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Topological scaling and gap filling at crisis
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Scaling laws associated with an interior crisis of chaotic dynamical systems are studied. We argue that open
gaps of the chaotic set become densely filled at the crisis due to the sudden appearance of unstable periodic
orbits with extremely long periods. We formulate a scaling theory for the associated growth of the topological
entropy.

PACS numbd(s): 05.45.Ac

[. INTRODUCTION and discussions in Sec. VI. Some details of the diagram tech-
nique are left for the Appendix.
The behavior of a physical system is usually determined

by one or more invariant sets in its phase space. As systemll. PHASE-SPACE STRUCTURE AT INTERIOR CRISES
parameters vary, qualitative changes in the invariant sets can
occur, leading to physically observable phenomenairer ) o i .
rior crisis [1] is such a qualitative change that occurs in Consider a dissipative dynamical system described by the
dissipative nonlinear systems, in the phase space of which dRap
attracting set coexists with a nonattracting chaotic set. As the B
system parameters change, the attractor can collide with the Xn+1= F(Xn,2), 2

coexisting nonattracting chaotic set that leads to a suddefjherexe RV, anda is a system parameter that can be varied.
enlargement of the chaotic attractor. Interior crises have beee consider a parameter regime where the system exhibits
observed in many experimer{t,3]. chaos with one positive Lyapunov exponent, i.e., we exclude
A scaling law describing the growth of the topological the possibility of hyperchaos. We assume that the system is
entropy at interior crises was presented in Réf. We found  smooth, so that the periodic orbits and the invariant mani-
that for some system parametethe topological entropyn  folds change continuously with the parameter. A chaotic at-
obeys the algebraic scaling law tractor of the system is in the closure of the unstable mani-
folds of the periodic orbits embedded in the attractor. The
h(a)—h(ac)~(a—ac)* with y=h(a;)/A (1)  parameter regions where such an attractor exists and pro-
duces sustained chaos are interrupted by periodic windows.
beyond the crisis valua., wherey is thegap filling expo- In this subsection we outline the general mechanism of inte-
nentand A denotes the Lyapunov exponent of the unstableior crisis in typical periodic windows. We refer the reader to
periodic orbit mediating the crisis. Fig. 1 for a schematic picture of the phase-space develop-
In the present paper, on the one hand, we demonstrateent of the invariant sets involved.
how an interior crisis triggers the creation of new unstable A periodic window occurs due to the creation of a stable-
periodic orbits, and analyze how the emergence of infinitelyjunstable pair of periog orbits by a saddle-node bifurcation.
many periodic points leads to the sudden and complete fillin@deyond the bifurcation parameter valag the stable orbit
of formerly empty, dense regions of the phase sp@e® has a primary basin of attraction bounded by the
filling). We emphasize the crucial role of the mediating orbitcodimension-1 stable manifold of its accompanying unstable
in this process. On the other hand, we refine the conditionsyrbit. As the parameter changes the stable orbit undergoes
elaborate the derivation of Eql), and present refined esti- period doubling and evolves into a small chaotic attractor.
mates of the theory with a special focus on the details of th@'he chaotic attractor gradually grows within its basin of at-
diagram technique being used. We also provide further supraction, until it eventually collides to its basin boundary at
porting numerical results, and comment on the common finghe critical valuea.. On a bifurcation diagram this small
scale behavior of scaling quantities at interior crisis. attractor appears ip bands, since its basin of attraction con-
The paper is organized as follows. In Sec. Il we describesists ofp pieces in the phase space. Therefore, we refer to the
the phenomenon of interior crisis, study the geometric strucprimary basin of attraction as thgand region(B), and its
ture of the phase space for parameter values around the cgemplement as theurrounding region(S).
sis, and introduce the notation. In Sec. Ill we investigate the The chaotic attractor loses its asymptotic stability when it
dynamics of the coupling orbits, which is a key step towardcollides with the basin boundary of regi@at some param-
the understanding and the derivation of scaling Idyfor eter valuea, =a,, and transforms to a chaotic sadd&.
the topological entropy. In Sec. IV we derive our main result,Betweena, anda, the chaotic saddle is located in regiSn
the scaling law(1). We present numerical results in Sec. V and coexists with théusually small attractor residing in the

A. Notions and definitions
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S-saddle namics on the trajectory. While staying in the close vicinity
of M, the trajectory follows the mediating orbit's pattern;
therefore, it is practically the same in every such event. The
evolution of a typical trajectory in the postcritical regime
thus follows the scenario:

S-saddle

attractor

(chaog,— (approximately periodic—(chaog,— (chaos;

— (approximately periodic— (chaog,— (chaos;

enlarged attractor

ey | e o

e s e e e e e e NG

: : LN A - The above scheme amends the one set forth in[Réfand
; | B-saddle ” | provides us with a one-to-one correspondence between the

' ' ! basic components and the typical chaotic signals. The escape
rates of the basic nonattracting sets determine the character-
FIG. 1. The structure of the invariant sets in a typical periodiciStic time scale of the respective typical signgsl].
window. The(dotted band(B) region is bounded by the mediating N experiments it is often possible to make a reliable dis-
periodic orbitM (dash-dotted lineand its stable manifolddashed  tinction between typical signals. In such cases we can use the
line). Within the window,a,<a<a,; this is the primary basin of above correspondence to determine the dynamical character-
attraction of thep piece attractor. Meanwhile, at, =a,,, the cha- istics from the measurement data. In addition to various tech-
otic invariant set in the complementary surroundi8gregion loses  niques developed to measure the lifetime, various dimen-
its stability and becomes a chaotic sadtesaddlg. Beyond the  sjons, and entropies, it is also possible to use phase space
crisis a¢, both basic componentsthe B saddle within the band reconstruction to locate and separate the basic components
region and theS saddle within theS region, are nonattracting cha- [3].
otic setsembeddedn the enlarged chaotic attractor. In what follows, we give two examples, one- and two-
dimensional maps, where the mediating orbit, its stable
manifold, theS and B regions, and the basic components
within them can be determined by analytic or numeric meth-
ods. Note that both our examples are strongly dissipative
systems, wherey,, anda, coincide[1], and the mediating

band regiorB. Since every periodic orbit is restricted exclu-

sively either toB or S it is possible to split the whole chaotic

set into twobasic componentshat we define here as the

nonwandering sets within th® and S regions, respectively.

