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Topological scaling and gap filling at crisis
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Scaling laws associated with an interior crisis of chaotic dynamical systems are studied. We argue that open
gaps of the chaotic set become densely filled at the crisis due to the sudden appearance of unstable periodic
orbits with extremely long periods. We formulate a scaling theory for the associated growth of the topological
entropy.

PACS number~s!: 05.45.Ac
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I. INTRODUCTION

The behavior of a physical system is usually determin
by one or more invariant sets in its phase space. As sys
parameters vary, qualitative changes in the invariant sets
occur, leading to physically observable phenomena. Aninte-
rior crisis @1# is such a qualitative change that occurs
dissipative nonlinear systems, in the phase space of whic
attracting set coexists with a nonattracting chaotic set. As
system parameters change, the attractor can collide with
coexisting nonattracting chaotic set that leads to a sud
enlargement of the chaotic attractor. Interior crises have b
observed in many experiments@2,3#.

A scaling law describing the growth of the topologic
entropy at interior crises was presented in Ref.@4#. We found
that for some system parametera the topological entropyh
obeys the algebraic scaling law

h~a!2h~ac!;~a2ac!
x with x5h~ac!/L ~1!

beyond the crisis valueac , wherex is thegap filling expo-
nent and L denotes the Lyapunov exponent of the unsta
periodic orbit mediating the crisis.

In the present paper, on the one hand, we demons
how an interior crisis triggers the creation of new unsta
periodic orbits, and analyze how the emergence of infinit
many periodic points leads to the sudden and complete fil
of formerly empty, dense regions of the phase space~gap
filling!. We emphasize the crucial role of the mediating or
in this process. On the other hand, we refine the conditio
elaborate the derivation of Eq.~1!, and present refined est
mates of the theory with a special focus on the details of
diagram technique being used. We also provide further s
porting numerical results, and comment on the common
scale behavior of scaling quantities at interior crisis.

The paper is organized as follows. In Sec. II we descr
the phenomenon of interior crisis, study the geometric str
ture of the phase space for parameter values around the
sis, and introduce the notation. In Sec. III we investigate
dynamics of the coupling orbits, which is a key step towa
the understanding and the derivation of scaling law~1! for
the topological entropy. In Sec. IV we derive our main resu
the scaling law~1!. We present numerical results in Sec.
PRE 611063-651X/2000/61~5!/5019~14!/$15.00
d
m
an

an
e

he
en
en

e

te
e
y
g

t
s,

e
p-
e

e
c-
ri-
e
d

,

and discussions in Sec. VI. Some details of the diagram te
nique are left for the Appendix.

II. PHASE-SPACE STRUCTURE AT INTERIOR CRISES

A. Notions and definitions

Consider a dissipative dynamical system described by
map

xn115F~xn ,a!, ~2!

wherexPRN, anda is a system parameter that can be varie
We consider a parameter regime where the system exh
chaos with one positive Lyapunov exponent, i.e., we exclu
the possibility of hyperchaos. We assume that the system
smooth, so that the periodic orbits and the invariant ma
folds change continuously with the parameter. A chaotic
tractor of the system is in the closure of the unstable ma
folds of the periodic orbits embedded in the attractor. T
parameter regions where such an attractor exists and
duces sustained chaos are interrupted by periodic windo
In this subsection we outline the general mechanism of in
rior crisis in typical periodic windows. We refer the reader
Fig. 1 for a schematic picture of the phase-space deve
ment of the invariant sets involved.

A periodic window occurs due to the creation of a stab
unstable pair of periodp orbits by a saddle-node bifurcation
Beyond the bifurcation parameter valueab the stable orbit
has a primary basin of attraction bounded by t
codimension-1 stable manifold of its accompanying unsta
orbit. As the parameter changes the stable orbit underg
period doubling and evolves into a small chaotic attract
The chaotic attractor gradually grows within its basin of
traction, until it eventually collides to its basin boundary
the critical valueac . On a bifurcation diagram this sma
attractor appears inp bands, since its basin of attraction co
sists ofp pieces in the phase space. Therefore, we refer to
primary basin of attraction as theband region~B!, and its
complement as thesurrounding region~S!.

The chaotic attractor loses its asymptotic stability when
collides with the basin boundary of regionB at some param-
eter valuea* >ab , and transforms to a chaotic saddle@5#.
Betweena* andac the chaotic saddle is located in regionS,
and coexists with the~usually small! attractor residing in the
5019 ©2000 The American Physical Society
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5020 PRE 61SZABÓ, LAI, TÉL, AND GREBOGI
band regionB. Since every periodic orbit is restricted excl
sively either toB or S, it is possible to split the whole chaoti
set into twobasic componentsthat we define here as th
nonwandering sets within theB andS regions, respectively
The dynamical nature of the basic components~and the as-
sociated chaotic behaviors! are very distinctive: in addition
to the obvious difference between their transient and per
nent temporal character, they usually also differ in oth
quantitative characteristics like amplitude, Lyapunov exp
nent, frequency spectrum, etc.

As a passes through the critical valueac , an attractor
enlargement occurs: the chaotic attractor collides with
chaotic saddle and loses its asymptotical stability. The co
sion of the basic components occurs at an unstable peri
orbit M @1#, which ‘‘mediates’’ the crisis. Themediating or-
bit has a period ofp ~or the integer multiple thereof! and a
codimension-1 stable manifold that forms the boundary@6#
between theB andS regions.

Beyond the crisis point, a trajectory can penetrate
boundary betweenB andSboth ways; thus it typically keep
switching back and forth between the two phases, a beha
known ascrisis induced intermittency@7#. In this parameter
regime a sequence of trajectory points that fall in the s
rounding region is called aburst @1#. The dynamical charac
teristics of the bursts are clearly distinguishable from th
of the other phase of the motion spent in regionB, as these
are inherited from those of the basic components before
crisis. The above definition of the basic components~e.g.,
being the nonwandering sets ofB andS regions separated b
the stable manifold ofM! can be naturally extended to th
postcritical parameter regime too.

As we demonstrate in Sec. III, whenever a trajectory p
etrates the boundary fromB to S, it approaches the mediatin
orbit M along its stable manifold and then leaves it along
unstable manifold. While staying in one of theS or B re-
gions, the respective basic component imposes its own

FIG. 1. The structure of the invariant sets in a typical perio
window. The~dotted! band~B! region is bounded by the mediatin
periodic orbitM ~dash-dotted line! and its stable manifold~dashed
line!. Within the window,ab,a,ac ; this is the primary basin of
attraction of thep piece attractor. Meanwhile, ata* >ab , the cha-
otic invariant set in the complementary surrounding~S! region loses
its stability and becomes a chaotic saddle~S saddle!. Beyond the
crisis ac , both basic components, the B saddle within the band
region and theS saddle within theS region, are nonattracting cha
otic setsembeddedin the enlarged chaotic attractor.
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namics on the trajectory. While staying in the close vicin
of M, the trajectory follows the mediating orbit’s patter
therefore, it is practically the same in every such event. T
evolution of a typical trajectory in the postcritical regim
thus follows the scenario:

~chaos!1→~approximately periodic!→~chaos!2→~chaos!1

→~approximately periodic!→~chaos!2→~chaos!1

→¯ . ~3!

