily rhythm: they sink down during taneous active process.g., chemical reactigroccurring on
night time but come up to the surface of the sea again durinthe same grid of cells. Due to the grid, the reaction range is
day time when they eat up phytoplanktons)( reproduce bounded from below by the lattice sizeg<o. In fact, in
themselves, and then grow in number. any closed region considered there is a loss of the products
This paper is organized as follows. In Sec. Il, we presentlue to the advection but also a gain in the product amount
the model and the algorithm used in simulations. The nudue to the reaction. The simulation consists of a repeated
merical results for both reaction types are shown in Sec. lllapplication of advection and reaction steps. We apply differ-
A detailed theory based on these observations is derived ient algorithms for different reaction types.
Sec. IV. The concluding Sec. V gives remarks on properties
expected to be valid in more general models of active pro- A. Autocatalytic reaction: A+B—2B

cesses in open flows. ) )
If a tracer starting from the center of a cell is advected

into another one after time then the latter cell is considered
Il. THE MODEL AND NUMERICAL PROCEDURE to be the image of the first one with respect to the dynamics.
. . ) , After an application of the map, a cell will be considered
In this section we first define the open flow chosen tooccupied by reager if it is an image of at least onB cell.

support the activity, and the numeriqal 'procedure to .represe%therwise the cell is considered to contain spegiedter the
this flow. Next we turn to the descr_lptlon of the active pro- mapping. In addition, if a cell contairB at the time of the
cess. The algorithms for the reaction types considered & action, all of the eight neighboring cells are infectecBby

given in two subsections. Finally, the basic assumptions ar%onsequently, the lattice sizg plays the role of the inter-

summarized. - ; ; ;
. . .. action ranger in our simulation.
The flow chosen to illustrate the fractal active dynamics is 9

an example of a two-dimensional, incompressible time-
periodic fluid motion, the case of the von iaan vortex
street in the wake of a cylind¢f4—23. The radiusR of the In this case, a cell is considered to be the image of another
cylinder and the period of the flow are taken as the length one with respect to the dynamics if its center’'s preimage is
unit and the time unit, respectively. In what follows we keepinside this other cellr time earlier[27]. This defines the

the flow parameters constant, implying a fixed value of themapping among the cells due to the dynamics. After the
escape rate, and investigate the dependence of the reactioraction of the mapping, the reaction can modify the cell con-
outcome on parameters like the reaction rangg énd time  tents: Any cell containing\ (B) before the reaction becomes
(v). C, if there is aB (A) cell within a radiuso from its center.

For simplicity, we use an analytic model for the streamOtherwise the cell keeps its content. Numerically we found it
function introduced in Ref[16] (the explicit form of the convenient to store the configuration of the lattice just before
stream function can also be found in Sec. Il of ReX0]). reactions only. Then the content of a cell at the time just
This model has been motivated by direct numerical simulabefore a reaction can be deduced from its preimage and the
tions at Reynolds number of about 2506], and has been neighbors of the preimage according to the following crite-
used successfully to reproduce qualitative features of theon: If, = time earlier, among the preimage cell and its
tracer dynamics. The escape rate of the particles in thaeighbors there were both typésand B present, then the
reaction-free flow isc=0.36 and the fractal dimension of the cell must have becom€ during the last reaction; if all of

B. Collisional reaction: A+B—2C
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them were of one type onlgapart fromC, which is inerj, 1
the cell inherits the type of its preimage. This means that we ., o} «
unify the advection-reaction process in one mapping con- _
necting the cell contents just before reactions. In all experi- 2
ments the reaction rangeis on the order of the lattice size

€0

N
IS

mity of the flow at infinity with time dependence in a mixing ™ ° =0
region to ensure chaotic advection and the existence of mani- ™' = =~
folds with dimensions strictly less than tw@,) passivity of
particles in the sense that they have no feedback on the flow,
(iii ) purely deterministic advection neglecting effects of mo- 4 © 1 0
lecular diffusion,(iv) activity of particles in the sense that . , ;. 510 .

they change some of their properties upon collisions, when _, - 1 \_,__@
being closer to each other than the reaction ramgérhe 2 0 2 4 2 0 2 4
assumption of a “kicked” activity taking place at integer *

multiples of a time lagr is only partially due to numerical

necessity, because it might mimic certain biological pro- ¢ 4 o
cesses. Using a finite lattice sizg is unavoidable in the ™ ° ‘ () =% m
numerics and corresponds to dealing with particles of finite ™ =

size. The model is expected to provide a faithful continuum
description ifey is much smaller than the smallest macro-

scopic lengthfwhich will be the average widtl* (7), cf. 1 i 1 -
Sec. lll, and Eq(8)]. If, in addition, a continuous time limit o Qﬁ -0 Qﬁ
is of interest, the time lag should be chosen to be much _ -

0
The basic features of the complete model @yeunifor- ! /‘ @ ! A @
\ |
0

-2 0 2 4 -2 0 2 4

smaller than the lifetime in the mixing region< 1/, which -2 0 2 4 2 0 2 4
corresponds te— 0. Finally we mention that the basic pa- * *
rameters of activity are the reaction rangand the time lag FIG. 2. Time evolution of a seed of 40B particles (black
7, and they(or combinations of thejrare therefore expected placed in the flow in front of the cylinddpbn a square of linear size
to appear in the gain terms of the reaction equations. 0.2) attime 0. As the autocatalytic reaction evolves haviras the
background particleSvhite), the amount oB increases and traces
Il. RESULTS out a complicated object in the wake of the cylinder. After some

initial increase, a steady state sets in. The snapsfapidj) are
Here we summarize the most essential findings of the nutaken at timest=0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.6, 2.0, and
merical simulations of the model for each reaction type sepa3.0, respectively, right before a reaction takes place. The computa-
rately. tional domain—3<x<5 and —1.5<y<1.5 covers both the in-
coming and mixing regions. The time lag between reactions is