The dynamical nature of the basic componegfatisd the as- o . .

sociated chaotic behavigrare very distinctive: in addition ?hrb't M d'(; actu(?llyb_tpe se;_me utr;stable orbit that is created by

to the obvious difference between their transient and perma- € saddle-node bilurcation at=ay .

nent temporal character, they usually also differ in other )

quantitative characteristics like amplitude, Lyapunov expo- B. Example 1: Quadratic map

nent, frequency spectrum, etc. As the first example we consider the main period-3 win-
As a passes through the critical valig, an attractor dow of the one-dimensional quadratic map,

enlargement occurs: the chaotic attractor collides with the

chaotic saddle and loses its asymptotical stability. The colli- Xnt1=f(Xy)=a—X3, (4)

sion of the basic components occurs at an unstable periodic

orbit M [1], which “mediates” the crisis. Thenediating or-  on the intervalx|<|1+ (4a+ 1)*4/2. The period-3 window

bit has a period op (or the integer multiple therepfind a  lies in the parameter intervala,=a, =1.75<a<a.

codimension-1 stable manifold that forms the bound#&ly —=1.7903274919... [1]. The unstable period-3 orbM

between théB and S regions. ={X,,Xp,Xc} iS generated by the saddle-node bifurcation at
Beyond the crisis point, a trajectory can penetrate thét=a,. The interior crisis(attractor enlargemenbccurs at

boundary betweeB andS both ways; thus it typically keeps ac. Figure 2 shows the mapping and the location of the basic

switching back and forth between the two phases, a behavi®tomponents close to this parameter value.

known ascrisis induced intermittencl7]. In this parameter Somewhat before the crisis the three piece regin

regime a sequence of trajectory points that fall in the sur=B;UB,UBj3 is mappedinto itself, thus forming the pri-

rounding region is called hurst[1]. The dynamical charac- mary basin of attraction of a three piece attractor. On the

teristics of the bursts are clearly distinguishable from thosether hand, the map restricted 8=S,US, is not closed:

of the other phase of the motion spent in reg@nas these sinceSis mappedonto SUB,US,, almost all trajectories

are inherited from those of the basic components before thetarted fromS sooner or later leave that region and are

crisis. The above definition of the basic componefsg., trapped inB. However, there exist an infinite number of pe-

being the nonwandering sets Bfand Sregions separated by riodic and aperiodic orbits i which never escape from this

the stable manifold oM) can be naturally extended to the region. These orbits form another invariant set wittdn

postcritical parameter regime too. which is asymptotically unstable, notwithstanding chaotic
As we demonstrate in Sec. Ill, whenever a trajectory penf9]: a chaotic repeller. The repeller has a Cantor set structure,

etrates the boundary froBito S, it approaches the mediating and it can be constructed by a recursive procedure discussed

orbit M along its stable manifold and then leaves it along itsin detail in Ref.[10]. The boundary between the two regions

unstable manifold. While staying in one of ti&or B re- is formed by the periodic orbi#! and some of its preimage

gions, the respective basic component imposes its own dyointsx,, Xg, andXc. As the parameter is changed, aat
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FIG. 2. The quadratic map about the attractor enlargement cri- y
sis. The mediating period-3 orbix{,x,,X;) and the pointxa, 0r 7
Xc, andxg determine the end points of tieand S intervals. The
arrows indicate how they are mapped onto each other. The broken
line shows how the apex point is mapped forward: either Byo at .
exactly onxg, or outside oB,, depending on the actual parameter
value.

-1 0 1 2

=2, the maX|mqm point 'S,JUSt mapped ag (see Fig. Z . FIG. 3. (a) The chaotic invariant sets of the hien map ata
thus the three piece chaotic attractor covers the whole pri= s a_, inside the period-7 window. A chaotic saddlight
mary basin of attractior(B) and touches the neighboring dotg coexists with the seven piece chaotic attradtwavy dots
repeller at the boundary points. The mediating period-7 pointét+) and the tangent to the stable
For parameter values beyond the crisis vale the  manifold of one of then(dotted ling are also shown(b) The en-
maximum point is mappedutside B, cf. Fig. 2. Thus the larged Heon attractora=1.276>a, beyond the period 7 window.
map restricted to regioB is not closed any longer, and the
chaotic attractor undergoes a sudden enlargement: it be-
comes a one piece attractor by extending to the whole inter- While the basic chaotic invariant sets can be characterized
val A=[f(a),a]. After the crisis, however, it is still possible analytically for one-dimensional maps, in two dimensions
to identify the former chaotic sets. Orbits that never leave th@ne resorts to numerical computations. We consider the
region S form again a Cantor set repeller that can be conHenon map[11]
structed the very same way as before. Analogously, it is also 2
possible to construct the set consisting of orbits that never (Xn+1:Yn+ 1) (@= X5+ 0.3yn,Xn), (6)
escape from the band. region, yielding another Cantor Seélose toa,=1.27168% ..., where an interior crisis occurs
structure[10]. Both basic components are repellers embed- . Cd-? ind
ded in the large attracta. Ina period- 7 window. . . .
A maior advantage of this example is that the tonolodical Below this critical value the; chaotic attractor is located in _
3 g P Polog Il separated bands in the phase space, as shown in
entropies of the basic components can be calculated exact FUen we P ) . P pace, )
[10]: Fig. 3 tpgether W|th the penod-_? hyperbolic orbit mediat-
ing the crisis. There is a visible distance between the attrac-
tor and the mediating points which gradually disappears as
the parameter approachag; then the attractor collides with
its basin boundary at this orbit. The basin boundary of the
©) attractor is formed by the branches of the stable manifold of
the mediating orbit. Locally, these can be approximated by
hiSI=log[(1+/5)/2] for a>ay. their tangent lines along the stable eigendirections of the
mediating points. In Fig. @) we also show one of these
lines. The tangent approximations of the stable manifolds
The fact that the topological entropy is constant reflects vergan be utilized as numerical criteria for the basin boundary.
strong structural stability. Indeed, the repellerSmloes not  This was used to find a numerical approximation of the co-
change topologically while the system goes through the criexisting chaotic saddle in the surrounding regiéfhe nu-
sis. Beyond the crisis both basic component repellers becommeerical procedure was outlined in Rg6].) Note that, in an
structurally stable. analogy to the one-dimensional example, the chaotic saddle

C. Example 2: Henon map

h(Bl=log(2)/3 for a>a,,
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y ol X dratic map.
] H
’ / component of the chaotic set they form theteroclinic com-
- ’ ponent The coupling orbits from the “bulk” of the chaotic
br Vg i attractor and they play a crucial role in the structural devel-
L e - opment of the chaotic set beyond the crisis. However, as we
-1 0 1 2 shall point out, the heteroclinic component is structurally
x volatile and, as the schen(®) and Figs. 8a) and 4 suggest,

