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Thermodynamic cross effects from dynamical systems
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We give a thermodynamically consistent description of simultaneous heat and particle transport, as well as
of the associated cross effects, in the framework of a chaotic dynamical system, a generalized multibaker map.
Besides the density, a second field with appropriate source terms is included in order to mimic, after coarse
graining, a spatial temperature distribution and its time evolution. An expression is derived for the irreversible
entropy production in a steady state, as the average of the growth rate of the relative density, a unique
combination of the two fields.

PACS number~s!: 05.45.Ac, 05.70.Ln, 05.20.2y, 51.20.1d
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The relation between transport processes and cha
models with only a few degrees of freedom~cf. @1# for recent
reviews! became a subject of active research since the ra
progress in dynamical-system theory started in the e
1980’s. First, it was shown that such models can faithfu
describe particle transport, and become compatible on
macroscopic level with appropriate macroscopic transp
equations@2#. Later it was found that the irreversible beha
ior of these processes, expressed, e.g., by their entropy
duction @3–6# or fluctuation relations@7,8#, can properly be
obtained in a more restricted class of models only; in p
ticular, if one wants to keep them low dimensional. Mul
baker maps@4–6,9–13#, the extensions of baker maps@14# to
a macroscopically long array of mutually connected u
cells turned out to be an effective tool to understand
origin of irreversibility on the level of dynamical system
Besides the possibility of explicit calculations, they lead
general findings@4,6,8# also valid outside the realm of multi
bakers.

When describing transport in the presence of an exte
field and/or a density gradient, consistency with the therm
dynamic entropy balance could only be obtained for mu
baker maps with a time-reversible, local dissipation mec
nism @5,6# ~a brief discussion of this notion will be give
below!. This requirement was interpreted as mimicking
thermostatting algorithm~a Gaussian thermostat, cf.@15#!,
which is widely applied in nonequilibrium molecular dynam
ics ~NEMD!. The entropy balance was found to hold for
coarse-grained entropy based on a density averaged ove
gions of small spatial extension. A recent paper by Tas
and Gaspard@12# shows that analogous results can be o
tained for area-preserving multibaker maps with an ener
dependent phase-space volume. This energy, howeve
strictly connected to the potential of an external field, and
considered as an independent driving force.

In the present Rapid Communication, our aim is to stu
transport generated by two independent driving forces: d
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sity and temperature gradients. In addition, we allow fo
constant external field. We are intending to describe a qu
one-dimensional system of finite length attached at the
ends to different reservoirs, and possibly in thermal cont
with a thermostat along its extension~cf. Fig. 1!. In this
general setting we show that thermoelectric phenomena,
cross effects due to the simultaneous presence of two in
pendent driving forces, and the entropy balance can prop
be modeled by an elementary dynamical system.

The multibaker map describes transport along thex direc-
tion. It represents a deterministic dynamics@the (x,p) dy-
namics# in thesingle-particle phase spaceof a weakly inter-
acting many-particle system. The cell sizea partitions thex
axis into regions which are sufficiently large to character
the state inside such a cell by thermodynamic state varia
and small enough to neglect variation of these variables
the length scale of the cells~local-equilibrium approxima-
tion!. Thus,a plays the role of a minimum allowed macro
scopic resolution. The state of the many-particle system
represented by the~particle! density % and a so-called
‘‘kinetic-energy’’ density %T, whose average over cells i
related to a local temperature. For multibaker maps
kinetic-energy density is considered as an independent fi
i.e., our discussion does not rely on the apparance of a
mentum conjugated to thex variable. The (x,p) dynamics
drives the time evolution of the fields, leading to a mes
scopic description of the transport process. A possible dep
dence of this dynamics on local thermodynamic averag
and the presence of a source term of kinetic energy in
duces a coupling of the fields.

The detailed definition of the model is as follows: Th

s-
FIG. 1. Graphical illustration of the transport process cons

ered. The system is attached to reservoirs inducing particle and
currents as indicated by the arrow, and along its extent heat ca
exchanged with a thermostat.
R3295 © 2000 The American Physical Society
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multibaker map acts on a domain in the (x,p) plane consist-
ing of N identical cells labeled bym ~Fig. 1!. Here,x is a
position variable, andp is a momentumlike variable neede
to set up a reversible deterministic dynamics. Every cell
a widtha and heightb[1. After every time unitt, every cell
is divided into three columns~Fig. 2! with respective widths
alm , asm , and arm fulfilling l m1sm1r m51. The right
~left! column of widtharm (alm) is uniformly squeezed and
stretched into a strip of widtha and of heightl m11 (r m21) in
the right~left! neighboring cell. The middle one preserves
area. The map is time reversible in the sense that the J
bian l m11 /r m for a motion from cellm to m11 is reciprocal
to that of the motion from cellm11 to m. The (x,p) dy-
namics is volume preserving when an initial condition
recovered, but it is contracting on average~since motion in
the direction of the external field is connected with contr
tion!, and hence it is dissipative. Except for the coupling
reservoirs at the ends the map is one-to-one on its doma
drives the density%(x,p) and the kinetic-energy densit
%(x,p)T(x,p). Both are advected, but in order to be able
capture a local heating of the system, the density%T is also
multiplied by a factor (11tqm) with qm depending only on
the averages in cellm and in its neighbors. The dynamics o
both densities is governed by the Frobenius-Perron equa
@1# of the (x,p) map, but after each iteration the%T values
in cell m are multiplied by (11tqm). The fields% and T
evolve into fractal distributions whose asymptotic forms a
described bydifferent invariant measures. In general, th
width l m ,sm ,r m of the columns may depend on the avera
values of the fields in the cell and its neighbors so that
widths may vary in time and space.