A. Autocatalytic reaction: A+B—2B =0.2, consequently=0.072, and the lattice size ig=0=0.01.

Initially, we introduce a seed of reagetin front of the  off axis [as in Fig. 4a)], it does not penetrate the mixing
cylinder. Since there are only two species in the system, weegion in the wake of the cylinder, and the initial droplet is
monitor only reagenB. Values referring to materid inside  just simply stretched before the whole amount Bfis
the computational domain can be obtained from njeseur ~ washed downstream. One can observe that the size of the
two-dimensional model, argaconservation. Figure 2 dis- compact patctB increases due to the autocatalytic process as
plays the spreading of reageBt (black in the course of time goes on. Note that in this case no mateBiaémains in
time. Note the rapid increase of tli& area and the quick the mixing region and the reaction dynamics dies out in any
formation of a filamental structure that becomes steady aftefixed observation region of finite size. To sharpen the con-
a few time units, but changes periodically with the period oftrast, in Fig. 4b) we display theB distribution of Fig. 2j) in
the flow. a much longer region downstream. This clearly indicates that

To support this qualitative observation, Fig. 3 shows thematerial B is now present aainy instant of time atany x
number ofB particles in the computational domain as a func-value in the wake. The gradual broadening of the stripes of
tion of time. After four periods, a self-repeating time depen-product downstream is due to the autocatalytic feature of the
dence sets in. This means that the chemical reaction takgsocessand would not be present in the case of collisional
over the flow’s basic periodicity and reaches a steady stateeactions.
the number of cells being born in the reaction is the same as In what follows we focus on such nontrivial cases in
the number of cells escaping due to the advection dynamicsvhich the droplet penetrates the mixing region. To under-
In fact, owing to a special symmetry, which is not present instand the dynamics of Fig. 2, we recall that the tracer dynam-
the case of general obstacles, the flow is reflection symmetriccs is governed by a chaotic saddle in the wake of the cylin-
with respect to thet axis after a time shift of one-half. There- der. Passive tracers coming close to the chaotic saddle spend
fore, the product distribution is of period 1f28]. a long time in the mixing region before being advected away

The outcome of the dynamics depends strongly on th&long the unstable manifold of the chaotic saddie Fig.
initial position of the seed particle. If the initi#d droplet is  5(a)]. Thus tracers having spent long time in the mixing re-
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FIG. 3. The dependence of the numbef"(7)/e2 (¢o=0) of x

B particles in the computational domain of Fig. 2 on titenr

. . . L FIG. 5. (@) The unstable manifold of the chaotic saddle in the
right before the reaction events. Note the steady time-periodic be- _ . o . )

. . . reaction-free flow generated by distributing 20 000 passive point
havior reached after about four time units.

particles (black dot$ on short segments along the local unstable
direction of three basic fixed points of the Lagrangian dynamics,
gion accumulate on the unstable manifold. A comparison ofnd iterating them forward in time over several peridtss.and (c)
Figs. 4i), 2(j) and %a) provides numerical evidence for the show theB particle distribution at=10.0 just before and just after
accumulation of materiaB in stripes of finite widths along the reaction, respectively. Note the accumulationBo&long the
this manifold. unstable manifold and note its sudden broadening ftbjrto (c).

In order to gain more insight into the reaction dynamics,The parameters are as in Fig. 2.
Figs. §b) and 5c) show the reagent distribution just before
and just after the autocatalytic reaction takes place, respegith stripes of average width* (7), while just after the re-
tively, in the steady state. In the first case, Bhdistribution  action withe* (0)>&* (7). The sudden increase of the cov-
has a rather scanty appearance, while right after the autocatgrage width at certain times is due to our modeling of the
lytic reaction most of the filaments of the manifold are chemical reaction as a ‘kicked’ process. In the case of time-
washed out due to a sudden widening. The two pictures cocontinuous reaction obtained in the limit-0 this feature is
respond to two different coverages of the fractal manifold.not present, but the fact that materi@ occupies a
Just before the reaction, the unstable manifold is covereghttened-up fractal remains unaltered.

One of the most interesting quantities to follow is the

2 - ' - ' ' - ' change of the number @& particles with the time lag (or
1t @ A v) in the steady state, as shown in Fig. 6. Observe the mono-
- of 00 04 08 i tonic decrease and observe that for relatively largalues
" gy I | (7> 7¢i) NO particle remains in the wake. This indicates the
— existence of an “emptying transition.” For reactions taking
S 0 2 7 s s 10 12 place rather seldomly, the effect of the advection by the

background flow is so strong that mparticles survive the
time lag = in the wake of the cylinder, and therefore, no
reaction takes place in the mixing region. Such emptying
transition occurs ifr is on the order of the chaotic lifetime,

T © 1 and hencevg~1.
> o} «
b - - B. Collisional reaction: A+ B—2C

2 : : . : 5 5 7 Initially the flow consists of materiahf\, into which we

-2 [ 2 4 6

X inject reagenB continuously, along a line segment of length
FIG. 4. (a) Time evolution of a droplet of the same size as used! Perpendicular to the background flow in front of the cylin-
in Fig. 2@ but placed off axis forr=0.2 and lattice size,=c  d€r. As time evolves, materia is produced. Figure 7 dis-
=0.01. The distribution ofB particles is shown at instants  Plays typical snapshots of the surroundings of the cylinder.
=0, 0.2, 0.4, and 0.8. NB particle is in the wake of the cylinder The narrow stripes of constitue@ (blackl separating the
after a time 1.0(b) The same as Fig.(R just in a more elongated areas occupied by background mateAdivhite) and reagent
frame. Note the downstream widening of the filaments. B (gray) are clearly visible. BotlB and C stripes are now
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FIG. 6. Dependence of the numhé§ (7)/o of B particles just FIG. 8. Time evolution of the number of cells occupied By

before reaction in the steady state on the time #a@ll other pa- (shown by diamondsand C (crosses right before the reaction in

rameters are as in Fig. 2, with the exception of the reaction rangg,e nymerical experiment of Fig. 7. Note the asymptotic stationarity
which is 0=¢,=0.003, and of that a boundary layer of width 0.01 |o5-hed by both components.