FIG. 4. The basic components of the iém map at the same N fact the robust basic components do servelyasmmicalas
parameter values as used in Figo)3the B saddle(heavy dotsand ~ Well asgeometrical frameworksf the system.
the S saddle(light dotg. Both chaotic saddles exhibit pronounced
fractal structures along their unstable manifolds. The period-7 orbit IIl. ANATOMY OF THE COUPLING ORBITS
(+) mediatesbetween the two basic components. The dotted line is

the same tangent shown in FigaB To describe the gap filling phenomenon, quantitatively, it

is necessary to study the dynamics of the newly created cou-

also has a Cantor-set-like fractal structure with finite sizep”n_gl orbits ;ﬁ?r thi crisis. The ctc))uplring _°Fb“3 V:Sit bﬁth
gapsalong its unstable foliatiofFig. 3a)]. regionsB andSfor a=a;. Letm(a) be theminimum lengt

As the parameter passes through the chaotic attractor of these orbits. We foun#] thatm(a) diverges logarithmi-

abruptly extends so as to form a single, continuous set along?!Y:
its unstable foliatio{Fig. 3(b)]. Embedded in the attractor

lies the remnant of the precritical seven piece attractor and
the continuation of the precritical saddle. We obtained thequivalently, for every natural numben one can assign
two basic components numerically by the same method agreshold parameter valuas,, below which coupling orbits

before; the result is shown in Fig. 4. Apparently, the compo-of length less tham do not exist. From Eq(7) we see that
nent inS does not differ from the precritical chaotic saddle the sequence,,, must approach the critical valug, as a

[c.f. Fig. 3a@)]. We have also found numericallgee Sec. ¥  geometrical sequence:

that its topological entropy is constant through This sup-

ports our view that these chaotic saddles are typically struc- am—ac~conste” ™, (8
turally stable at crises and, therefore, can be used as building . .

blocks of the whole chaotic set. Comparing Fig&) &nd 4, vv_he_reA IS _the positive I(_)qal Lyapu_nov exponent of the me-
note that the basic component in the band region also devefliating orbit taken at crisis. First, in Sec. Il A, we demon-

ops a fractal structure when it becomes nonattracting aftetrate this proposition on the example of the period-3 win-
the crisis. dow of the quadratic maf!). We defer the generalization to

Sec. I B.

m(a)e —log(a—ac). ()

D. Gap filling A. Self-similarity of coupling orbits in a one-dimensional map

The above paradigmatic examples demonstrate some gen- Considerly};.1 . (one of the shortest coupling orbits

eral topological features at internal crises. Bwaddle com- - ata given postcritical parameter valaavith lengthm. This
ponent has a fractal structure along the unstable foliation

leavingan infinite number of finite size gapsbetween. The Orbit stays in regionB (of the precritical attractor from
S sadgle is a structurally stable set; i? igﬁo olo icéll un_where it escapes after a while and enters to regigaf the
chanaed throuahout theycrisis and ,throu hcr))ut r?mst %f th recritical repelley, then finally returns td again(cf. Fig.
inged 9 . 9 ). Since it is the shortest orbit, it cannot do this loop more

periodic window. Before the crisis these gaps are left empty. _ .

. . . than once. We choosg,=Y,, to be the last point before
After the crisis, however, since the leaving from and reenter- . N nc
; : : . .~ .~ escaping the regioB: it lies within B; very close to the apex
ing to region S becomes topologically permitted, periodic ~~. 0. Let® be fV(0). theith i f th it
points that are not part of the nonwandering sets appear bo pin F N )2(i Z 5 (0), elh wr;}agfe.z orthe ap?tx point.
in SandB. This infinitesimally small change in the param- rom Figs. 2 an we see that the first point aiter escape,

eter ata, generates uncountably many periodic points of this1: falls into the escape |n.terva[x_B,x$], and after three

kind which abruptlyfill in all the gapsof the S saddle, com- addltlona! steps th_e fourtholterate is very _clqse to the medi-

pletely and densely along the unstable foliatiéfihe first ~ ating period-3 orbity,e[x4,X,], already inside regiors

experimental observation of this phenomenon was reported,ne following points of the orbit must lie in the subsequent

but not analyzed, in Ref12].) images of the escape intervatse[X,Xg], Yee[Xa.Xgal,
These orbits establish the dynamical connection betweeyts € [X3,Xp], ..., Yar€[Xa X311, Yai+1€[X341.X0], Yais2

the basic components, via a complex chain of homocliniCE[xc,xgHz],..., etc., until the iteration leads back to the

and heteroclinic crossings of stable and unstable manifoldsitial point y,,=y~0.

[13]. Therefore, we call thenzoupling orbits and the new Note that, close to the crisis, the length of the first interval



PRE 61 TOPOLOGICAL SCALING AND GAP FILLING AT CRISIS 5023

0 T T T T T T T

X,
+><+)<
+x
X
En
-10 - R
X
+ X
X
X

X,
+XJrx+
X,
+x% . ! T
4
25 | 3 - \ Tp z
X |
s
-30 | X+><+ g |
Xt a=a, !

.35 1 1 1 1 1 1 1 : I 1 T
0 10 20 30 40 50 60 70

log(ém — ac)

FIG. 7. Schematic illustration of topologically analogous situa-
FIG. 6. X and + marks show the superstability poirfiig of the  tions in a one-dimensional map. The dashed line shows the position
shortest coupling orbits of thenv=3I+1 andm=3l1+2 families,  of the jth preimage of a special point of the map. The mediating
respectively. Both series of data points fit to straight lines of slopepoint is x,, .
—0.437=— A on a semilogarithmic scal@f basee).

. . L [——T | e ! oo
[xB,x(l’] is approximatelyproportional to the excess param- ' B ' o ' < ' B ' ¥ ' s !
eter value a-a;, and so is that of the fourtlﬁxg,xb]: (12)
Xp(a) —x%(a)xa—a;. (99  Where double lines symbolizehao$,, the dominant behav-

ior within regionB; single lines(chaos,, the chaos withirs

It follows then that the studied orbit, and likewiseery cou- ~ during a burst; and the dotted single line represents the in-
pling orbit, draws very close to the mediating orbight ~ termittent motion close to the mediating period-3 ot
after escaping fronB asa—a.. Consequently, it spends a This pattern is valid in the' whole postcritical regime, but,
considerable time in the vicinity of the mediating orbit, in a @ccording to Eq(7), the minimum length of the intermittent
sort of intermittent phase of the motion. During this periodPhase diverges as the crisis point is approached from above.
the trajectories are subjected to the repulsion of the unstable Note that the data in Fig. 6 belonging to the periad 3
mediating period-3 orbit, and are driven away exponentially™1 and 3+2 orbits fit to two different lines. This suggests

with the rate determined by its local Lyapunov exponant that similar situations occur for periodic orbits belonging to
e.g., the same line. We call these situaticlopologically analo-

gous and we say that the sets of superstability pofatg., ;}
and {@z,»} form two families of topologically analogous
f37 (xp) =€ (100 situations.
Figure 7 illustrates the essence of this similarity, and the
mechanism by which these topologically analogous situa-

The periodic orbity,,...,ym} cannot return to the vicin- . . .
ity of O before the image of the original escape interval eX_t|ons recur as the system parameter is varied. Let the dashed

tends to the size of the whole region, which is of magnitudéine represent the position of tigh preimage of the apex

1. From Eq.(10), this latter condition can be written as po_int. A_t .a=?aj+4 Fhe fourth image_ of 0 falls exgctly .onto
this position; thus it returns to 0 aftesubsequent iterations.

