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Thermodynamic cross effects from dynamical systems
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We give a thermodynamically consistent description of simultaneous heat and particle transport, as well as
of the associated cross effects, in the framework of a chaotic dynamical system, a generalized multibaker map.
Besides the density, a second field with appropriate source terms is included in order to mimic, after coarse
graining, a spatial temperature distribution and its time evolution. An expression is derived for the irreversible
entropy production in a steady state, as the average of the growth rate of the relative density, a unique
combination of the two fields.
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The relation between transport processes and chaoti&ity and temperature gradients. In addition, we allow for a
models with only a few degrees of freeddaf. [1] for recent  constant external field. We are intending to describe a quasi-
reviews became a subject of active research since the rapidne-dimensional system of finite length attached at the two
progress in dynamical-system theory started in the earl@nds to different reservoirs, and possibly in thermal contact
1980's. First, it was shown that such models can faithfullywith a thermostat along its extensidnf. Fig. 1). In this
describe particle transport, and become compatible on th@eneral setting we show that thermoelectric phenomena, i.e.,
macroscopic level with appropriate macroscopic transpor€ross effects due to the simultaneous presence of two inde-
equationg2]. Later it was found that the irreversible behav- pendent driving forces, and the entropy balance can properly
ior of these processes, expressed, e.g., by their entropy pr§€ modeled by an elementary dynamical system.
duction[3—-6] or fluctuation relation$7,8], can properly be The multibaker map describes transport alongxidérec-
obtained in a more restricted class of models only; in partion. It represents a deterministic dynamitse (x,p) dy-
ticular, if one wants to keep them low dimensional. Multi- namicg in the single-particle phase spac# a weakly inter-
baker map$4—6,9—13, the extensions of baker mafist| to  acting many-particle system. The cell sagartitions thex
a macroscopically long array of mutually connected unitaXis into regions which are sufficiently large to characterize
cells turned out to be an effective tool to understand thdhe state inside such a cell by thermodynamic state variables
origin of irreversibility on the level of dynamical systems. and small enough to neglect variation of these variables on
Besides the possibility of explicit calculations, they lead tothe length scale of the celidocal-equilibrium approxima-
general finding$4,6,8| also valid outside the realm of multi- tion). Thus,a plays the role of a minimum allowed macro-
bakers. scopic resolution. The state of the many-particle system is

When describing transport in the presence of an externdepresented by théparticle density ¢ and a so-called
field and/or a density gradient, consistency with the thermo-kinetic-energy” density ¢ T, whose average over cells is
dynamic entropy balance could only be obtained for multi-related to a local temperature. For multibaker maps the
baker maps with a time-reversible, local dissipation mechakinetic-energy density is considered as an independent field,
nism [5,6] (a brief discussion of this notion will be given i.e., our discussion does not rely on the apparance of a mo-
below). This requirement was interpreted as mimicking amentum conjugated to the variable. The X,p) dynamics
thermostatting algorithnfa Gaussian thermostat, dfL5]), drives the time evolution of the fields, leading to a meso-
which is widely applied in nonequilibrium molecular dynam- scopic description of the transport process. A possible depen-
ics (NEMD). The entropy balance was found to hold for adence of this dynamics on local thermodynamic averages,
coarse-grained entropy based on a density averaged over @Ad the presence of a source term of kinetic energy intro-
gions of small spatial extension. A recent paper by Tasakfluces a coupling of the fields.
and Gaspard12] shows that analogous results can be ob- The detailed definition of the model is as follows: The
tained for area-preserving multibaker maps with an energy-

dependent phase-space volume. This energy, however, is ‘ ™ = ‘
strictly connected to the potential of an external field, and not |5 Einosta - s 3
considered as an independent driving force. = R ANESE>
In the present Rapid Communication, our aim is to study |2 = 1 /A 2 ¥
. . o —a——a—i —a— |2 =
transport generated by two independent driving forces: den- =0 1 - . 1 N Nt

FIG. 1. Graphical illustration of the transport process consid-
*Present address: Fachbereich Physik Univ.-GH Essen, 45117 Egred. The system is attached to reservoirs inducing particle and heat
sen, Germany, and Max-Planck-Institutr fiPolymerforschung, currents as indicated by the arrow, and along its extent heat can be
55128 Mainz, Germany. exchanged with a thermostat.