The above scheme amends the one set forth in Ref.@7#, and
provides us with a one-to-one correspondence between
basic components and the typical chaotic signals. The es
rates of the basic nonattracting sets determine the chara
istic time scale of the respective typical signals@8,1#.

In experiments it is often possible to make a reliable d
tinction between typical signals. In such cases we can use
above correspondence to determine the dynamical chara
istics from the measurement data. In addition to various te
niques developed to measure the lifetime, various dim
sions, and entropies, it is also possible to use phase s
reconstruction to locate and separate the basic compon
@3#.

In what follows, we give two examples, one- and tw
dimensional maps, where the mediating orbit, its sta
manifold, theS and B regions, and the basic componen
within them can be determined by analytic or numeric me
ods. Note that both our examples are strongly dissipa
systems, whereab and a* coincide @1#, and the mediating
orbit M is actually the same unstable orbit that is created
the saddle-node bifurcation ata5ab .

B. Example 1: Quadratic map

As the first example we consider the main period-3 w
dow of the one-dimensional quadratic map,

xn115 f ~xn!5a2xn
2, ~4!

on the intervaluxu,u11(4a11)1/2u/2. The period-3 window
lies in the parameter intervalab5a* 51.75,a,ac
51.790 327 491 99 . . . @1#. The unstable period-3 orbitM
[$xa ,xb ,xc% is generated by the saddle-node bifurcation
a5ab . The interior crisis~attractor enlargement! occurs at
ac . Figure 2 shows the mapping and the location of the ba
components close to this parameter value.

Somewhat before the crisis the three piece regionB
[B1øB2øB3 is mappedinto itself, thus forming the pri-
mary basin of attraction of a three piece attractor. On
other hand, the map restricted toS[S1øS2 is not closed:
sinceS is mappedonto S1øB1øS2 , almost all trajectories
started fromS sooner or later leave that region and a
trapped inB. However, there exist an infinite number of p
riodic and aperiodic orbits inSwhich never escape from thi
region. These orbits form another invariant set withinS,
which is asymptotically unstable, notwithstanding chao
@9#: a chaotic repeller. The repeller has a Cantor set struct
and it can be constructed by a recursive procedure discu
in detail in Ref.@10#. The boundary between the two region
is formed by the periodic orbitM and some of its preimage
points xA , xB , and xC . As the parameter is changed, ata
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PRE 61 5021TOPOLOGICAL SCALING AND GAP FILLING AT CRISIS
5ac , the maximum point is just mapped onxB ~see Fig. 2!;
thus the three piece chaotic attractor covers the whole
mary basin of attraction~B! and touches the neighborin
repeller at the boundary points.

For parameter values beyond the crisis valueac , the
maximum point is mappedoutside B2 , cf. Fig. 2. Thus the
map restricted to regionB is not closed any longer, and th
chaotic attractor undergoes a sudden enlargement: it
comes a one piece attractor by extending to the whole in
val A[@ f (a),a#. After the crisis, however, it is still possibl
to identify the former chaotic sets. Orbits that never leave
region S form again a Cantor set repeller that can be c
structed the very same way as before. Analogously, it is a
possible to construct the set consisting of orbits that ne
escape from the band region, yielding another Cantor
structure@10#. Both basic components are repellers emb
ded in the large attractorA.

A major advantage of this example is that the topologi
entropies of the basic components can be calculated ex
@10#:

h@B#5 log~2!/3 for a.ac ,
~5!

h@S#5 log@~11A5!/2# for a.ab .

The fact that the topological entropy is constant reflects v
strong structural stability. Indeed, the repeller inS does not
change topologically while the system goes through the
sis. Beyond the crisis both basic component repellers bec
structurally stable.

FIG. 2. The quadratic map about the attractor enlargement
sis. The mediating period-3 orbit (xa ,xb ,xc) and the pointsxA ,
xC , andxB determine the end points of theB andS intervals. The
arrows indicate how they are mapped onto each other. The br
line shows how the apex point is mapped forward: either intoB2 ,
exactly onxB , or outside ofB2 , depending on the actual paramet
value.
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C. Example 2: Hénon map

While the basic chaotic invariant sets can be character
analytically for one-dimensional maps, in two dimensio
one resorts to numerical computations. We consider
Hénon map@11#

~xn11 ,yn11!°~a2xn
210.3yn ,xn!, ~6!

close toac51.271 6856 . . . , where an interior crisis occur
in a period-7 window.

Below this critical value the chaotic attractor is located
seven well separated bands in the phase space, as sho
Fig. 3~a! together with the period-7 hyperbolic orbit media
ing the crisis. There is a visible distance between the att
tor and the mediating points which gradually disappears
the parameter approachesac ; then the attractor collides with
its basin boundary at this orbit. The basin boundary of
attractor is formed by the branches of the stable manifold
the mediating orbit. Locally, these can be approximated
their tangent lines along the stable eigendirections of
mediating points. In Fig. 3~a! we also show one of thes
lines. The tangent approximations of the stable manifo
can be utilized as numerical criteria for the basin bounda
This was used to find a numerical approximation of the
existing chaotic saddle in the surrounding region.~The nu-
merical procedure was outlined in Ref.@6#.! Note that, in an
analogy to the one-dimensional example, the chaotic sa

ri-

en

FIG. 3. ~a! The chaotic invariant sets of the He´non map ata
51.266,ac , inside the period-7 window. A chaotic saddle~light
dots! coexists with the seven piece chaotic attractor~heavy dots!.
The mediating period-7 points~1! and the tangent to the stabl
manifold of one of them~dotted line! are also shown.~b! The en-
larged Hénon attractora51.276.ac beyond the period 7 window
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5022 PRE 61SZABÓ, LAI, TÉL, AND GREBOGI
also has a Cantor-set-like fractal structure with finite s
gapsalong its unstable foliation@Fig. 3~a!#.

As the parameter passes throughac , the chaotic attractor
abruptly extends so as to form a single, continuous set a
its unstable foliation@Fig. 3~b!#. Embedded in the attracto
lies the remnant of the precritical seven piece attractor
the continuation of the precritical saddle. We obtained
two basic components numerically by the same method
before; the result is shown in Fig. 4. Apparently, the comp
nent inS does not differ from the precritical chaotic sadd
@c.f. Fig. 3~a!#. We have also found numerically~see Sec. V!
that its topological entropy is constant throughac . This sup-
ports our view that these chaotic saddles are typically st
turally stable at crises and, therefore, can be used as buil
blocks of the whole chaotic set. Comparing Figs. 3~a! and 4,
note that the basic component in the band region also de
ops a fractal structure when it becomes nonattracting a
the crisis.