(11) While approachinga., the width of the interva[xg,xb],
accessible by the fourth step after the escape, decreases pro-

portionally toa—a. . If the excess parameter valae-a. is
decreased by a factor of being approximaiy*, then the
apex point is mapped again on thth preimage of itself
(thus becoming superstable agaihowever, this requires
three more iterations in this case.

Figure 7 thus implies that for subsequent members of a
family of topologically analogous situations, the relation

Xp~ Y3144  Xp~X3i+4

Xp~Y3i+1  Xp~X31+1

- 0
Xp— Y~ LocelM™ A (x,— x7).

This, in combination with Eq(9), leads to Egs(7) and (8)
for largem values.

Figure 6 shows the result of the numerical calculation
which reflects the scaling relatiai). In particular, we ex-
amine parameter vall&,, at which the shortest periodic or-
bits are just superstable/{=y,,=0). These parameter val-
ues are extremely close to the births of the orbits, and
should exhibit the same scaling law. B@tk) ,; anddg ,, as
a function of m fit in a logarithmic representation to a
straight line of slope-0.437 in agreement with our expec-
tation, since the value of the Lyapunov exponent of the meholds. This indeed implies an asymptotically geometrical
diating orbit at crisis is\=0.43742 ... .(We note thatthe convergence with the same quotient as the onafgs, the
seriesas , obtained as the superstability points of the short-appearance of shortest coupling orbits, in ).
est period 8 coupling orbit, behaves similarly; however, it In addition to the superstable situations, topological simi-
can be shown that the period of the shortest possible couarities can also be found among situations where the apex
pling orbit is never divisible by 3. point of the parabola is mapped onto a periodic orbit after a

Thus, for the quadratic maf#), scheme(3) provides an  finite number of iterations. Such a situation is calleMiai-
adequate model of crisis induced intermittency. Let us introurewicz poin{14]. Figure 7 also illustrates this more general
duce the following symbolic representation of the chaoticcase: the dashed line now denotes ilie preimage of an
behavior: arbitrary periodic point. Those Misiurewicz points, where the

§m+3_a6~e_3A

Am—ac 3
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origin is mapped onto a well defined preimage of a given
fixed point, can be gathered into families of topologically
analogous situations, similarly to thighree families of su-
perstability point&s, ; (i=1,2,3). There are, of course, in-
finitely many of such families. The members of a family of
Misiurewicz points satisfy the same scaling relat{ds) for
the superstable points and the birth points of the shortest
coupling orbits.

The existence of these topologically analogous situations
is a consequence of treelf-similar behavior in the vicinity
of the crisis point. Self-similarity is a general sign of critical
behavior. Therefore, we conjecture that, in addition to the
special situations discussed above, arbitrary situations at
general system parameter values can be gathered into fami-
lies of topologically analogous situations. All of these fami-
lies asymptotically follow Eq(8) with the same scaling ex-
ponent 3\. The constant coefficient in Eq8), however,
differs from family to famity. L e--mTmTTTToes

B. Generalization

The mechanism outlined above is restricted neither to the
quadratic map4) nor to its period-3 window. By making = __-----"" T N[ (][ f---
appropriate changes according to the actual orbits being in- ot ~H e f e -
volved, the above arguments work for every interior crisis of
any general unimodal map of the interval as well.

In addition, the validity of this concept can be extended to M
higher dimensional maps. A pair of topologically analogous
situations is illustrated in Fig. 8 for the two-dimensional

case. Beyond the crisis, the unstable manifold ofgtsaddle FIG. 8. Schematic illustration of a pair of topologically analo-

intersects the stable manifold of the mediating orbit, theyqs situations in a dynamical system with two-dimensional phase
former boundary of the primary basin of attraction, andgpacew!, andws, denote the unstable and stable manifolds of the
forms lobes in theSregion. The subsequent images of thesemegiating orbitM. Dashed lines show the branches of the stable
lobes become elongated along the unstable manifold of thganifold of a remote periodic orbit. Continuous lines show the
mediating orbit with the rate of its positive Lyapunov expo- protruding lobesl; which, in (a), just have tangencies with that
nent. If the system parameter is decreased, the extension gfble manifold at some parameter valea;.;. In (b), at an

the protruding parts of unstable manifolds decreases propobther parameter value=a, , ., closer to the crisis, the lobes have
tionally, as in the one-dimensional case discussed above. Thengencies with the same branches of the same stable manifold, but
combination of this linear change with the geometricalexactlyp iterations later.

growth of the lobes dictated by the local Lyapunov exponen
of the mediating orbit gives the same scaling relation as i
the one-dimensional case. This picture obviously remain§

—

yapunov exponent of the mediating orbit. Thus the correct
symptotical scaling formula for the minimum length of cou-

valid in higher-dimensional maps too, if the mediating orbitpling orbits is
is hyperbolic with one unstable direction, and the system’s log(a—a.)
periodic orbits have codimension-1 stable manifolds. m(a)~ — A + ¢[log(a—a.)modpA], (15

In general, the scaling relation in between two subsequent
members of the same family of topologically analogous situwherep is the period,A is the local Lyapunov exponent of

ations reads as the mediating orbit, and is a periodic function of its argu-
ment. This asymptotic scaling formula is universal in the
8m+p—ac ~e PA (14) class of systems we defined in the beginning of Sec. Il. How-
am—ac ’ ever, the correction terrmp, added to the asymptotical trend

(7), is not universal: it is a steplike function that jumps at the

wherep is the period of the mediating orbit. This directly @PPropriatean, values, which is specific to the geometry of
implies the anticipated scaling formula8) and, conse- the actual crisis snuguon. The fun<_:t|o¢51 |.nvolves all the
quently, (7). system specific details and determines fine structureof
The constant coefficient in E(B) is the same for any two m(a).
members from the same family of topologically analogous
situations, but this value varies from one family to the other.
As we saw above, topologically analogous situations occur The existence of the periodically recurrent topologically
repeatedly beyond the crisis, and their recurrence is periodianalogous situations is the key structural mechanism that
in the logarithmic scale with a period determined by the localprovides the framework for the scaling of other quantities.