1063-651X/2000/6)/32954)/$15.00 PRE 61 R3295 © 2000 The American Physical Society



RAPID COMMUNICATIONS

R3296 MATYAS, TEL, AND VOLLMER PRE 61
{PmaTma)i (PuTm) #PmeriTmeali { (omiTm) § (The prime always indicates quantities evaluated after one
T T T H e [N (A A time step). Besides the advection by th&,f) dynamics, the
Ei S I : > = Sn (O sTms) updated values fof on the strips contain the source term
: | W (en T .

|arm_1| 'asm| |a|r|11+1 1 a 1 Tm,r - Tm— 1 [1+ Tqm]v
m1 i m | m+1 i i m i
Tr,n,s: Tm [1+70m], i)

FIG. 2. The action of the multibaker map on the coordinates
(x,p) over a time unitr. The values ofo(x,p) andT(x,p) on the ,
cells and stripgcf. Egs.(1) and(2)] are given on the margins for mi= Tm+1 [1+70m].
the initial conditions discussed in the text.

In the x variable, the cell-to-cell dynamics of the model is
multibaker map acts on a domain in the§) plane consist- equivalent to a random walk with fixed step lengthand
ing of N identical cells labeled byn (Fig. 1). Here,x is a  local transition probabilities,, andl ,, over time unitr. Such
position variable, ang is a momentumlike variable needed random walks are characterized by the dwift and the dif-
to set up a reversible deterministic dynamics. Every cell hasusion coefficientD, which stay finite in the macroscopic
a widtha and heighb=1. After every time unitr, every cell  limit a,7—0. To be consistent with a diffusion type equation
is divided into three column@ig. 2) with respective widths for the density, the transition probabilities have to s¢alg
al,, as,, and ar,, fulfiling I,+sy,+r,=1. The right as
(left) column of widthar, (al,,) is uniformly squeezed and
stretched into a strip of width and of height ,,, 1 (r,—1) In rm—lm=(t1@) vy, Imt+ln=(27/a%)D. (€)]
the right(left) neighboring cell. The middle one preserves its
area. The map is time reversible in the sense that the Jaco- |n order to account for the effect of temperature gradients
bian! 1 /ry for a motion from celimto m+1 is reciprocal  on the local &,p) dynamics, we allow in the present paper
to that of the motion from celm+1 tom. The x,p) dy-  for a location dependence of the duift,, while the diffusion
namics is volume preserving when an initial condition iscoefficient is kept spatially homogeneous. The location de-

recovered, but it is contracting on averagece motion in  pendence of the drift is due to a dependence on the cell
the direction of the external field is connected with contractemperature T,, and on its discrete gradientv,,

tion), and hence it is dissipative. Except for the coupling to=y (T, (Tme1— Trm)/a).

reservoirs at the ends the map is one-to-one on its domain. It The entropyS,, of cell mis related to the cell density,,.

drives the densityo(x,p) and the kinetic-energy density \we use the common information-theoretical form
o(x,p)T(x,p). Both are advected, but in order to be able to

capture a local heating of the system, the dengityis also Sp=—aemIn[en/o*(Tm]. (4)
multiplied by a factor (3 7q,,) with g,, depending only on

the averages ir) cefhand in its neighbors. .The dynamics Of, It is measured in units of Boltzmann’s constant, and involves
both densities is governed by the Frobenius-Perron equatioq temperature dependent reference dengityT)=T?, in
[1] of the (x,p) map, but after each iteration teT values |56 analogy to an ideal gas. Herds a free parameter. In

in cell m are multiplied by (1 7qy,). The fieldse and T pet [13] it will be demonstrated that only this choice of the
evolve into fractal distributions whose asymptotic forms are,ofarence density can be consistent with thermodynamics. In
described bydifferent invariant measures. In general, the o present paper, we take the form of E4).for granted and
width |y, Sm,rm Of the columns may depend on the averagegypiore in how far the model leads to proper macroscopic
values of the fields in the cell and its neighbors so that the,y yressions for quantities appearing in the local entropy bal-
widths may vary in time and space. ance, i.e., for(i) the irreversible entropy productiofij) the

In the spirit of nonequilibrium thermodynamics, we also ¢, rrent (jii ) the heat and entropy currents, aid the trans-
consider the coarse-grained fields, and T, interpreted as port coefficients.