D. Gap filling

The above paradigmatic examples demonstrate some
eral topological features at internal crises. TheS-saddle com-
ponent has a fractal structure along the unstable folia
leavingan infinite number of finite size gapsin between. The
S saddle is a structurally stable set; it is topologically u
changed throughout the crisis and throughout most of
periodic window. Before the crisis these gaps are left em
After the crisis, however, since the leaving from and reen
ing to region S becomes topologically permitted, period
points that are not part of the nonwandering sets appear
in S andB. This infinitesimally small change in the param
eter atac generates uncountably many periodic points of t
kind which abruptlyfill in all the gapsof theSsaddle, com-
pletely and densely along the unstable foliation.~The first
experimental observation of this phenomenon was repor
but not analyzed, in Ref.@12#.!

These orbits establish the dynamical connection betw
the basic components, via a complex chain of homocli
and heteroclinic crossings of stable and unstable manif
@13#. Therefore, we call themcoupling orbits, and the new

FIG. 4. The basic components of the He´non map at the same
parameter values as used in Fig. 3~b!: theB saddle~heavy dots! and
the S saddle~light dots!. Both chaotic saddles exhibit pronounce
fractal structures along their unstable manifolds. The period-7 o
~1! mediatesbetween the two basic components. The dotted lin
the same tangent shown in Fig. 3~a!.
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component of the chaotic set they form theheteroclinic com-
ponent. The coupling orbits from the ‘‘bulk’’ of the chaotic
attractor and they play a crucial role in the structural dev
opment of the chaotic set beyond the crisis. However, as
shall point out, the heteroclinic component is structura
volatile and, as the scheme~3! and Figs. 3~a! and 4 suggest,
in fact the robust basic components do serve asdynamicalas
well asgeometrical frameworksof the system.

III. ANATOMY OF THE COUPLING ORBITS

To describe the gap filling phenomenon, quantitatively
is necessary to study the dynamics of the newly created c
pling orbits after the crisis. The coupling orbits visit bo
regionsB andS for a*ac . Let m(a) be theminimum length
of these orbits. We found@4# thatm(a) diverges logarithmi-
cally:

m~a!}2 log~a2ac!. ~7!

Equivalently, for every natural numberm one can assign
threshold parameter valuesam , below which coupling orbits
of length less thanm do not exist. From Eq.~7! we see that
the sequenceam must approach the critical valueac as a
geometrical sequence:

am2ac'conste2Lm, ~8!

whereL is the positive local Lyapunov exponent of the m
diating orbit taken at crisis. First, in Sec. III A, we demo
strate this proposition on the example of the period-3 w
dow of the quadratic map~4!. We defer the generalization t
Sec. III B.

A. Self-similarity of coupling orbits in a one-dimensional map

Consider$yi% i P1,...,m , ~one of! the shortest coupling orbits
at a given postcritical parameter valuea with lengthm. This
orbit stays in regionB ~of the precritical attractor!, from
where it escapes after a while and enters to regionS ~of the
precritical repeller!, then finally returns toB again~cf. Fig.
2!. Since it is the shortest orbit, it cannot do this loop mo
than once. We choosey0[ym to be the last point before
escaping the regionB: it lies within B1 very close to the apex
point 0. Letxi

0 be f ( i )(0), the i th image of the apex point
From Figs. 2 and 5 we see that the first point after esca
y1 , falls into the escape interval@xB ,x1

0#, and after three
additional steps the fourth iterate is very close to the me
ating period-3 orbit:y4P@x4

0,xb#, already inside regionS.
The following points of the orbit must lie in the subseque
images of the escape interval:y5P@xc ,x5

0#, y6P@xa ,x6
0#,

y7P@x7
0,xb#,..., y3lP@xa ,x3l

0 #, y3l 11P@x3l 11
0 ,xb#, y3l 12

P@xc ,x3l 12
0 #,..., etc., until the iteration leads back to th

initial point ym5y0'0.
Note that, close to the crisis, the length of the first inter

it
s

FIG. 5. The mechanism of postcritical intermittency in the qu
dratic map.
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PRE 61 5023TOPOLOGICAL SCALING AND GAP FILLING AT CRISIS
@xB ,x1
0# is approximatelyproportional to the excess param

eter value a2ac , and so is that of the fourth,@x4
0,xb#:

xb~a!2x4
0~a!}a2ac . ~9!

It follows then that the studied orbit, and likewiseevery cou-
pling orbit, draws very close to the mediating orbitright
after escaping fromB as a→ac . Consequently, it spends
considerable time in the vicinity of the mediating orbit, in
sort of intermittent phase of the motion. During this peri
the trajectories are subjected to the repulsion of the unst
mediating period-3 orbit, and are driven away exponentia
with the rate determined by its local Lyapunov exponentL,
e.g.,

xb2y3l 14

xb2y3l 11
'

xb2x3l 14

xb2x3l 11
' f ~3!8~xb!5e3L. ~10!

The periodic orbit$y1 ,...,ym% cannot return to the vicin-
ity of 0 before the image of the original escape interval e
tends to the size of the whole region, which is of magnitu
1. From Eq.~10!, this latter condition can be written as

xb2ym'1}e~m24!L~xb2x4
0!. ~11!

This, in combination with Eq.~9!, leads to Eqs.~7! and ~8!
for largem values.

Figure 6 shows the result of the numerical calculat
which reflects the scaling relation~8!. In particular, we ex-
amine parameter valueãm at which the shortest periodic or
bits are just superstable (y05ym50). These parameter va
ues are extremely close to the births of the orbitsam , and
should exhibit the same scaling law. Bothã3l 11 andã3l 12 as
a function of m fit in a logarithmic representation to
straight line of slope20.437 in agreement with our expec
tation, since the value of the Lyapunov exponent of the m
diating orbit at crisis isL50.437452 . . . . ~We note that the
seriesã3l , obtained as the superstability points of the sho
est period 3l coupling orbit, behaves similarly; however,
can be shown that the period of the shortest possible c
pling orbit is never divisible by 3.!