C. Topological scaling and other scale invariances
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Topological arguments referring to similar structures at dif-be at most{n/m} (the integer part oh/m). According to
ferent system parameter values occur in the decimation stehis, periodic orbits of length can be classified and arranged
of the renormalization of any scaling quantity, providingin {n/m}+1 classes. There are orbits which never leave or
principal structural information for the determination of the enter regiorB at all: they correspond to the class 0. Those
critical behavior. The existence of topologically analogousorbits that escape only once during their periobelong to
situations has already been implcitly used, for example wheglassl = 1, the ones that perform exactly two bursts from the
deriving the scaling behavior of the average burst kil classl =2, and so on up t¢n/m}=I1. We say that an orbit
crisis induced intermittencyl] and in finding the critical has aloop number | if it belongs to class.
metric exponenty of interior criseq7]. Let N;(n) denote the number of orbits of loop number

Accordingly, we anticipate that the coefficients and cor-Then the topological entropl of the enlarged attractor—
rection terms determining the system specific “fine struc-more precisely, that of the whole chaotic set—can be ob-
ture” of the scaling quantities are in genepariodicor self-  tained from
similar functionsof the excess parameter of the form

{n/m}

F[log(a—ac)modpA], (16) N(n)= IZO N;(n)~e"" (19)

with the periodicity determined by the peripdand the local
Lyapunov exponent\ of the mediating orbit. At a given in the limit n—oo.

crisis the same periodicityA occurs in the scaling formulas

of all scaling quantities as the signature of the underlying 2. Propagators
structural scaling phenomenon. The fact that the “finger-
print” of the topological scaling we obtain in this paper ap-
pears in the scaling behavior of other quantities emphasiz
its significance and universal charactéGSupporting numeri-

cal evidence for this phenomenon can be found, e.g., in Ref%ral system. This number increases with the lerigtbcord-

[8,7,159.) . h il loical A fh X .
. . iv i
The fine-structure function, of course, has to be deterlng to the partial topological entropies of the respective basic

. L . ) -~ components:
mined individually for every quantity and every single crisis P
situation.

Let the diagrams introduced in EQL2) for the quadratic
map (4) henceforth represent the number of different itiner-
ies (of a given lengthj) allowed by the dynamics on the
basic component belonging to the respective phase in a gen-

| A~ "= (209
IV. SCALING OF THE TOPOLOGICAL ENTROPY |

[~ P = s (20b)

1

When the excess paramefer—a.| is increased beyond
an interior crisis, the minimum period length of the coupling ~ Jrer e ieeieeee o |~ ez =1,
orbitsm decreases owing to E¢7). This implies the appear- (200
ance of new, shorter periodic orbits visiting both basic com-
ponents. This effect, in turn, is reflected in the increase of théNote that in Eq(20¢ c=1 and the corresponding topologi-
topological entropy of the chaotic attractor. cal entropyht™! is 0, reflecting the fact that during the in-
The topological entropy of a chaotic sef16] is equal to  termittent phase the trajectories, stay in the vicinity and fol-
the asymptotic growth rate di(n), the number of periodic |ow the motion of the same mediating orhitf the system

orbits of lengthn embedded in the chaotic set: has a generating partition, we can say they follow a fixed
) itinerary)
h=lim [logN(n)/n]; (17) We can consideb, s andc aspropagatorsdenoting the

n—oo

contribution of the three phases of crisis induced intermittent

therefore, in practice the topological entropy is obtainedotion. In addition, we also introduce a global propagator

from the asymptotical scaling relation and a diagram to represent the contribution of arbitrary al-
lowed sequences of lengih

N(n)~ehn (18
ﬁ ~ e =
for n—co.,

(21)

A. Diagram technique .
g a Obviously, the growth rate of this sort of sequence is deter-

In what follows, we develop a “diagram technique” to mined by the overall topological entropyof the whole cha-
calculate the topological entropy of the enlarged chaotic atptic set.
tractor beyond an internal crisis. We suppose that the topological entropy:logt of the

whole chaotic set is somewhat larger tHafl=Ins. Owing
1. Loop number to these, the relations

Note that due to Eq(15), the system cannot get into the
same phase of chaotic motion earlier thaga) steps at a t=s>b>c=t">s">h">c" (22
given parametea. Therefore, the number of bursts occurring
in the course of a long periodic orbit of a given lengtban  are held among the growth rates.
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3. Cyclic diagrams

By combining the above diagrams, we can describe the( ) = +( ) —
patterns of subsequent phases of the motion. Obviously, pe Q L) Q """"" J

I 1 I 1 T 1

riodic orbits of the dynamics periodically repeat their pat- N
tern; we can illustrate this fact by symbolically connecting g:‘_‘_’___}) (26)

the end and the beginning of the row of propagators, like

which is formally similar to that of Dyson’s equation. Note
that in this formula the contributions of the basic components
and of the heteroclinic component appesparatelyfrom

each other.
23 In the Appendix, we give a self consistent solution of Eq.

(26). The calculation uses the relatiorif22) among the
propagators, and eventually yields

t~s(1+Cs™ ™M), (27
and
for the propagatot, whereC is a parameter dependent coef-

ficient of the universal forng16). Taking the logarithm gives

: L) h~h{S+log(1+Ce M*m), (28)
] - | o ' for the topological entropy of the whole chaotic set, which

close to the crisigi.e., atm>1) reads as

(24 h~h(Sl+Ceh*m, (29)

Thesecyclic diagramghen represent the number of periodic
orbits of lengthn that fit to the pattern prescribed by the B. Topological entropy as a function of the system parameter
sequence of propagators. For example, diagas repre-
sentsN(n), the total number of all allowed periodic orbits, 1
while diagram(24) denotesN3(n), the number of loop num-
ber 3 periodic orbits.

As a—a., the minimum loop lengtm diverges|cf. Eq.
5] and the topological entropy of the whole chaotic set
approache&!®! in the critical limit:

h.=h(a.+0)=h!Sl, (30
4. Diagram equations
Since the basic component in the surrounding re@das
structurally stable, the value of its topological entrdpy’
remains unchanged in the postcritical regime a.. The
explicit parameter dependence can be obtained by combining
the exponential expressid@9) with the logarithmic scaling
( = )+ ( - Q AAAAAAAAA J formula (15 found for the minimum period length of the
! k ! A coupling orbits. The topological entropy dependsaoanly
throughm andC, both of them follow form(16). This yields
the scaling relation

By using the above diagrams, expressi&8) is equiva-
lent to the following diagram equation:

h(a) —hc~y{log(a—ac)modpA](a—ac)*,  (31)

with the critical exponent
(25
X=7 (32

Recall that the mediating orbit belongs to both basic compo-
nents; thus it is taken into account twi¢e the first two  This formula gives the parameter dependence ofetkeess
diagrams on the right hand side. To correct this, its contri- topological entropy This quantity characterizes tlevelop-
bution must be subtracted in the third term. In addition toment of the heteroclinic compondmtyond the crisis point.
these loop number 0 terms, the contribution of each further It is worth emphasizing that the critical exponent depends
class of loop numbelr orbits is represented by a single dia- on the local Lyapunov exponent of the mediating periodic
gram in increasing loop order. In the Appendix we actuallyorbit (A) and on the topological entropyh{®)) of the basic
calculate some of these diagrams for given fimitealues. component in thé& region only. Therefore, one can say that