the density and the local temperature of eallrespectively. Next, we work out the evolution equations of the coarse-
omanden,Trm are obtained as averagesa(fx,p) and of the  graineq fields and of the entrops;,. Due to Eq.(1), the
kinetic-energy densitp (x,p)T(x,p) over cellm change of the cell density in a time uritbecomes

We now discuss the time evolution of and T. For the
explicit calculation we start with a densitg(x,p) and a
specific kinetic energyl (x,p), taking constant valueg,,
andT,, in each cellm. This is convenient from a technical
point of view, and does not lead to a principal restriction of
the domain of validity of the model as discussed &nl11]. Similar]  undate of the aver temperature in th
After one step of iteration, the fields will be piecewise con- arly, an update of the average temperature €

cells can be calculated based on the fact af,, is a

stant on the strips defined in Fig. 2. Due to continuity, the " ", .
density takes the respective values klnetlc-eljer,gy density. C'onsequer.ltﬂyf. E'qs. (1,2], the
changeo, T,,—omT, per time step is obtained as

(Om ' —Om7=—(jm—im-1)/a, 5)

where j,=(a/7) (rn@m—Im+12m+1) denotes the discrete
current density.

, Tmet . ;I - (eT)_ i (eT)
Qm’r_|_ Om—1>» Qm,s_me Qm,l_ r Om+1- Qme_Qme Om ng o n”?*l
m m ! !

(D) T ~@m m1+7'qm_ a ’

(6)
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where j €D =T i —0mi1 (Tms1—Tm)/a(@¥7) I, 1 is @  with Eq. (4), we define the Gibbs entropy as
discrete heat current, ang, T, ,dm/(1+ 7q,) represents a
source of kinetic energy arising from irreversible heating. _
In order to find an evolution equation for the entropy, we S@= _f dxdp e(x,p) Infe(x,p) T(x,p)"7]. (9)
write S,— S, in the form of a discrete entropy-balance equa-
tion (cf. [6]) In view of Eq. (8a), the entropy flux is the temporal change
, of the Gibbs entropy. Moreover, E¢8b) is a meaningful
S~ Sm=AeSmtAiSn, () measure for the rate of irreversible entropy production, since
according to the information-theoretic interpretation of en-
tropies, it describes the increase per unit time of the lack of
AeSy=S®"—5©) (89  information due to coarse-graining. Hence, it is positive. The
" " dependence oSm—Sﬁ,?) on details of the coarse graining
AiSn=(Sy —S'9")—(S,— (&), (8p)  drops out when taking the time derivati{@].
In view of these considerations, we find the following
correspond to the entropy flux and the irreversible entropyexpressions for the entropy flux and the rate of irreversible
production, respectively. Following Ref&] and in harmony  entropy productioricf. Fig. 2 and Eqs(1,2)]:

where

Aesm a Tr,ns_y Qr,nr Tr,‘nr_y Qr,nl thnl_y
— _ /_ -y ! ' " , ) )
7 7_|:(Qm Om) IN(@nTp, )+Qm|n—_|_r;y +O0m-1rm-1ln On T, 7 +O@mr1lmeaIn o T ,
(10a
AiS, a Omlm ” @ Tms CmiTmi?
=—|—o/In| ———— | +0m_(Imqn| ——————— | + [ Inf ————— |. (10b)
- p Om ( mT;n,siy Om-1m-1 QmTr'n,{V Om+1lm+1 QmTr,n,siy

In the last equation we made use of the fact that due to the By dividing Eq.(7) by a7, we find in this limit a balance
originally homogeneous field distributions, the initial coarse-equation for the entropy densi,,/a—s in the form g;s

grained and microscopic densities coincide such ®at =&+ o™ with
=58,
A detailed discussion of the entropy current will be given _ ASy (&) . o (thermostat)
elsewhere[13]. Concerning the entropy production in a o= “mo =TT+ , (133
a,T—

steady state we only mention the following interesting rela-
tion: The irreversible change of the specific entropy per unit _

time appears to be the average of the growth rgjg+ of (M= | Ai_sm_£+ D
the relative densityo(x,p)/o*(x,p), i.e., A;S,/(ate.) 7 _a'TTO ar oD ve
=(0p/o*)ss,» Where the growth rate is defined as '

Ix

T

2
} . (13b

Here, ® (hemostalstands for the entropy flux into the thermo-
1 [o(x,p)le*(x,p)], stat, and andj(® are the current and entropy current densi-
Ue/e*(x'p)z; “[Q(X )o*(x,p)]o 1D ties, respectively. The former is obtained from the time evo-
PIremX.pllo lution (5) of the density, which becomes an advection-
diffusion equation in the thermodynamic limit with a current
This rule is a direct extension of the result for uniform tem-j=o 4 (T,4,T)—D d,0. The entropy current can be ex-
perature[6], where only the growth rate of the density ap- pressed as
peared.