Thus, for the quadratic map~4!, scheme~3! provides an
adequate model of crisis induced intermittency. Let us int
duce the following symbolic representation of the chao
behavior:

FIG. 6. 3 and1 marks show the superstability pointsãm of the
shortest coupling orbits of them53l 11 andm53l 12 families,
respectively. Both series of data points fit to straight lines of slo
20.43752L on a semilogarithmic scale~of basee!.
le
y

-
e

-

-

u-

-
c

~12!

where double lines symbolize~chaos!1, the dominant behav-
ior within regionB; single lines,~chaos!2, the chaos withinS
during a burst; and the dotted single line represents the
termittent motion close to the mediating period-3 orbitM.
This pattern is valid in the whole postcritical regime, bu
according to Eq.~7!, the minimum length of the intermitten
phase diverges as the crisis point is approached from ab

Note that the data in Fig. 6 belonging to the periodl
11 and 3l 12 orbits fit to two different lines. This sugges
that similar situations occur for periodic orbits belonging
the same line. We call these situationstopologically analo-
gous, and we say that the sets of superstability points$ã3l 11%
and $ã3l 12% form two families of topologically analogous
situations.

Figure 7 illustrates the essence of this similarity, and
mechanism by which these topologically analogous sit
tions recur as the system parameter is varied. Let the da
line represent the position of thej th preimage of the apex
point. At a5ã j 14 the fourth image of 0 falls exactly onto
this position; thus it returns to 0 afterj subsequent iterations
While approachingac , the width of the interval@x4

0,xb#,
accessible by the fourth step after the escape, decreases
portionally toa2ac . If the excess parameter valuea2ac is
decreased by a factor of being approximatelye23L, then the
apex point is mapped again on thej th preimage of itself
~thus becoming superstable again!; however, this requires
three more iterations in this case.

Figure 7 thus implies that for subsequent members o
family of topologically analogous situations, the relation

ãm132ac

ãm2ac
'e23L ~13!

holds. This indeed implies an asymptotically geometri
convergence with the same quotient as the one foram’s, the
appearance of shortest coupling orbits, in Eq.~8!.

In addition to the superstable situations, topological sim
larities can also be found among situations where the a
point of the parabola is mapped onto a periodic orbit afte
finite number of iterations. Such a situation is called aMisi-
urewicz point@14#. Figure 7 also illustrates this more gener
case: the dashed line now denotes thej th preimage of an
arbitrary periodic point. Those Misiurewicz points, where t

e

FIG. 7. Schematic illustration of topologically analogous situ
tions in a one-dimensional map. The dashed line shows the pos
of the j th preimage of a special point of the map. The mediat
point is xb .
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5024 PRE 61SZABÓ, LAI, TÉL, AND GREBOGI
origin is mapped onto a well defined preimage of a giv
fixed point, can be gathered into families of topologica
analogous situations, similarly to the~three! families of su-
perstability pointsã3l 1 i ( i 51,2,3). There are, of course, in
finitely many of such families. The members of a family
Misiurewicz points satisfy the same scaling relation~13! for
the superstable points and the birth points of the shor
coupling orbits.

The existence of these topologically analogous situati
is a consequence of theself-similarbehavior in the vicinity
of the crisis point. Self-similarity is a general sign of critic
behavior. Therefore, we conjecture that, in addition to
special situations discussed above, arbitrary situation
general system parameter values can be gathered into f
lies of topologically analogous situations. All of these fam
lies asymptotically follow Eq.~8! with the same scaling ex
ponent 3L. The constant coefficient in Eq.~8!, however,
differs from family to family.

B. Generalization

The mechanism outlined above is restricted neither to
quadratic map~4! nor to its period-3 window. By making
appropriate changes according to the actual orbits being
volved, the above arguments work for every interior crisis
any general unimodal map of the interval as well.

In addition, the validity of this concept can be extended
higher dimensional maps. A pair of topologically analogo
situations is illustrated in Fig. 8 for the two-dimension
case. Beyond the crisis, the unstable manifold of theB saddle
intersects the stable manifold of the mediating orbit,
former boundary of the primary basin of attraction, a
forms lobes in theS region. The subsequent images of the
lobes become elongated along the unstable manifold of
mediating orbit with the rate of its positive Lyapunov exp
nent. If the system parameter is decreased, the extensio
the protruding parts of unstable manifolds decreases pro
tionally, as in the one-dimensional case discussed above.
combination of this linear change with the geometric
growth of the lobes dictated by the local Lyapunov expon
of the mediating orbit gives the same scaling relation as
the one-dimensional case. This picture obviously rema
valid in higher-dimensional maps too, if the mediating or
is hyperbolic with one unstable direction, and the system
periodic orbits have codimension-1 stable manifolds.

In general, the scaling relation in between two subsequ
members of the same family of topologically analogous s
ations reads as

am1p2ac

am2ac
'e2pL, ~14!

wherep is the period of the mediating orbit. This direct
implies the anticipated scaling formulas~8! and, conse-
quently,~7!.

The constant coefficient in Eq.~8! is the same for any two
members from the same family of topologically analogo
situations, but this value varies from one family to the oth
As we saw above, topologically analogous situations oc
repeatedly beyond the crisis, and their recurrence is peri
in the logarithmic scale with a period determined by the lo
n
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Lyapunov exponent of the mediating orbit. Thus the corr
asymptotical scaling formula for the minimum length of co
pling orbits is

m~a!'2
log~a2ac!

L
1f@ log~a2ac!modpL#, ~15!

wherep is the period,L is the local Lyapunov exponent o
the mediating orbit, andF is a periodic function of its argu-
ment. This asymptotic scaling formula is universal in t
class of systems we defined in the beginning of Sec. II. Ho
ever, the correction termf, added to the asymptotical tren
~7!, is not universal: it is a steplike function that jumps at t
appropriateam values, which is specific to the geometry
the actual crisis situation. The functionf involves all the
system specific details and determines thefine structureof
m(a).

C. Topological scaling and other scale invariances

The existence of the periodically recurrent topologica
analogous situations is the key structural mechanism
provides the framework for the scaling of other quantitie

FIG. 8. Schematic illustration of a pair of topologically anal
gous situations in a dynamical system with two-dimensional ph
space.WM

u andWM
s denote the unstable and stable manifolds of

mediating orbitM. Dashed lines show the branches of the sta
manifold of a remote periodic orbit. Continuous lines show t
protruding lobesLi which, in ~a!, just have tangencies with tha
stable manifold at some parameter valuea5aj 1 i . In ~b!, at an
other parameter valuea5aj 1 i 1p closer to the crisis, the lobes hav
tangencies with the same branches of the same stable manifold
exactlyp iterations later.
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Topological arguments referring to similar structures at d
ferent system parameter values occur in the decimation
of the renormalization of any scaling quantity, providin
principal structural information for the determination of th
critical behavior. The existence of topologically analogo
situations has already been implcitly used, for example w
deriving the scaling behavior of the average burst ratiof in
crisis induced intermittency@1# and in finding the critical
metric exponentg of interior crises@7#.