The topological entropy need to be determined in the limitthe critical exponent of the topological entropy is determined
n—o, when the sum in Eq19) becomes an infinite series. exclusively by thdocal properties of thenediating orbitand
Taking this limit in Eq.(25) yields the self consistent dia- theglobal behavior of one of the basic components: fine-
gram equation critical saddle The other basic component, i.e., that of the
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precritical attractor, does not influence the trend of topologi- -1
cal development of the enlarged attractor in the postcritical
regime. Note that in the above self consistent calculation
every system specifiand periodic window specificdetail
- - <
is condensed in the factaf. <

In the course of the development of the scaling relation bj? -2.5
(31) we took advantage of the following three assumptions k=)
only: (i) the crisis induced intermittent behavior beyond cri-

theoretical
slope

sis follows schemé3); (i) the minimum length of the inter- -3.5 §
mittent phase in the vicinity of the mediating orbit diverges
according to Eq(15); and (iii) the separation of the basic -4 I T I

-3 -2.5 -1.5 -1

components’ topological entropies, i.e., relati@2), holds.
We have argued that these conditions are generally fulfilled
at typical attractor enlargement crisesyen in higher-
dimensional mapdf the chaotic sets have only one unstable
dimension. Therefore we claim thtite scaling formulg31)

for the topological entrop¥olds for the entire clasef such

chaotic maps. The correct critical expongrih such cases is  (4) discussed in Secs. |1 B and Ill A. The Lyapunov exponent
always given by substituting the appropriate values of theyf the mediating period 3 orbit ai, is A~0.437452h,, the
largest topological entropy of the two basic components angppological entropy of the repeller in regio® is known
the local Lyapunov exponent of the mediating orbit in EqQ.exactly from Eq.(5). This yieldsy=log(hlS)/A~1.1 for the

(32). (See the remarks in Appendix A3. predicted value of the scaling expond@g).
We would like to emphasize here the difference between |y order to verify the scaling relatiofl), we computed

the topological entropy of the attractor and the topologicakhe topological entropy in a small parameter interfzal
entropy of the whole chaotic set. First, consider a precritical, 10" 4,a.+10 1] beyond the crisis, at 120 parameter val-
situation within the periodic window. On the one hand, there o of Aa=a—a, uniformly distributed on the logarithmic
are no coupling orbits present in the system, and thus onlycaje. At each parameter value we determined the corre-
the first two diagrams appear on the right hand side of Eqsyponding topological entropy of the attractor from a logarith-
(25 and (26). Relation(22) yields that the topological en- ¢ fit to Eq.(18), where theN(n) values were determined
tropy of the whole chaotic set I$=Iog(s)_=h[s], the greater  from the map’s known symbolic dynamics for<h<=18

of the two basic component’s topological entropy. On theong symbol strings. The numerically obtained values for
other hand, the topological entropy of the attractor is obw-h(a) of course involve some error: in our case the confi-
ously logb)=h"®\. By also taking Eq(30) into account, we  gence interval for the estimated valueshofias about 10°.

can conclude_ that the topological entropy .of the attractofrhe error bar orh(a) imposes a strict lower limit for the
undergoes a jump frorh'®l to h'S] at a, while the topo-  Ah=h(a)—h, values one can sensibly test against the ex-
logical entropy of the whole chaotic set is continuous at theyected scaling behavidt). This, in turn, sets a lower limit
crisis point. The situation is similar at the starting p@h&y,  for Aa values as well: in our case, according to Fig. 9, the
anda, of the periodic window(cf. Fig. 1). Consequently, the theoretically predicted scaling layl) can only be verified
topological entropy of the whole chaotic set changes confor Aas>10"2 abovea,. Figure 9 indicates that the agree-

tinuously as the parameter varies through the periodic Winment between numerics and theory with this constraint
dow, while the topological entropy of the attractor shows agpeyed is good.

sudden change at both ends of the periodic window. These As we see, the limiting factor in determining the scaling
discontinuities can be observed as a signature of diss  exponenty in Eq. (1) is the available precision in the calcu-
However they reflect only a change in the asymptotic stabiliation of the topological entropy. A reliable computation of
ity of a basic component, rather than any abrupt structuralhe topological entropy is highly nontrivial in higher dimen-
change in the overall invariant set. sional chaotic systems. We have found that the method of
Note that very small periodic orbits with high periods also Newhouse and Pignatafa8] appears to give the most reli-
occur in the postcritical regima>a.. According to the aple estimation of the topological entropy for our particular
above arguments, the topological entropy of the whole Chapurpose among other methods we have tried.
otic invariant set, for which the scaling formul81) has In the study of the interior crisis of the Hen map(6),
been developed in this section, changes continuously througfiscussed in Sec. Il C, we followed a similar procedure to the
these windows. This Implles that the fine structure functﬂon quadratic equation's case. However, we used the Newhouse-
in Eq. (31) is a continuous function of the system parameter pignataro method18] instead of symbolic dynamics, and
h.~0.38 also had to be determined numerically. The largest
V. NUMERICAL TESTS eigenvglue of the period-7 mediating orbit was found to be
approximately 10.8%’, corresponding toA ~0.341 andy
In this section we briefly summarize the numerical proce-~1.12. Despite the serious limitations imposed by the avail-
dures we carried out to verify scaling relatiot). Here we  able precision of the topological entropy’s calculation, we
present the results we obtained for the interior crises of thenanaged to confirm the corresponding expected value of the
two example maps discussed earlier. exponent by the numerically obtained value (-1B11), as
First we consider the interior crisis of the quadratic mapshown in Fig. 10(For further details, see Rd#4].)

-2
log, Aa

FIG. 9. Numerically obtained scaling of the excess topological
entropy in the quadratic ma@). The straight line represents a line
with the theoretical slope 1.1.
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-1 phases 1 and 2 of the motion have the same partial topologi-
cal entropies. The approximately periodic behavioasd ii

can occur in the vicinity of theamemediating orbit if it is of

odd symmetry.