has been cut out around the cylinder surjadéote the sudden
decrease arountl, ~3(v«~1.1), leading to a complete disappear- approached steady value Gfdepends on the reaction range
ance ofB from the mixing region, indicating an emptying transition o and the reaction time. The number oB cells also con-
aroundr;=6. The dashed line is fitted to E(B) with g=5.5, « verges to a steady value after sufficiently long time that de-
=0.36,Dy=1.61, ando=0.003. pends not only o andv, but also on the velocity of the
background flow, and on the widthsince the amount of
pulled along the unstable manifold of the chaotic saddidnflowing B per unit time isvol. The number ofB cells
forming lobes behind the cylinder. This implies again thatincreases, in spite of the reaction that consuBjedue to the
the reaction essentially takes place along this manifofd ~ flow that brings initially more and morB particles into the
Fig. 5@)]. mixing region. A pgrlqdm p_ulsatlon can be obsc_arved after
Figure 8 shows the time evolution of the number of cellgSaturation has set in, just like in the autocatalytlc_ case. By
occupied byB and C. After a short transient, a saturation is increasing the time lag, we .observe that materi is not
reached. This means that the numbeiCofells born in the arranged along a fractal setin the Wak?’ or does not reach_ the
reaction is the same as the numbeCatells escaping due to wake at all, due to the finite resolution of the grid. This

. | . . . already happens for not too large values of the lattice sjze
the emptying dynamics. As in the autocatalytic reaction, thgse .5 ;se we are interested in the pronounced fractifls struc-

tures formed, we keep the dimensionless reaction time con-
siderably below unity in order to ensure that activity extends
into the wake along the unstable manifold.

(a) 1

IV. THEORY

Based on the numerical evidence presented, we give here
a detailed theory of these active processes in continuous
space(i.e., for lattice or particle sizey=0). For both reac-
tion types we give a “kinematic” derivation of the discrete
P 0 2 4 P 0 2 a time reaction equations, and then work out the continuous
time limits. For the autocatalytic reaction we also present a
FIG. 7. Time evolution for the collisional reactioh+ B—2C.  theory of emptying transition which is due to the finiteness
Snapshotsga)—(d) of the surroundings of the cylinder are taken at Of £o, and it is only characteristic for this reaction type.
times 0.5, 1, 1.5, and 2, respectively, right before the reactionsWhenever possible, the theory is compared with further nu-
The region—3<x<5, —1.5<y<1.5 is shown. Initially the flow merical results.
consists of materiad, into which we introduce reageBtalong the

line segmentx=—2, —0.05<y<0.05 (=0.1). White area de- A. Autocatalytic reaction: A+B—2B

notes the backgroun_d materid) gray is r(_eagenB, while bla_ck is 1. Basic dynamics

the produciC separating the former constituents. The reaction range _

is ¢=0.011, £,=0.01, while the time lag is=0.05. These imply Let Ag(t)=.41"(s) denote the area occupied by reagent

an injection rate of 14.000 particles per unit time. B. Herese[0,7] is the time after thenth reaction. Thus the
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stripes at time=n7+s. This means that on scales longer
______________ A (a) than or equal te("(s) the territory occupied by appears
o to be a fractal of the same dimensi@y as the unstable
manifold. Covering the full area occupied Byat any time
instant by squares of linear size=¢("(s), the number of
B e("’(t) g™ ©) boxes needed for this coverage behavedNés)=He Do,
Here H is a constant characterizing the geometry, the so-
calledHausdorff measuréor area of the manifold. It can be
obtained by determining th@unstablé manifold of the ad-
vection dynamics of the reaction-free flow. In what follows
______________________________________________________ we assumé to be known.

A It is worth noting that although the dimension is indepen-
dent of the instant at which the snapshot is taken, the Haus-
dorff measure is not. Since the flow is periodi¢s periodic
p (b) with the period of the flowH(t)=H(t+1). (In fact, due to
______________________________________________________ the special reflection symmetry explained in Sec. IIIAjs
periodic with period 1/2.

For convenience, we choose the period of the flow to be a
multiple or a divisor of the time lagM 7=1, whereM or
B @ 570 1/M is an integer, respectively. Which of the two options is
taken depends on the time lag itself. For time lags shorter
C(’”l) than the flow’s period £<1), the period contains an integer
___________________ S N, S number of reactions, otherwiser¥ 1) the time lag is an
c e(g)(r) Y ()] integer multiple of the period. This way we ensure that a
................... L periodic behavior with the period of the flow appears as a
A g™ fixed point or as a periodic cycland not as a quasiperiodic
motion) on the ‘“stroboscopic” map taken in the instants of

A s the reaction.

FIG. 9. Schematic diagram of the components’ distribution . -
along the unstable manifol¢bold line) before and after theath ThusH_(n)(T):?'_((nH)(O)Eﬂ(n) is M or 1M penodu_:
reaction. The borderline between the components is denoted ©§S & function of. S'”CGS(n)(S) is the smallest box size with
solid (dashedl lines before(aften the reaction.(a) Autocatalytic ~ Which the fractality of the reagent can be felt, the area
reaction.(b) Collisional reaction. Here all reagemsandB within a A(Bn)(s) of B can be written at any time as
distanceo are transformed int& in the course of reaction. The
g;%%?gglggg(cr)‘fjl?igé” width of eadB stripe at reactiom+1 is Af?,”)(s)=H(”)(S)[e(”)(s)]2’D0. (4)

total physical time ig=n7+s. During the time interval of To determine the dynamics of the covering width
length 7 only the dynamics of the chaotic flow controls the £("(s) we observe that, at any reaction, there is a change
motion of the two components. In a fixed region of observa-due to the sudden increase of the product &sea Fig. %a)].