Accordingly, we anticipate that the coefficients and c
rection terms determining the system specific ‘‘fine stru
ture’’ of the scaling quantities are in generalperiodicor self-
similar functionsof the excess parameter of the form

F@ log~a2ac!modpL#, ~16!

with the periodicity determined by the periodp and the local
Lyapunov exponentL of the mediating orbit. At a given
crisis the same periodicitypL occurs in the scaling formula
of all scaling quantities as the signature of the underly
structural scaling phenomenon. The fact that the ‘‘fing
print’’ of the topological scaling we obtain in this paper a
pears in the scaling behavior of other quantities emphas
its significance and universal character. ~Supporting numeri-
cal evidence for this phenomenon can be found, e.g., in R
@8,7,15#.!

The fine-structure function, of course, has to be de
mined individually for every quantity and every single cris
situation.

IV. SCALING OF THE TOPOLOGICAL ENTROPY

When the excess parameterua2acu is increased beyond
an interior crisis, the minimum period length of the coupli
orbitsm decreases owing to Eq.~7!. This implies the appear
ance of new, shorter periodic orbits visiting both basic co
ponents. This effect, in turn, is reflected in the increase of
topological entropy of the chaotic attractor.

The topological entropyh of a chaotic set@16# is equal to
the asymptotic growth rate ofN(n), the number of periodic
orbits of lengthn embedded in the chaotic set:

h[ lim
n→`

@ logN~n!/n#; ~17!

therefore, in practice the topological entropy is obtain
from the asymptotical scaling relation

N~n!;ehn ~18!

for n→`.

A. Diagram technique

In what follows, we develop a ‘‘diagram technique’’ t
calculate the topological entropy of the enlarged chaotic
tractor beyond an internal crisis.

1. Loop number

Note that due to Eq.~15!, the system cannot get into th
same phase of chaotic motion earlier thanm(a) steps at a
given parametera. Therefore, the number of bursts occurrin
in the course of a long periodic orbit of a given lengthn can
-
ep

s
n

-
-

g
-

es

fs.

r-

-
e

d

t-

be at most$n/m% ~the integer part ofn/m). According to
this, periodic orbits of lengthn can be classified and arrange
in $n/m%11 classes. There are orbits which never leave
enter regionB at all: they correspond to the classl 50. Those
orbits that escape only once during their periodn belong to
classl 51, the ones that perform exactly two bursts from t
classl 52, and so on up to$n/m%5 l . We say that an orbit
has aloop number l, if it belongs to classl.

Let Nl(n) denote the number of orbits of loop numberl.
Then the topological entropyh of the enlarged attractor—
more precisely, that of the whole chaotic set—can be
tained from

N~n!5 (
l 50

$n/m%

Nl~n!;ehn ~19!

in the limit n→`.

2. Propagators

Let the diagrams introduced in Eq.~12! for the quadratic
map ~4! henceforth represent the number of different itine
aries ~of a given lengthj! allowed by the dynamics on th
basic component belonging to the respective phase in a
eral system. This number increases with the lengthj accord-
ing to the partial topological entropies of the respective ba
components:

~20a!

~20b!

~20c!

Note that in Eq.~20c! c51 and the corresponding topolog
cal entropyh@M # is 0, reflecting the fact that during the in
termittent phase the trajectories, stay in the vicinity and f
low the motion of the same mediating orbit.~If the system
has a generating partition, we can say they follow a fix
itinerary.!

We can considerb, s, andc aspropagatorsdenoting the
contribution of the three phases of crisis induced intermitt
motion. In addition, we also introduce a global propagatot,
and a diagram to represent the contribution of arbitrary
lowed sequences of lengthj:

~21!

Obviously, the growth rate of this sort of sequence is de
mined by the overall topological entropyh of the whole cha-
otic set.

We suppose that the topological entropyh5 log t of the
whole chaotic set is somewhat larger thanh@S#5 ln s. Owing
to these, the relations

t*s.b.c⇒tn.sn@bn@cn ~22!

are held among the growth rates.
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3. Cyclic diagrams

By combining the above diagrams, we can describe
patterns of subsequent phases of the motion. Obviously,
riodic orbits of the dynamics periodically repeat their p
tern; we can illustrate this fact by symbolically connecti
the end and the beginning of the row of propagators, like

~23!

and

~24!

Thesecyclic diagramsthen represent the number of period
orbits of lengthn that fit to the pattern prescribed by th
sequence of propagators. For example, diagram~23! repre-
sentsN(n), the total number of all allowed periodic orbit
while diagram~24! denotesN3(n), the number of loop num-
ber 3 periodic orbits.

4. Diagram equations

By using the above diagrams, expression~19! is equiva-
lent to the following diagram equation:

~25!

Recall that the mediating orbit belongs to both basic com
nents; thus it is taken into account twice~in the first two
diagrams! on the right hand side. To correct this, its cont
bution must be subtracted in the third term. In addition
these loop number 0 terms, the contribution of each furt
class of loop numberl orbits is represented by a single di
gram in increasing loop order. In the Appendix we actua
calculate some of these diagrams for given finiten values.

The topological entropy need to be determined in the li
n→`, when the sum in Eq.~19! becomes an infinite series
Taking this limit in Eq.~25! yields the self consistent dia
gram equation
e
e-

-

-

r

it

~26!

which is formally similar to that of Dyson’s equation. Not
that in this formula the contributions of the basic compone
and of the heteroclinic component appearseparatelyfrom
each other.

In the Appendix, we give a self consistent solution of E
~26!. The calculation uses the relations~22! among the
propagators, and eventually yields

t's~11Cs2m!, ~27!

for the propagatort, whereC is a parameter dependent coe
ficient of the universal form~16!. Taking the logarithm gives

h'h@S#1 log~11Ce2h@S#m!, ~28!

for the topological entropy of the whole chaotic set, whi
close to the crisis~i.e., atm@1) reads as

h'h@S#1Ce2h@S#m. ~29!

B. Topological entropy as a function of the system parameter

As a→ac , the minimum loop lengthm diverges@cf. Eq.
~15!# and the topological entropy of the whole chaotic s
approachesh@S# in the critical limit:

hc[h~ac10!5h@S#. ~30!

Since the basic component in the surrounding regionS is
structurally stable, the value of its topological entropyh@S#

remains unchanged in the postcritical regimea.ac . The
explicit parameter dependence can be obtained by combi
the exponential expression~29! with the logarithmic scaling
formula ~15! found for the minimum period length of th
coupling orbits. The topological entropy depends ona only
throughm andC, both of them follow form~16!. This yields
the scaling relation

h~a!2hc'c@ log~a2ac!modpL#~a2ac!
x, ~31!

with the critical exponent

x5
hc

L
. ~32!

This formula gives the parameter dependence of theexcess
topological entropy. This quantity characterizes thedevelop-
ment of the heteroclinic componentbeyond the crisis point.