Next, we evaluate the entropy balar(éer a general time- j®=—[1+In(eT ")]j— yoD 4,T/T, (14)
dependent statdn the macroscopic limit. It is obtained by
refining the partition of the finite total length=Na of the
chain. Technically this meare 7— 0 with fixed L and dif-
fusion coefficientD. [By this condition a macroscopic limit
v(T,0,T) is obtained for the total drift ,,]. The macroscopic
spatial coordinate is defined as=am, and the spatial de-
pendence of any fiel¢g/=p or T can be expressed as

and for the flux into the thermostat we obtain
(D(thermostat): yeq— Uj/D. (15)

The expression for the currents and the irreversible en-
tropy production are in harmony with thermodynamiit§].
A comparison shows that=yoD plays the role of the heat
conductivity, and—T(1+In[eT ") ])/e is the Peltier coeffi-
cient (e stands for the unit chargeThe appropriate form of

a2
Ymer— radct = Ay (12)



RAPID COMMUNICATIONS

R3298 MATYAS, TEL, AND VOLLMER PRE 61

v(T,s,T) follows from Onsager’s reciprocity relatiori3].  with thermodynamics are found to k@ a time-reversible
Thus, we have expressed all the kinetic coefficients with sysdissipation mechanisniji) inclusion of a new fieldT de-
tem parameters. scribing a local kinetic-energy densitii ) defining the en-

For a system isolated from the thermogi@atnonthermo- tropy with a T-dependent reference density, afin) inclu-
statted systeinone has®("e™osa=0 which fixesq to be  sjon of a source term in the time evolution of the fidld
vj/\. This choice ofg exactly corresponds to classical ther- which can model the effect of Joule’s heat.
modynamics, where the full entropy flux can be written as  QOpservations that seem to be valid beyond the frame of
the negative divergence of the entropy current. In this casgntipaker models arda) Dissipation and thermostatting
the heat leads to a rise of temperature, reflected in the soureg,y gifferent roles. With time-reversible dissipation we can
term qT=vjT/N of the evolution equationdT=aT 3150 describe systems isolated from a thermogDiffer-
+ax(N 0, T)/(ve) - (j/e) 4,T for the local temperaturg.e.,  on choices of the source term in the temperature dynamics
the macroscopic limit of E6)]. The caseq_zo _Correspond_s correspond to changes in the coupling of the system to the
Itgti% ria[ufs?agttﬁg:néﬁitiiégog]nmgglﬁggI'ggt'ir:) r’]\laEryEt;t'g]su'thermostat(c) A.proper expression for the total irreversible
stabilized b‘y appropriate entropy fluxes( from) the ther- entropy prgductlon_should _mvolve the steady-state average

of the relative densityp/o*, instead of phase-space contrac-

mostat. Temperature profiles, which are not steady in ther- a1 i 'steady stat hen th
modynamics, appear then as steady states by a proper choi™ (d) In macroscopic steady states, when the coarse-

of g, implying ®themostati, o \which represents a generali- grgi_qed densities do not change in time, thel transitio_n prob-
zation of the classical thermodynamic entropy balance.  2abilities and the source term in the dynamics are fixed to
To conclude, we point out that to our knowledge transportime-independent values. In this case, one findtationary
with cross effects and the associated entropy balance h&§itropy balance based on an inhomogeneous low-
never been treated in the framework of dynamical systeméimensional mapping acting on a spatially extendeel.,
where both the properties of the underlying dynamics and ofacroscopig domain.
the thermodynamic time evolution can explicitly be worked . . . .
out (for earli// efforts based on Gaussiaﬁ theyrmostats, cf. W.e are grateful to G. Nicolis for many gnhghtenlng dls.'
[17). It is remarkable that a thermodynamic description ofcuSSions. Support from the Hungarian Science Foundation
transport driven by two independent forces could be derivedContract No. OTKA T17493, T19483 the German-
from a model as simple as a piecewise-linear map. The minitiungarian D125 Cooperation, and the TMR-netw&ga-
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