In the case of alouble interior crisiswhere two crises
occur simultaneously as two parameters are vd28d two
different intermittente.g., transientchaotic signals occur in
the system, both of them correspond to a basic component.
i In such a system instead of a mediating periodic orbit, a third
‘ chaotic saddle may reside on the boundary in between the

-3 . e . . .
5 18 -16 -14 -12 1 two chaotic bands. Then the qualitative dynamical picture is

log, Aa

FIG. 10. Scaling of the excess topological entropy near the crisis (chaog; — (chaogrgs— (chaog,— (chaogrgs— (chaos,

of the Henon map. The straight line fit corresponds to the numerical — (chao3pgg— (chao3,— (chaosggz— (chaos;
gap filling exponenty=1.13+0.11, which agrees with the theoret-
ical predictiony~1.12. —... (34

VI. DISCUSSION

In this work we gave a detailed explanation of thap Wr? ere bOth. Chao“ﬁ phases arehfolllowedl gy a tfgrd “épe of

filling phenomenon that accompanies interior crises in chachaotic motion, (chaos)gg, on the fractal basin boundary
FBB). In such cases renormalization should be done (eith

ofic dynamical systems. We have obtained a scaling | eas) two accessible system parameters simultaneously: this
governing the change of the topological entropy accompany- y P y

ing the gap filling with a newundamental scaling exponent problem IS open to f“”h?f Investigation. _
2 . - In addition to gap filling, an alternative mechanism of
as a characteristic quantity of the gap filling phenomenon,

The scaling law(1) establishes a relationship between thestructural developmgnprunlng, also oceurs m_c_haouq Sys-
tems where the basic source of nonlinearity igiscontinu-

abrupt change at crisis and the subsequent quasmontmuoH? For such systems a scaling formula for thecreaseof

structural development. The essence of the diagram tectgﬁe topological entropy similar to E¢1) was derived with a
nigue we presented here is a systematic account taking of th polog Py

) . | . . different exponent in Ref.30].
interactions among thdasic dynamical componenti- s : . , .

. . . g . Most characteristic scaling quantities of chaotic behavior
volved in the interior crisis. Our arguments and the diagra

equations are general enough to hold regardless of the detal Iéke generalized dimensions, Ry entropies, Lyapunov ex-

. e ts, and escape ratan be related to formal partition
of the system. Therefore, the scaling law for gap filling is ponen . : :
valid for)t/heattractor explosion 19,20 ?15 21—253J ]]pxrisesg,J sums|31]. The topological entropy and the associated parti-

of a wide class of chaotic systems, including higher_t|on sum(19) are the simplest examples for such a descrip-

dimensional maps. We also expect that the method is genetr'-on' At crises such quantities undergo drastic changes that

: . . S are analogous to phase transitions. Such transitions are also
aIIy_apphca_bIe for Investigating ph_enomena which mvo_lve related to the interaction of the system’s basic components
the interaction of two or more invariant sets and the scallngf6 10]. The approach we elaborated in this paper for the to-
of OAttrt]rearc?(;Jrarr]r?gresi'n [26-28,1 is a similar phenomenon pological entropy is general enough to be applicable to other

gingl-t R P %ypes of partition sums. By associating appropriate meaning
when two or more disjoint coexisting attractors become partand values to the propagataf20) and coupling constants

of an enlarged attractor. If the system has certain SYMM&he diagram technique introduced here may provide a suit-

tries, interior crisis might also occur in the form sfmmetry able apparatus for studying and solving the critical behavior
recovering attractor merging1,26|, for which case scheme pparat aying g
of other scaling quantities around crises as well.

(3) describing the pattern of crisis induced intermittency can
be further modified so as to accommodate the intermittent
phases preceding the switches in both directions:
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APPENDIX: SOLVING THE DIAGRAM EQUATIONS n-m+jg  n-np—jg
Ny(m=¢ 2 Y, bfbcms’ M Mm
In Sec. IV A we set up a symbolic diagram formalism to Mo=lg Mm=M~lg~ls

estimate the topological entropy via EHd.9). In this appen-
dix, we first investigate the terms in ER5) in increasing
loop order by using the propagators defined in Eg6) and
(21). Then we solve the diagram equati®6), and derive
the formula(28) of the excess topological entropy beyond
the critical parameter valua; .

=¢(blc)ie(s/c)lsc™

s?’(b—c)s" M+b%(c—s)b" M+c?(s—b)c" ™
(s=b)(b—c)(s—c)

=CcMs" " M+Bb""M+AC"™ ™M (A3a)

1. Cyclic diagrams ~CcMs™Ms", (A3b)

a. Loop number OConsider the three diagrams shown innere
Eq. (20). The first two diagrams take into account the orbits
that never leave regiorandS respectively: they represent A=b%(c—s)/(b—c) and B=c(s—b)/(b—c)
the periodic orbits belonging to the two basic components. (A%)
The number of these orbits increases with the rate deter-
mined by the topological entropies of the basic component:

Are the constant coefficients. Theop coupling factor
[cf. Eg.(20)]. Recall that the mediating orbit belongs to both P ping

basic components; therefore, we havestdotractits contri- 5
bution to obtain the zeroth order term in EG9): C=————(blc)is(s/c)is¢ (A5)
(s—b)(s—c)
No(n)~s"+b"—c"~s". (A1)

contains a generic part, a topology dependent gara(djg
are fixed for a given windoyy and a system parameter de-
mPendent factog. The latter factor measures the proportion of
how many closed orbits are actually realized among those of
the mere combinations of paths allowed by the dynamics of
the individual phasegAn orbit of lengthn is realized when-
ever the return conditioly,=y, can be fulfilled for some
Yoe B.) Asymptotically, ¢ is identical within a family of
topologically analogous situations, which implies the system
parameter dependence

The asymptotic behavior on the right hand side follows fro
Eq. (22). The resulting growth rate in this loop order is lgg
i.e., hiS]

b. First loop order The number of periodic orbits of
length n that visits both regiongxactly oncds denoted by
the diagram

Q L) ¢=¢[log(a—agmod pA] (A6)
| I P
]
- — ~ ~— ~ ~— ) as outlined in Sec. Il C. This property implies that the loop
Ny T N coupling factor in Eq.(A5) has a similara-dependence¢

also incorporates the constant factors not shown in the scal-
ing relations(20) and (21). Note that the growth rate ob-
(A2)  tained from the asymptotical behavi@3b) does not exceed
the critical valuehlS!.
c. Second loop ordein the second loop order we con-

In the example of the period-3 window of the quadratic MaPgijer the number of orbits fitting to the graph

(4) each trajectory must spend at least one time step within
B, after escaping regio® and before leavindg again|cf.
Sec. A, Figs. 2 and b Therefore in this casa,=1 and
the intermittent phase close to the mediating orbit must las
for at leastm—1 steps. In a general system the topology may

determine that a trajectory must spend at lggssteps inB IO.O.I.). 1 - [ loop2 |

before an intermittent phase, and at Igastteps inS after it. | | | | | | |
(Obviouslyjg<p, andjgis also expected to be a very small g & g

number) This implies that the minimum length of the inter- ! 2

mittent phase with fixed itinerary close M is m—jg—js. (A7)

Thus the length of the individual phases in diagréA®)

must satisfy the relations,=jg, ns=jg, andn,=m—jgz  where both phases are at leaststeps long anch=n;
—Jjg. Taking into account that the total length of the orbits is+n,. These orbits can be combined from two first loop
n=n,+n,+ng, the number of orbits with loop number 1 number orbits. The number of such combinations can be ob-
can be calculated as tained as
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(n—ny)

Na(n) 522 2 Ni(ny)N
ng=m
q nom
=&y E C2c Zm( n-MpBpM M4 Ach M)
2 =m
X (SN TMTMy BpN MM ACN TN M)

n+1—2m
2

) [CcMs™M]%s" (A8)

by using formula(A3a) and taking the asymptotic limih
—oo0, Here the factog, plays a role similar t& in Eq. (A3),
and it also takes the same sort of parameter dependence.