It is worth emphasizing that the critical exponent depen
on the local Lyapunov exponent of the mediating perio
orbit ~L! and on the topological entropy (h@S#) of the basic
component in theS region only. Therefore, one can say th
the critical exponent of the topological entropy is determin
exclusively by thelocal properties of themediating orbitand
theglobal behavior of one of the basic components: thepre-
critical saddle. The other basic component, i.e., that of t
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PRE 61 5027TOPOLOGICAL SCALING AND GAP FILLING AT CRISIS
precritical attractor, does not influence the trend of topolo
cal development of the enlarged attractor in the postcrit
regime. Note that in the above self consistent calculat
every system specific~and periodic window specific! detail
is condensed in the factorc.

In the course of the development of the scaling relat
~31! we took advantage of the following three assumptio
only: ~i! the crisis induced intermittent behavior beyond c
sis follows scheme~3!; ~ii ! the minimum length of the inter
mittent phase in the vicinity of the mediating orbit diverg
according to Eq.~15!; and ~iii ! the separation of the basi
components’ topological entropies, i.e., relation~22!, holds.
We have argued that these conditions are generally fulfi
at typical attractor enlargement crises,even in higher-
dimensional maps, if the chaotic sets have only one unstab
dimension. Therefore we claim thatthe scaling formula~31!
for the topological entropyholds for the entire classof such
chaotic maps. The correct critical exponentx in such cases is
always given by substituting the appropriate values of
largest topological entropy of the two basic components
the local Lyapunov exponent of the mediating orbit in E
~32!. ~See the remarks in Appendix A 3.!

We would like to emphasize here the difference betwe
the topological entropy of the attractor and the topologi
entropy of the whole chaotic set. First, consider a precrit
situation within the periodic window. On the one hand, the
are no coupling orbits present in the system, and thus o
the first two diagrams appear on the right hand side of E
~25! and ~26!. Relation~22! yields that the topological en
tropy of the whole chaotic set ish5 log(s)5h@S#, the greater
of the two basic component’s topological entropy. On t
other hand, the topological entropy of the attractor is ob
ously log(b)5h@B#. By also taking Eq.~30! into account, we
can conclude that the topological entropy of the attrac
undergoes a jump fromh@B# to h@S# at ac , while the topo-
logical entropy of the whole chaotic set is continuous at
crisis point. The situation is similar at the starting point~s! ab
andac of the periodic window~cf. Fig. 1!. Consequently, the
topological entropy of the whole chaotic set changes c
tinuously as the parameter varies through the periodic w
dow, while the topological entropy of the attractor shows
sudden change at both ends of the periodic window. Th
discontinuities can be observed as a signature of crisis@17#.
However they reflect only a change in the asymptotic sta
ity of a basic component, rather than any abrupt structu
change in the overall invariant set.

Note that very small periodic orbits with high periods al
occur in the postcritical regimea.ac . According to the
above arguments, the topological entropy of the whole c
otic invariant set, for which the scaling formula~31! has
been developed in this section, changes continuously thro
these windows. This implies that the fine structure functioc
in Eq. ~31! is a continuous function of the system paramet

V. NUMERICAL TESTS

In this section we briefly summarize the numerical pro
dures we carried out to verify scaling relation~1!. Here we
present the results we obtained for the interior crises of
two example maps discussed earlier.

First we consider the interior crisis of the quadratic m
i-
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~4! discussed in Secs. II B and III A. The Lyapunov expone
of the mediating period 3 orbit atac is L'0.437452.hc , the
topological entropy of the repeller in regionS, is known
exactly from Eq.~5!. This yieldsx5 log(h@S#)/L'1.1 for the
predicted value of the scaling exponent~32!.

In order to verify the scaling relation~1!, we computed
the topological entropy in a small parameter interval@ac
11024,ac11021# beyond the crisis, at 120 parameter va
ues ofDa5a2ac uniformly distributed on the logarithmic
scale. At each parameter value we determined the co
sponding topological entropy of the attractor from a logari
mic fit to Eq. ~18!, where theN(n) values were determined
from the map’s known symbolic dynamics for 1,n<18
long symbol strings. The numerically obtained values
h(a) of course involve some error; in our case the con
dence interval for the estimated values ofh was about 1023.
The error bar onh(a) imposes a strict lower limit for the
Dh5h(a)2hc values one can sensibly test against the
pected scaling behavior~1!. This, in turn, sets a lower limit
for Da values as well: in our case, according to Fig. 9, t
theoretically predicted scaling law~1! can only be verified
for Da@1023 aboveac . Figure 9 indicates that the agree
ment between numerics and theory with this constra
obeyed is good.

As we see, the limiting factor in determining the scalin
exponentx in Eq. ~1! is the available precision in the calcu
lation of the topological entropy. A reliable computation
the topological entropy is highly nontrivial in higher dimen
sional chaotic systems. We have found that the method
Newhouse and Pignataro@18# appears to give the most rel
able estimation of the topological entropy for our particu
purpose among other methods we have tried.

In the study of the interior crisis of the He´non map~6!,
discussed in Sec. II C, we followed a similar procedure to
quadratic equation’s case. However, we used the Newho
Pignataro method@18# instead of symbolic dynamics, an
hc'0.38 also had to be determined numerically. The larg
eigenvalue of the period-7 mediating orbit was found to
approximately 10.871/7, corresponding toL'0.341 andx
'1.12. Despite the serious limitations imposed by the av
able precision of the topological entropy’s calculation, w
managed to confirm the corresponding expected value of
exponent by the numerically obtained value (1.1360.11), as
shown in Fig. 10.~For further details, see Ref.@4#.!

FIG. 9. Numerically obtained scaling of the excess topologi
entropy in the quadratic map~4!. The straight line represents a lin
with the theoretical slope 1.1.
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VI. DISCUSSION

In this work we gave a detailed explanation of thegap
filling phenomenon that accompanies interior crises in c
otic dynamical systems. We have obtained a scaling
governing the change of the topological entropy accompa
ing the gap filling with a newfundamental scaling exponen
as a characteristic quantity of the gap filling phenomen
The scaling law~1! establishes a relationship between t
abrupt change at crisis and the subsequent quasicontin
structural development. The essence of the diagram t
nique we presented here is a systematic account taking o
interactions among thebasic dynamical componentsin-
volved in the interior crisis. Our arguments and the diagr
equations are general enough to hold regardless of the de
of the system. Therefore, the scaling law for gap filling
valid for theattractor explosion@19,20,7,15,21–25,13# crises
of a wide class of chaotic systems, including high
dimensional maps. We also expect that the method is ge
ally applicable for investigating phenomena which invol
the interaction of two or more invariant sets and the scali
of other quantities.