tion, say in a rectangle in the wake,{"(s) decreases ac- Since the filaments are locally smodihes, this widening is

cording to the escape rateof the chaotic saddle as proportional to the reaction range. We can thus write
dAg" (1)) = () ™
d: :_KA(Bn)’ 0o<s<r~ 2 e " 0)=e"(7)+ od™. 5)

provided the material is distributed along sufficiently narrow!f the widening were exactly orthogonal to the manifold, and
stripes around the unstable manifoldsat0. Solving this @l the stripes occupied b§ were nonoverlapping, the coef-

equation we find that the area occupied by matdgiak the ~ ficientd™ would be 2. After some time, however, initially

end of the intervak is distinct stripes start to overlap. This leads to a change in the
effective free surface available for the reaction. The phenom-
AP (r)=A(0)e ", (3)  enological factord™ introduced in Eq.(5) describes both
the effect of the geometrical shap@s$ripes being tiltegand
with v= k7 [29]. the effect of overlap, on the average. It depends on the time

In order to determine the new aret' *1)(0) right after  instantn, and on the flow parameters. The time evolution of
the (n+1)th reaction, we recall that after sufficiently long the shape factod™ is unknowna priori. We shall see,
time from the onset of the reactidwvhen the exponential however, that the theory becomes consistent with the nu-
decay law(3) holds] the area ofB is pulled into narrow merical observations if, after a long time, the shape factor
stripes of more or lessonstantwidths along the unstable takes over the period of the flow. Thus we assumedHatis
manifold [cf. Fig. 9a)]. In other words, the fractal unstable alsoM or 1M periodic inn.
manifold isfattened upwith materialB which has anonzero By taking into account Egs(3) and (4), the area
area. Lete(t)=¢"(s)<1 denote theaveragewidth of the Ag‘“)(f) before the G+ 1)st reaction can be written as
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A(Bn+ 1)( 7_) :H(n+1)[8(n+l)(7_)]2—D0
=e VH(n)[s(nJrl)(O)]ZfDo_

From this we find that the average widte§"*Y)(7) just
before reaction rf+1) are proportional toe("*1)(0), the
width right after thenth reaction:

o3¢ (] U200

8(n+1)(7_):8(n+1)(0) W

Then from Eq.(5), a closed recursion relation follows for the
widths just before the reactions:

e VH (n)

e ()= [eM(1)+od™]. (6)

11/(20(9

H(n+1)
In view of Eq. (4), this implies a recursion for thB area as
A(Bn+1)( 7_) =@~ V{[A(Bn)(T)]l/(Z*Do)_’_ g(n)o-}Z*DOI (7)

This reaction equationis a discrete dynamics foﬂlg‘)(r)
expressing the amount & before a reaction in terms of the
amount before the previous reaction. Since the quantitiés
andH (™ appear in a specific combination for this map, we
have introduced the shorthand notationg™
=dMy (M U2=Do) |n contrast to the width dynamics),

the area dynamics contains all geometrical contributions via

g™, which is called therefore the geometrical factor.

Equation (7) belongs to the same class of dynamics as FiG. 10.

recursion relations of the typeg,, 1= f(x,), such as, e.g., the
famous logistic map30]. It is one dimensional and strongly
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Scaling properties in the autocatalytic reacti@hThe
area A =Af(7) occupied byB in the steady state scales A§
~ a2~ Po at different values of the time lag (0, 7=1; *, 7=2; +,

dissipative, therefore it describes the convergence towards=3) with Do=1.64, in good agreement with the fractal dimension
asymptotic motions which are represented by attractors. I6f the unstable manifold of the reaction free flow. Several runs were

HM=7H andg(M=g is constant, a fixed point of the system
is found from A% (7)= ALY (7)= A (7) in the form of

o9 2-Dg
eV/(Z—DO)_l) ' (8)

AL (1)=He* 2 Do = (
This is the area occupied by reagéhtight before a chemi-
cal reaction takes place in the steady state. The arda of
right after the reaction is a facte larger.
In the more general case whef”, H (™, and thusg™
are periodic with some integé#, a limit cycle of periodM is

carried out with different values of the reaction rangewhich is
set equal to the lattice constamt=¢,. (b) NumberN(e) of boxes

of sizee, covering theB material distribution right before the reac-
tion, shows a fractal scaling. On the lgg?N(e) vs logye plot an
exponent 0.4 appears, implying,=1.6. The crossover value is
€*~0.003. Below this scale the fractal structure is completely

washed out and a trivial exponent 0 emerges. The parameters are

o=0.001,7=1.

10(a) shows the scaling of g (7) vs Ino. A scaling expo-
nent of 0.36 emerges that is close to the theoretically pre-

the attractor. The active process becomes thus synchronizélcted value of 2-Dy~0.39.

to the underlying flow dynamics. Due to the linearity of Eq.
(6), and the fact that the facter ¥/(2~Po)< 1 the limit cycle
attractor of Eq(7) is always stabléin contrast to the logistic
map.

A quantitative measure of the fractality of tfepattern
can be obtained by computing the ‘box-counting’ dimension.
The number of boxes of linear sizethat contain materiaB
is expected to scale as Po. Figure 1@Qb) shows a fractal

Equation(8) can be used to determine approximately thescaling with 1.6 fore>¢€* and a sudden crossoveréit due

mean value of the geometrical factgt” and its oscillation

to the fattening up of the fractal at small scales. Téiisis

amplitude about the mean in a temporally periodic steadyhe average width of the coverage of the unstable manifold
state. For the case of Fig. 3, when the attractor is of period 53nd is found to bes* =0.003+0.0002. A comparison with

we obtaing=16+3. Note that for integer values af=1
(when 1M is integer, tod, d™ andH (™ are constant since
the periodicity of the flow is unity. Then E8) holds again
exactly.

Eq. (8) yields that the shape factdris approximately 0.6.

In Fig. 6 we also plotted a fit of Eq8) to the measured
values of A5 (7). A good quality fit has been obtained with
the geometrical factog=5.5 up tor~3.