Due to then-dependent first factor, this term increases
somewhat faster thag"; however the contribution of this
term to the growth rate is of the order of loynh, which
disappears in the asymptotic limit.

d. Higher order loopsIn the subsequent loop orders the
diagrams

loop 2 loop £
F T t f RRRERRE ; [ f EERIREE 5 |
(A9)
represent
1 n—m
(n+1—|m)'*l .
~§—— [CcsTTs"  (A10)

new orbits. The number of the repeated combinations of th
allowed one-loop itineraries is divided byin order to ex-
clude the cyclic permutation of identical patterns.

Despite the gradual increase in the@lependent combina-
torial prefactor with increasing loop numblethe asymptoti-
cal growth rate in each order remains lsgHowever, the
infinite sum(19) grows faster thas" in then— oo limit. This
fact shows, on the one hand, thie cause of the excess
topological entropybeyond crisisis basicallythe increased
combinational possibility othe two sorts ofchaotic tran-

sients on the other hand, that gap filing phenomenon is

associated with the appearanceextremely longcoupling
orbits. Note that by decreasimg the correction terms grow
rapidly.

2. Solution of the self consistent equation

In order to obtain the asymptotic value of the excess to-
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=logs, in accordance with relation®2) among the growth
rates. The diagram equati@®6) can be written as

n

N(m=No(m)+ & 3 Ny(nN(n=ny),  (A12)

where¢,, has similar meaning and parameter dependence to
that of ¢ in Eq. (A6). By substituting the expressioal11),
(A1), and(A3a) into Eq.(A12), we find that

Dt"~sys"+bgb"—coc"+ £,
n

X X CcM(s" M+ B M+ACT ™Dt M

SRE]

=5p8"+bph"—coc"+Dt"E, . Cc™t ™

1_(S/t)n+17m 1_(b/t)n+17m

1—(slt) 1-(b/t)

l_(C/t)nJrlfm

—(clt)

wheresg, by, andc, are constants, assumed but not shown
in the asymptotical scaling relatiq20). The coefficientsA,
B, andC are the same as given in E484) and(A5) for the
loop number 1 orbits. However, without loss of generality,
we can incorporaté&,, in ¢ and, consequently, i€ as well
[cf. Eqg. (A5)]. Then, by dividing by the leading order term
®1t" and taking the limitn—o, one can eliminate the van-
ishing terms due to Eq22), and obtain the following im-
plicit equation fort:

= Sosn + bobn - Cocn+ foc
n—m

X Cc™Dt""™ >
i=o

s\

+B
t

+A (A13)

1Cm'[1ml+B+A+s Cc™s' ™™\ [s\"
¢ t—s t=b t-c/ "\D t=s /It
bg _Cc™i ™ [b\" co¢ Cc\[c\"

| =——B—m|| =] +|——=—A—]| =
D t—b t D t—c/\t
~CcMl—m iJriJri . (A14)
t— t—b t—c

Therefore, for any given parameter valagthe asymptotic
equation fort is a polynomial equation of degrea+2:

F(t)=t™ (t—s)(t—b)(t—c)—Cc™

pological entropy, we perform a self consistent calculation

below. Let us suppose that the number of periodic orbits of

the attractor, symbolized by the propagaft), increases as

N(n)=~D-t"=D-e"™ (A11)

X{(t—Db)(t—c)+(t—s)

X[B(t—c)+A(t—b)]}=0. (A15)

For parameter values close to the crisis paigpt i.e., for

whereD is an arbitrary factor of order 1. We also use that them> 1, the three greatest roots of this polynomial are close to

topological entropyh=logt is somewhat greater tha°!

s, b andc. Moreover,F(t) becomes very steep arousd
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whereupon it follows that the greatest root of E415) can be well approximated via linear expansion arosnd
0=F(t)~F(s)+F'(s)(t—s) (A16)
From the above expansion,
t~s— F,(S) =S+ =1 Ccmn(1$— b)(s—c) ~g[1+CcMs ™+ O(CcMs™™)?] (A17)
F'(s) s (s—b)(s—c)—Cc"[(A+1)(s—b)+(B+1)(s—c)]

follows for the greatest root of EGA15).
Taking the logarithm, according to EA11), yields the
topological entropy of the whole attractor as

h~h{S/+log[ 1+ Ceh™'=h=hmy. (A18)
By takingm>1 into consideration again,
h—hiSl~ e -hhm (A19)

follows for the excess topological entropy, reflecting the in-
creasing number of coupling orbits above the critical point.
The coefficientC in Egs.(A17)—(A19) inherits a system
parameter dependence frofrvia Egs. (A5) and (A6), and
follows the general form(16) of fine structure functions.

the mediating periodic orbit in Eq20). In this appendix we
did not use this condition in order to keep our calculation
valid for cases where the mediating invariant set is a chaotic
saddle rather than a periodic orbit, i.e., if the basic compo-
nents have dractal basin boundary(See Sec. VI for impli-
cations in other types of crises.

(2) The separation of the topological entropi@®) is the
basic condition for the validity of our derivation. However, if
in some unusual case the separation scheme

t=b>s>c=t">b">s">c" (A20)

holds instead of Eq(22), the scaling formuld31) remains
valid. In this case the calculations of this appendix can be
carried out with the role of the two basic components ex-

This provides the same coefficient for the members of ahanged, and the substitutions

given family of topologically analogous situations in the
scaling equation(A19), but different values for different
families.

3. Remarks

(1) Equations(27)—(29) in Sec. IV directly follow from
Egs. (A17)—(A19) by using the conditiong=1 and h™!

b2(c—s)

= — =h(B]
S —c)C and h.=h

(A21)

yield the correct values in the appropriate formulas Egs.
(27)—(30) of Sec. IV. Note thah, the critical value of the
topological entropy is always the maximum of the two basic

=0 given for the propagator and the topological entropy ofcomponents’ topological entropies.
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