Attractor merging @26–28,1# is a similar phenomenon
when two or more disjoint coexisting attractors become p
of an enlarged attractor. If the system has certain sym
tries, interior crisis might also occur in the form ofsymmetry
recovering attractor merging@1,26#, for which case scheme
~3! describing the pattern of crisis induced intermittency c
be further modified so as to accommodate the intermit
phases preceding the switches in both directions:

~chaos!1→~approximately periodic! i→~chaos!2

→~approximately periodic! i i →~chaos!1

→~approximately periodic! i→~chaos!2

→~approximately periodic! i i →~chaos!1→... .

~33!

Here (chaos)1 and (chaos)2 represent the two types of cha
otic motion on the merged attractor, associated with a s
metric pair of basic nonattracting chaotic sets. The calcu
tion in this case can make use of the symmetry, namely,

FIG. 10. Scaling of the excess topological entropy near the c
of the Hénon map. The straight line fit corresponds to the numer
gap filling exponentx51.1360.11, which agrees with the theore
ical predictionx'1.12.
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phases 1 and 2 of the motion have the same partial topol
cal entropies. The approximately periodic behaviorsi and ii
can occur in the vicinity of thesamemediating orbit if it is of
odd symmetry.

In the case of adouble interior crisiswhere two crises
occur simultaneously as two parameters are varied@29#, two
different intermittent~e.g., transient! chaotic signals occur in
the system, both of them correspond to a basic compon
In such a system instead of a mediating periodic orbit, a th
chaotic saddle may reside on the boundary in between
two chaotic bands. Then the qualitative dynamical picture

~chaos!1→~chaos!FBB→~chaos!2→~chaos!FBB→~chaos!1

→~chaos!FBB→~chaos!2→~chaos!FBB→~chaos!1

→... ~34!

where both chaotic phases are followed by a third type
chaotic motion, (chaos)FBB , on the fractal basin boundar
~FBB!. In such cases renormalization should be done with~at
least! two accessible system parameters simultaneously:
problem is open to further investigation.

In addition to gap filling, an alternative mechanism
structural development,pruning, also occurs in chaotic sys
tems where the basic source of nonlinearity is adiscontinu-
ity. For such systems a scaling formula for thedecreaseof
the topological entropy similar to Eq.~1! was derived with a
different exponent in Ref.@30#.

Most characteristic scaling quantities of chaotic behav
~like generalized dimensions, Re´nyi entropies, Lyapunov ex-
ponents, and escape rate! can be related to formal partition
sums@31#. The topological entropy and the associated pa
tion sum~19! are the simplest examples for such a descr
tion. At crises such quantities undergo drastic changes
are analogous to phase transitions. Such transitions are
related to the interaction of the system’s basic compone
@6,10#. The approach we elaborated in this paper for the
pological entropy is general enough to be applicable to ot
types of partition sums. By associating appropriate mean
and values to the propagators~20! and coupling constants
the diagram technique introduced here may provide a s
able apparatus for studying and solving the critical behav
of other scaling quantities around crises as well.
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APPENDIX: SOLVING THE DIAGRAM EQUATIONS

In Sec. IV A we set up a symbolic diagram formalism
estimate the topological entropy via Eq.~19!. In this appen-
dix, we first investigate the terms in Eq.~25! in increasing
loop order by using the propagators defined in Eqs.~20! and
~21!. Then we solve the diagram equation~26!, and derive
the formula~28! of the excess topological entropy beyon
the critical parameter valueac .

1. Cyclic diagrams

a. Loop number 0. Consider the three diagrams shown
Eq. ~20!. The first two diagrams take into account the orb
that never leave regionsB andS, respectively: they represen
the periodic orbits belonging to the two basic componen
The number of these orbits increases with the rate de
mined by the topological entropies of the basic compone
@cf. Eq. ~20!#. Recall that the mediating orbit belongs to bo
basic components; therefore, we have tosubtract its contri-
bution to obtain the zeroth order term in Eq.~19!:

N0~n!;sn1bn2cn'sn. ~A1!

The asymptotic behavior on the right hand side follows fro
Eq. ~22!. The resulting growth rate in this loop order is logs,
i.e., h@S#.

b. First loop order. The number of periodic orbits o
length n that visits both regionsexactly onceis denoted by
the diagram

~A2!

In the example of the period-3 window of the quadratic m
~4! each trajectory must spend at least one time step wi
B1 after escaping regionS and before leavingB again @cf.
Sec. III A, Figs. 2 and 5#. Therefore in this casenb>1 and
the intermittent phase close to the mediating orbit must
for at leastm21 steps. In a general system the topology m
determine that a trajectory must spend at leastj B steps inB
before an intermittent phase, and at leastj S steps inSafter it.
~Obviously j B,p, and j S is also expected to be a very sma
number.! This implies that the minimum length of the inte
mittent phase with fixed itinerary close toM is m2 j B2 j S .
Thus the length of the individual phases in diagram~A2!
must satisfy the relationsnb> j B , ns> j S , and nm>m2 j B
2 j S . Taking into account that the total length of the orbits
n5nb1nm1ns , the number of orbits with loop number
can be calculated as
s.
r-
ts

p
in

st
y

N1~n!5j (
nb5 j B

n2m1 j B

(
nm5m2 j B2 j S

n2nb2 j S

bnbcnmsn2nb2nm

5j~b/c! j B~s/c! j Scm

3
s2~b2c!sn2m1b2~c2s!bn2m1c2~s2b!cn2m

~s2b!~b2c!~s2c!

5Ccm@sn2m1Bbn2m1Acn2m# ~A3a!

'Ccms2msn, ~A3b!

where

A5b2~c2s!/~b2c! and B5c2~s2b!/~b2c!
~A4!

are the constant coefficients. Theloop coupling factor

C5
s2

~s2b!~s2c!
~b/c! j B~s/c! j Sj ~A5!

contains a generic part, a topology dependent part (j B and j S
are fixed for a given window!, and a system parameter d
pendent factorj. The latter factor measures the proportion
how many closed orbits are actually realized among thos
the mere combinations of paths allowed by the dynamics
the individual phases.~An orbit of lengthn is realized when-
ever the return conditionyn5y0 can be fulfilled for some
y0PB.! Asymptotically, j is identical within a family of
topologically analogous situations, which implies the syst
parameter dependence

j5j@ log~a2ac!mod pL# ~A6!

as outlined in Sec. III C. This property implies that the lo
coupling factor in Eq.~A5! has a similara-dependence.j
also incorporates the constant factors not shown in the s
ing relations~20! and ~21!. Note that the growth rate ob
tained from the asymptotical behavior~A3b! does not exceed
the critical valueh@S#.

c. Second loop order. In the second loop order we con
sider the number of orbits fitting to the graph

~A7!

where both phases are at leastm steps long andn5n1
1n2 . These orbits can be combined from two first loo
number orbits. The number of such combinations can be
tained as
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N2~n!5j2

1

2 (
n15m

n2m

N1~n1!N1~n2n1!