We have carried out a series of numerical experiments for Observe from formuld8) that, in the limit asr—, the

such cases to carefully check the validity of E8). Figure

area of materiaB vanishes, A5 (7)—0. This does not nec-
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essarily mean that there is no matetaleft in the mixing
region. In fact, there imlwayssome materiaB left in this
region, in the form of a fractal set of zero area. The ©
limit corresponds to the case where tAeset literally coin-
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since it does not make use of the finite particle size. Indeed,
a deviation from Eq(8) shows up in Fig. 6 by-=3.

3. The continuous time limit

cides with the unstable manifold of the chaotic set. Since peafore taking the continuous time limit—0, it is worth

during a reaction the8 set fattens up with average width
proportional too, the fattened-uB set should not have van-
ishing area as— . In fact, assuming thag(™ is constant,
and using Egs.(3) and (8), the limit 7—o~ gives
lim,_ .. A% (0)=lim _ .e" A% (7)=(0g)? Po+0. Thus, tak-
ing the limit 7—o in Eq. (8) is only consistent with the
chemical framework, i.e., with a continuous distribution of

rewriting the reaction equatiof?) in a different form. If the
coverage of the manifold byB is relatively wide, i.e.,
eM(7)>gM g, we can expand the right hand side of E&).
to first order to obtain

AGT (1 =AP (e " +ogM(2-Dole LA (] 4,
(10

particles. Of course, the numerics can deal with finite grid
size only. However, when the grid size is small enough, wevhere
get a good agreement with our formulas, for not too large

time lags, as shown in Fig. 6.

2. Emptying transition

When deriving the theory, we do not make use of th
finiteness of the grid, which can also be interpreted as th

finiteness of the particle size. It is this finite size effect which

leads to theemptying transitiorfor large time lags. If during
the advection dynamics of duratierthe number of escaping
particles exceeds the number of n@aparticles created at

the next reaction, then the balance favors the total extinctio

of materialB from the wake. This happens atstical value
for the dimensionless reaction time; .

We derive an expression for,; via defining theproduc-
tivity of the reaction. The productivity of the chemical reac-
tion in the steady state can be characterized by the ratio
newly born to parent particleB as

S=[Az(0)— Az (1) ]/ Az (7)=e"—1. €)
The productivityS, however, cannot be arbitrarily large. An
absolute maximunt,,,, exists, since the number of cells
inside the reaction range is limited. This implies thate”
—1=<S,a Forv smaller tharw;=In (1+S,,,) the produc-
tivity of the chemical reaction grows exponentially with in-
creasing reaction time or v. For v> v, however,S does
not grow further. Using Eq9) and the fact thaB< S, we
have A% (0)<(1+ Sna)Aj (7). Inserting expressio(8), this
leads to A (0)<(1+ Sya)Ags(0)e™". If the quantity (1
+Smad€ 7 is less than 1, this inequality can only hold for
Ag(0)=0. Thus, forv>wv, the area of reagerd quickly

i

Q

(11)

is a non-negative numbéi takes on zero only in nonchaotic
lows). This equation is equivalent to saying that the reaction
ain is proportional to the perimetérof the B area times the
reaction ranger [6], and that this gain can be expressed to
be proportional to a power 8 of the area[With the iden-
tification c=g(™(2— D), Eq. (10) coincides with Eq(3) of
Ref. [6].] Because exponent 8 is negative the equation
Qontains a singular expression of tBearea. The fixed point
(8) for ¢* is, in general, of the order @fo, and the condition
leading to this form is typically not valid after a long time.
Therefore, Eq(10) can only hold for a transient period be-
fPre coming close to the attractor. If, however, the time lag is
small enough and decreasess1, the region of validity of
Eqg. (10) is increasingly longer. It is thus not surprising that
in the continuous time limit, the differential equation ob-
tained for theB area is the analog of thengular map (10):

Ag=— Kk Ag+9(t)(2—Do)v,(Ag) ~~. (12)
Here Ag(t) denotesAY'™(0) or AY7(7) for 7—0, and
v,=lim,_o(a/7) represents the velocity of the reaction
front.

A comparison with the case of a uniform flouq. (1)]
shows that Eq(12) represents a novel form of reaction equa-
tion containing anegativepower of the material content due
to the fractality of the unstable manifold. Its special case
obtained forDy=1 describes a surface reaction in the pres-

ence of a single isolated hyperbolic orbit in the wakky;

drops to zero in time, and remains only the background ma= — x Az;+g(t)v,. Note that this is already structurally

terial A in the system in the steady state. In our c&gg,
=8, thus the critical reaction time lag becomes;

similar to the traditional equatiofl). But even for a single
periodic orbit the decay is slower than without its existence

=2In3/k=6.10. Indeed, this is confirmed by the measure-because the time scale set by the escape(véteh is now

ments exhibited in Fig. 6.

The definition of the productivity leads us to another im-
portant time value, therossover time lag', . It represents
the threshold time lag of productivity for which the effects of
finite particle size(and grig come into play. Below this
value, the filaments are “tightly” covered by tt&cells, so
on average one particle is responsible &most twonew-
borns,S=2. At v, the coverage of the filaments is just
about to break up, thusy = In (1+9= In 3, which leads to
7w = In3/k= 7,;;/2=3.05. For values of- larger thanr,,

just the Lyapunov exponent of the onbis typically much
longer than the characteristic time of the flow.

Altogether, Eq.(12) deviates in both term&om the tra-
ditional reaction dynamicg$l). The decay is slower while
productivity is much greater than in an unstructured flow.
Both effects are due to the presence of a chaotic saddle
which produces an escape ratesmaller tharv, and a di-
mensionD, bigger than one.

Our findings concerning the new form of the reaction
equation are similar in spirit to those of Muzzio and Ottino

the theory described in the preceding paragraph breaks dow@]. They considered the effect of filamentation on chemical
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reactions in closed containers without finding an explicitThe reactiorA+B—2C takes place if the distance between
form for the reaction equations. The difference with us is dueA and B is lessthan ¢. Thus, the amount4 {'*1)(0) of
to the fact that we are studying now open flows with fractalmaterialB and A" 1(0) of C right after the o+ 1)th re-

patterns ofD,<<2, and our exponeng is therefore unique.  5ction becomes smaller thamg‘)(a-) and larger than
The area occupied bB in a steady statgg(t)=g] fol- A(c”)(r) respectively

lows from Ag=0 as The geometry is now somewhat more involved than in the
g(2—Dg)v, |2~ Do autocatalyti_c case. The brapches_ of the unstable man_ifold are
AEEHs*ZDOZ( _—o7r r) , (13 covered with materialB in stripes of average widths
K ed(s). Adjacent to this, there aréwo stripes of equal

. (n) .. . . .
in accordance with the— 0 limit of Eq. (8). Equation(13) widths e”(s) containing only materiaC [Fig. 9(b)], while

has an important consequence for the velocity of a reactiof’t€rialA is outside. Thusboth materialsB andC lie along

with visible fractal properties. The latter can only be seen if® fatténed-up copy of the unstable manifold. Note, however,
¢* is much less than unitythe cylinder radiuswhich im- that the amount of fattening up is different for these materi-

plies, forg factors of the order of one, tha<x<v. Frac-  &S:

tal product distributions can only be expected for reactions " @n analogous way as for the autocatalytic fr&actlon, we
which areslow on the lifetime of chaos. In this continuous 'Ntroduce again a phenomenological shape fadtof. Due

time limit the emptying transition does not occur, siree to the effects'of overlaps and nonstraight.geometry of the
1. and therefor@’— 1<S.. .. is fulfilled unstable manifold, we assume that a reaction takes place at
’ . - = max N . . . (n) .

It is worth mentioning briefly that different continuous t"(‘:)‘a_(”+1?7'f ec’(7) is smaller than the fanged(”)- Here
time limits are also possible depending on the assumptiond” IS again dependent on the time instant, beihgr 1M
made on the model parameters. One option is to split th@eriodic inn after sufficiently long times. The broadening of
reaction ranger into a “deterministic” parte and a fluctu- the half'W'd.th of eachC stripe (W.h'Ch IS the same as the
ating éa, i.e o =0+ 8o. The reaction front velocity is then corresponding decrease of tBestripes in the (n-+1)th re-

_ _ _ . action is
defined viao, and o/ goes over as a noise terénin the
continuous time limit. So the reaction equation becomes a (M D=gdM— (7
. . . . C .
stochastic differential equation

This leads to the following change of the covering stripe

Ag=— kAg+9(1)(2— Do) (v, +£)(Ag) *. widths:

Note that the noise termi appears in this Langevin equation o
in a multiplicative form. Its effect is thus also influenced by el " V(0)=ef" (1) 27", (15
the fractality of the underlying manifold.

and
B. Collisional reaction: A+B—2C
(1), — (M) (n+1)
1. Basic dynamics ec (0)=eci(1)+2f
The area occupied by the materi@&ndC at times after =20d™—ed(7). (16)

the nth chemical reaction is denoted byl{"(s) and
A®)(s), respectively. During the time intervalthere is no ~ Note that Eq(15) is meaningful only if the difference on the
reaction, thus only the chaotic advection and the injection ofight hand side is non-negative. This depends on the relation

B governs the dynamics of the areaB®fndC as between the variablelsand o. For a fixedl, o can be in-
creased independently, and at a certain value, the increase in
dA(B”) ) the width of theC stripes exceeds the width of tiBestripes
ds =vol =k Ag", during a reaction. From now on, we shall take small
enough, and assume that the situation in F{g) & valid at
dAE;”) all times during the process.
=—kAD. Since the fractal scaling still holds for the actual width of
ds B or C, at an arbitrary time, the areas are
Herevy denotes the velocity of the inflow far upstream from (M e s () (M) cn12-D
the cylinder, and is the width of the stripe along which Ag (s)=H"(s)[eg (S)]7 70,
materialB is being injected in the inflow region. The rest of (17)
the inflow consists ofA only. After solving these equations AW (s)=2HM(s)[ e (s)]?Po.
we find the areas occupied B/and C right before the next
reaction to be If the first equation is also applied to the inflow region, we
| have to assume that the widtlf the injection ofB is on the
Ag‘)(r)=A§3”)(O)e*V+UTO(1—e* ", same order as{’(s), so that its two-dimensional character

cannot yet be seen on this scale. Substituting these into Eq.
- - -, (14 (14), we find two relations connecting the widths taken at
Ac'(n)=Ac’(0)e™. different times:
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A(Br'H-l)(T):H(n+l)[8(Bn+l)(T)]2—D0

vl
=e R e V(0)] Dot~ (1-e ),
and
A(Cl’1+l)(7_):2H(n+l)[881+l)(7_)]2*D0
ZZG_VH(n)[881+1)(O)]2_DO,

with HW=H M (7)=H"*1)(0). In view of Egs.(15) and

(16) we obtain a coupled set of recursions for either thef

stripe widths or forA{"(7) and A%(7). The dynamics of
the covering stripe widtle - for materialC has the simpler
form

el V(1) = [20d™—e(7)].

(18)

H(+D)

e "H (n)‘| 1/(2—Dg)

Consequently, the change of the half-width is

_ 1/(2—Dy)
e VH(n) 0
g(n+2):_ W é«(n+1)
_ 1/(2—Dg)
e VH(n)
(n+1) _ A(n)
+o{d S Pyrmrsy . (19

The recursion for the stripe widthg covering reagenB is
then obtained from Eq414), (15), and(17) as

[
D)) Y0
eg (1) [KH(M)(l e

+e v [S(Bn)(T)_2§(n+l)]27D0

) ]1«2—00)

H(n+1D)
(20)

Finally, we find that the recursion relations for the areas

are given by the following reaction equations:

[AG"(7)]H2700

vol
AT (=""(1-e ") +e

1/(2—Dg)