5j2

1

2 (
n15m

n2m

C2c2m~sn12m1Bbn12m1Acn12m!

3~sn2n12m1Bbn2n12m1Acn2n12m!

'j2

n1122m

2
@Ccms2m#2sn ~A8!

by using formula~A3a! and taking the asymptotic limitn
→`. Here the factorj2 plays a role similar toj in Eq. ~A3!,
and it also takes the same sort of parameter dependenc

Due to then-dependent first factor, this term increas
somewhat faster thansn; however the contribution of this
term to the growth rate is of the order of log(n)/n, which
disappears in the asymptotic limit.

d. Higher order loops. In the subsequent loop orders th
diagrams

~A9!

represent

Nl~n!5j l

1

l (
n15m

n2m

N1~n1!Nl 21~n2n1!

'j l

~n112 lm! l 21

l !
@Ccms2m# lsn ~A10!

new orbits. The number of the repeated combinations of
allowed one-loop itineraries is divided byl in order to ex-
clude the cyclic permutation of identical patterns.

Despite the gradual increase in then-dependent combina
torial prefactor with increasing loop numberl, the asymptoti-
cal growth rate in each order remains logs. However, the
infinite sum~19! grows faster thansn in then→` limit. This
fact shows, on the one hand, thatthe cause of the exces
topological entropybeyond crisisis basically the increased
combinational possibility ofthe two sorts ofchaotic tran-
sients; on the other hand, that gap filling phenomenon
associated with the appearance ofextremely longcoupling
orbits. Note that by decreasingm, the correction terms grow
rapidly.

2. Solution of the self consistent equation

In order to obtain the asymptotic value of the excess
pological entropy, we perform a self consistent calculat
below. Let us suppose that the number of periodic orbits
the attractor, symbolized by the propagator~21!, increases as

N~n!'D•tn[D•ehn, ~A11!

whereD is an arbitrary factor of order 1. We also use that t
topological entropyh5 log t is somewhat greater thanh@S#
e

s

-
n
f

e

5logs, in accordance with relations~22! among the growth
rates. The diagram equation~26! can be written as

N~n!5N0~n!1j` (
n15m

n

N1~n1!N~n2n1!, ~A12!

wherej` has similar meaning and parameter dependenc
that of j in Eq. ~A6!. By substituting the expressions~A11!,
~A1!, and~A3a! into Eq. ~A12!, we find that

Dtn's0sn1b0bn2c0cn1j`

3 (
n15m

n

Ccm~sn12m1Bbn12m1Acn2m!Dtn2n1

5s0sn1b0bn2c0cn1j`

3CcmDtn2m (
j 50

n2m F S s

t D
j

1BS b

t D
j

1AS c

t D
j G

5s0sn1b0bn2c0cn1Dtnj`Ccmt2m

3F12~s/t !n112m

12~s/t !
1B

12~b/t !n112m

12~b/t !

1A
12~c/t !n112m

12~c/t ! G , ~A13!

wheres0 , b0 , andc0 are constants, assumed but not sho
in the asymptotical scaling relation~20!. The coefficientsA,
B, andC are the same as given in Eqs.~A4! and~A5! for the
loop number 1 orbits. However, without loss of generali
we can incorporatej` in j and, consequently, inC as well
@cf. Eq. ~A5!#. Then, by dividing by the leading order term
Dtn and taking the limitn→`, one can eliminate the van
ishing terms due to Eq.~22!, and obtain the following im-
plicit equation fort:

15Ccmt12mS 1

t2s
1

B

t2b
1

A

t2cD1S s0

D
2

Ccmsl 2m

t2s D S s

t D
n

1S b0

D
2B

Ccmb12m

t2b D S b

t D
n

1S 2
c0

D
2A

Cc

t2cD S c

t D
n

'Ccmt12mS 1

t2s
1

B

t2b
1

A

t2cD . ~A14!

Therefore, for any given parameter valuea, the asymptotic
equation fort is a polynomial equation of degreem12:

F~ t !5tm21~ t2s!~ t2b!~ t2c!2Ccm

3$~ t2b!~ t2c!1~ t2s!

3@B~ t2c!1A~ t2b!#%50. ~A15!

For parameter values close to the crisis pointac , i.e., for
m@1, the three greatest roots of this polynomial are close
s, b, and c. Moreover,F(t) becomes very steep arounds,
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whereupon it follows that the greatest root of Eq.~A15! can be well approximated via linear expansion arounds:

05F~ t !'F~s!1F8~s!~ t2s! ~A16!

From the above expansion,

t's2
F~s!

F8~s!
5s1

Ccm~s2b!~s2c!

sm21~s2b!~s2c!2Ccm@~A11!~s2b!1~B11!~s2c!#
's@11Ccms2m1O~Ccms2m!2# ~A17!
in
nt

.
f
e

t

o

on
otic
po-

if

be
x-

qs.

sic
follows for the greatest root of Eq.~A15!.
Taking the logarithm, according to Eq.~A11!, yields the

topological entropy of the whole attractor as

h'h@S#1 log@11Ce~h@M #2h@S#!m#. ~A18!

By taking m@1 into consideration again,

h2h@S#'Ce~h@M #2h@S#!m ~A19!

follows for the excess topological entropy, reflecting the
creasing number of coupling orbits above the critical poi

The coefficientC in Eqs.~A17!–~A19! inherits a system
parameter dependence fromj via Eqs.~A5! and ~A6!, and
follows the general form~16! of fine structure functions
This provides the same coefficient for the members o
given family of topologically analogous situations in th
scaling equation~A19!, but different values for differen
families.

3. Remarks

~1! Equations~27!–~29! in Sec. IV directly follow from
Eqs. ~A17!–~A19! by using the conditionsc51 and h@M #

50 given for the propagator and the topological entropy
.

.

. A

of
-
.

a

f

the mediating periodic orbit in Eq.~20!. In this appendix we
did not use this condition in order to keep our calculati
valid for cases where the mediating invariant set is a cha
saddle rather than a periodic orbit, i.e., if the basic com
nents have afractal basin boundary. ~See Sec. VI for impli-
cations in other types of crises.!

~2! The separation of the topological entropies~22! is the
basic condition for the validity of our derivation. However,
in some unusual case the separation scheme

t*b.s.c⇒tn.bn@sn@cn ~A20!

holds instead of Eq.~22!, the scaling formula~31! remains
valid. In this case the calculations of this appendix can
carried out with the role of the two basic components e
changed, and the substitutions

b↔s, C→Ĉ[
b2~c2s!

s2~b2c!
C and hc[h@B#

~A21!

yield the correct values in the appropriate formulas E
~27!–~30! of Sec. IV. Note thathc , the critical value of the
topological entropy is always the maximum of the two ba
components’ topological entropies.
icz
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