2-Dg
(21

A7)
%G

AgT‘*'l)(T) ~ 2-Dy

2

(n) 142-Dg)
e”[zg(”)a—(Ac (T)) 0

Here g(W=d(M# (M 1(2~Do) denotes the same geometrical
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which may seem surprising at first sight. It was derived with
the assumption that is small enough, and that the average
width of materialB is large enough to furnish enough re-
agent for each reaction event: tBestripe is not totally con-
sumed during an instantaneous reaction. Thus the dynamics
of the reaction produdf depends only on the actual width of
the C stripes which separatad from B. Between two con-
secutive reactions, the avera@ewidth decreases, making
possible a widening at the next reaction, and so on. Thus, the
presence oB is necessary for producing, but if the B area
is wide enough, th€ reaction becomes independentBf

In the case when the Hausdorff meastifend the shape
actor d (and geometrical factog) are n independent, we
find a steady state. The average width of @stripes can be
given explicitly:

20d

* Lk —vl(2—Dg) —
ec(m)=¢ex(0)e 0= .
c c e’(2-Do) 4 1

(22)

Consequently, from Eq(19) * =odtanhv/(4—2D;) fol-
lows. For the average width of thstripes an implicit equa-
tion is obtained,

I
eh(n)? Po=— (1—e ") +e e} (r)=20* 2P0,
(23

Since in this equation all terms are expected to be of the
same order of magnitude, we find thate}
~(vol/ kH)Y(2~Po) |t means that the coverage width of the
inflow of reagentB is of the order of the average coverage
width in the mixing range, thus our earlier assumption on the
validity of Eq. (17) is fulfilled. The fixed point of recursion
(18 and (19 is an attractor for any parameter since
e~ v/(2—D0)<1_

The fixed point expressions for the areas occupiedBby
and C are obtained asA}(s)=Hsk(s)> Po and A%L(s)
=2Hek(s)? Po, respectively. Thus,

20
AE(1)=2Het 2P0 =2 g

Z*DO
—_— , (24
eV/(z_Do)+ 1) ( )

and

vol 1/(2- Do)
AE(T)GV‘F 7(1— e")

C
2

* 1/(2-Dy)
=A§(T)1/(2_D0)—290'+2 A (T)) O.

(25

factor as defined for the autocatalytic process. This form im-

plies that the area dynamics for bd&and C only depends
parametrically org(™, while theeg ande stripe dynamics
containd™ and® (™ as independent parameters.

Note that theC reaction(and ) is decoupled fromB
(andeg), and componenB simply follows theC dynamics:
the second of Eqg21) is independent of th& component,

Note that although Eq24) is in some sense the analog of
Eq. (8), the particulary dependence is different. This differ-
ence is due to the fact that the increasesgfin a reaction
step is not a constant, rather it is proportionalZtowhich
also depends or itself [cf. Eq. (16)]. From these two
relations ag-independent form follows:
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142~ Dg)

Uol
Ag(r)e+——(1-e’)

:AE(T)ll(Z—DO)_l_(1_evl(2—D0))

~Icc( 7_) 1/(2— DO)
=
(26)

which does not contain any free parameters.
When the periodicity ofH, d, andg is pronounced, re-

cursions(21) typically possess a limit cycle attractor corre-
sponding again to a full synchronization to the flow dynam-

ics.
The consistency of expressio(®1)—(26) with the numer-
ics is verified in different waygwe fixed vo=14 and|
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f("(s) at timet=nr+s in the discrete time representation,
with t kept fixed. Let us first consider the recursid®) of ¢
and divide it by the shape factdr The basic observation is
that due to the minus sign in the first term on the right hand
side, the recursion in the limit—0 does not go over into a
differential equation forZ/d. Rather it shows that this ratio
goes to zero linearly with the time lag. Therefore it is natural
to define a reaction front velocity as

(n+1)

vr(t):l'ino g4

It should be emphasized that this property means that the
broadening of theC stripes should tend to zero in the con-

=0.1). The comparison of the results shown for a period 2Qinuous time limit. Therefore, at any timec(t)=od(t)

limit cycle steady state in Fig. 8 with the expressi@#)

holds. Thus, in contrast to the autocatalytic reaction, the re-

yieldsg=42=*4 for the geometrical factor. This value is also action range needs not go to zero now, since another quan-

consistent with Eq(25) and the measureB area. In simu-
lations using different grid sizes,, we find similar geo-
metrical factor values that are slightly increasing with

tity, the actual broadening, has to. In faat,s finite, and is
a measure of the front velocity. A substitution of this form
into Eq. (19) yields the explicit expression

We also evaluate the ratio of the left and right hand sides of

the fit-free relation(26) at different grid sizessy=0.007,

0.01, and 0.013 and time lags- 1/80, 1/40, 1/20, and 1/10.

A L A
UI’_E (Z_DO) & ng( ) .

The ratio is in all cases between 0.9 and 1.0 with an average

0.96+0.05, 0.95:0.04, and 0.940.03 for thegq values
investigated, respectively. In view of the fact tlga®) is not

Sinceg is periodic with the flow’s periodicity, the front ve-
locity is also periodic.

a constant, Si-nC-e the time Iag is def|n|te|y beIOW Unity, the From recursior’(27) we obtain for the differential equa-
agreement, within an accuracy of 10% is satisfactory becausgyns of theB andC areas in the limitr— 0

this is exactly the amplitude of fluctuations gn

2. The continuous time limit

Before taking the time-continuous limit— 0, it is worth
again rewriting the reaction equati¢®l) in a different form.
If the coverage of the manifold bl and C is large with
respect to the amount of broadening, i.e.s§(7),s{(7)
> (1) we can expand the right hand sides of E2{) to
first order in¢ using Egs(18) and (20) to obtain

|
AP = AP (e "+ (1-e7)

(n+1)
~2(2-Doje "~ g A (D],
(27)
ASY() AD(n)
2 2 ¢
g(n-*—l) A(Cn)(T) -B
_ -v (n)
+2(2—Dy)e ) 3

Here B is the same exponeriiil) as in the autocatalytic
reaction. The fixed point22) for ¢ is, in general, on the

order of* and the condition leading to this form is typically

not valid after a long time. Therefore, E®7) can only hold

Ag=—kAg+vol —q(t)(Ag) 7,

Acl2= — k Acl2+q(t)(Acl2) 5,

where the coupling constant in both equations is the same
g(t)=2(2—Dg)v,(t)g(t). The two dynamics become en-
tirely decoupled in this limit. Notice the singular terms on
the right hand sides again.

The fixed point value of th& area[for d(t)=d, H(t)
="M, q(t)=q] is AE=2(q/x)?> Po. TheB area also has a
fixed point solution, but it is implicit:

vol
Ay =Heg? o= "0 - A 4518,

The front velocity

oK q

"2(2-Dy)  2(2-Dg)g

Uy

is now a constant entirely determined by the reaction-free
flow’s parameters and the reaction range. This impligs
=do in accordance with the—0 limit of Eq. (22).

V. DISCUSSION

for a transient period before coming close to the attractor. If,

however, the time lag is small enough and decreased,,
the region of validity of Eq(27) is increasingly longer.
Next we take the continuous time limit. L&{t) denote

First we discuss a few aspects of the nonlinear dynamics
which have not been mentioned in the text.
The stable manifold is a fractal curve leading particles to

the 7—0 limit of any function which takes the form the chaotic saddle. Points lying close to it reach the saddle
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rapidly, and their long lifetime is due to a residence time inmodel can be regarded as a random walk superimposed on
the neighborhood of the saddle. In other words, initial conthe deterministic advection. This would result in a further
ditions close to or far away from the stable manifold lead tofattening up of the fractal set, in a renormalizationcofind
considerable lifetime differences only after the saddle regiorthus ofe*.

has been reached. Thus, although the role of stable and un- (5) As a formal consequence of the fractal skeleton, the
stable manifolds seems to be symmetric in the problem, theroduct of the reaction obeys a singular scaling law.
residence about the stable manifold is not long enough for an (6) In spite of the passive tracers’ Hamiltonian dynamics,
enhancement in activity. Therefore, no fattening up takedhe active processes’ equations are of dissipative character,

place along this manifold. Anyhow, a nontrivial reaction canPOSS€SSing attractﬁrs. cind of q i af
only occur if theB (and C) initial conditions intersect the (/) Most typically, a kind of steady state sets in after

stable manifold. Otherwise, cases like the one shown in Figgufficiently long times, a state which is synchronized with
4(a) occur without a fractal product distribution. the flow’s te”_‘POFa' .behaV|0r. .

The advection dynamics is known to have a considerable (8) Fractality is independent of whether the traditional
nonhyperbolic component consisting of points lying very'eaction equations are linear or nonlinear since it is a conse-

close to the cylinder surface. The nonhyperbolic part is charduence of the advection dynamics’ strong nonlinearity.
acterized by a nonexponential decay=0) and space- (9) Essential parameters for the chemical reaction in the

filling fractality (Dy=2) [24]. Previous studiekl6,17 have flow depend on the parameters of th_e reactionless_ dynamics:
shown. however. that in the von Kaan flow model the the escape rate and fractal dimensioD,. These in turn
resolution allowed in computer simulations is still too crudedePend on parametefike the Reynolds numbgof the un-

to observe the nonhyperbolic effects away frobut close ~ 9€lying hydrodynamics. . o

to) the cylinder surface. The relative strength of the hyper- (10 jl'he' derivation of the reaction equations is similar to
bolic component ensures that on the time and length scalége derlyatlon of macroscopic transport equations from mi-
used we are able to work with a nontrivial fractal dimensionCrOSCOPIC molecular dynamics. It seems that the presence of

and a finite escape rate. Apart from the nonhyperbolicit)ﬁver refining fractal structuregvhich cannot be observed

seen in the boundary layer around the obstacle, other nonh@irectly with finite resolution generates new terms in the

perbolic structures are expected to be seen on very sm ﬁfaction equation, Ieading to observable macroscopic effec_ts
scales only. The presence of a finite coverage with width ased on the fractal microstructures. They appear not only in

&*, however, prevents us from reaching these scales. This Ei:ggrages but also in moments if a stochastic description
why the properties of the hyperbolic component play an es- ) . -
sential role in the full process. Therefore, in any fixed frame AII.these feat_ures_are expgcted to be present in realistic
in the wake not overlapping with the boundary layer, thechemically or blc_)loglcally active environmental flows ob-
results of the theory presented here are expected tq Ba]d served on finite time scales.

Next we summarize those features of our model which are
believed to be general for active processes accompanied by
weak diffusion in open flows with velocities faster than that  Useful discussions with J. U. Grooss, P. Haynes, B. Leg-
of the reaction. ras, H. Lustfeld, D. McKenna, A. Mariotti, Z. Neufeld, K. G.

(1) Active processes take place about the unstable manBzabg J. A. Yorke, and all the participants of the ESF TAO
fold of the passive dynamics’ invariant set. If the dynamics isWorkshop “Chemical/Biological Effects of Mixing,” Cam-
chaotic, the manifold is a fractal and, consequently, the rebridge are acknowledged..R. and Z.T. thank J. Kadtke, R.
action leads to fractal patterns. K. P. Zia, and B. Schmittmann for their support and encour-

(2) Although the fractal itself is a set of measure zero, theagement. This research has been supported by the NSF
chemical products are of finite amount due to thethrough the Division of Materials Research, by the U.S.
fattening-up process. DOE, by the U.S.-Hungarian Science and Technology Joint

(3) The fractal skeleton results in an increase of the activé-und under Project Nos. 286 and 501, and by the Hungarian
surface, it acts as a catalyst, and generates an enhancemengitience Foundation under Grant Nos. T17493, T19483. One
activity as compared to flows with nonchaotic particle dy-of us (G.K.) is indebted to the Hungarian-British Intergov-
namics. ernmental Science and Technology Cooperation Program

(4) The inclusion of weak molecular diffusion in the No. GB-66/95 for financial support.
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