In the spirit of nonequilibrium thermodynamics, we al
consider the coarse-grained fields%m andTm interpreted as
the density and the local temperature of cellm, respectively.
%m and%mTm are obtained as averages of%(x,p) and of the
kinetic-energy density%(x,p)T(x,p) over cellm.

We now discuss the time evolution of% and T. For the
explicit calculation we start with a density%(x,p) and a
specific kinetic energyT(x,p), taking constant values%m
and Tm in each cellm. This is convenient from a technica
point of view, and does not lead to a principal restriction
the domain of validity of the model as discussed in@6,11#.
After one step of iteration, the fields will be piecewise co
stant on the strips defined in Fig. 2. Due to continuity, t
density takes the respective values

%m,r8 5
r m21

l m
%m21 , %m,s8 5%m , %m,l8 5

l m11

r m
%m11 .

~1!

FIG. 2. The action of the multibaker map on the coordina
(x,p) over a time unitt. The values of%(x,p) andT(x,p) on the
cells and strips@cf. Eqs.~1! and ~2!# are given on the margins fo
the initial conditions discussed in the text.
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~The prime always indicates quantities evaluated after
time step.! Besides the advection by the (x,p) dynamics, the
updated values forT on the strips contain the source term

Tm,r8 5Tm21 @11tqm#,

Tm,s8 5Tm @11tqm#, ~2!

Tm,l8 5Tm11 @11tqm#.

In thex variable, the cell-to-cell dynamics of the model
equivalent to a random walk with fixed step lengtha and
local transition probabilitiesr m andl m over time unitt. Such
random walks are characterized by the driftvm and the dif-
fusion coefficientD, which stay finite in the macroscopi
limit a,t→0. To be consistent with a diffusion type equatio
for the density, the transition probabilities have to scale@10#
as

r m2 l m5~t/a! vm , r m1 l m5~2t/a2! D. ~3!

In order to account for the effect of temperature gradie
on the local (x,p) dynamics, we allow in the present pap
for a location dependence of the driftvm , while the diffusion
coefficient is kept spatially homogeneous. The location
pendence of the drift is due to a dependence on the
temperature Tm and on its discrete gradient:vm
5vm„Tm ,(Tm112Tm)/a….

The entropySm of cell m is related to the cell density%m .
We use the common information-theoretical form

Sm52a%m ln@%m /%!~Tm!#. ~4!

It is measured in units of Boltzmann’s constant, and involv
a temperature dependent reference density%!(T)[Tg, in
close analogy to an ideal gas. Hereg is a free parameter. In
Ref. @13# it will be demonstrated that only this choice of th
reference density can be consistent with thermodynamics
the present paper, we take the form of Eq.~4! for granted and
explore in how far the model leads to proper macrosco
expressions for quantities appearing in the local entropy
ance, i.e., for~i! the irreversible entropy production,~ii ! the
current,~iii ! the heat and entropy currents, and~iv! the trans-
port coefficients.

Next, we work out the evolution equations of the coars
grained fields and of the entropySm . Due to Eq.~1!, the
change of the cell density in a time unitt becomes

~%m82%m!/t52~ j m2 j m21!/a, ~5!

where j m5(a/t) (r m%m2 l m11%m11) denotes the discrete
current density.

Similarly, an update of the average temperature in
cells can be calculated based on the fact that%mTm is a
kinetic-energy density. Consequently@cf. Eqs. ~1,2!#, the
change%m8 Tm8 2%mTm per time step is obtained as

%m8 Tm8 2%mTm

t
5%m8 Tm8

qm

11tqm
2

j m
(%T)2 j m21

(%T)

a
, ~6!

s
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where j m
(%T)5Tmj m2%m11 (Tm112Tm)/a (a2/t) l m11 is a

discrete heat current, and%m8 Tm8 qm /(11tqm) represents a
source of kinetic energy arising from irreversible heating

In order to find an evolution equation for the entropy, w
write Sm8 2Sm in the form of a discrete entropy-balance equ
tion ~cf. @6#!

Sm8 2Sm5DeSm1D iSm , ~7!

where

DeSm[Sm
(G)82Sm

(G) , ~8a!

D iSm[~Sm82Sm
(G)8!2~Sm2Sm

(G)!, ~8b!

correspond to the entropy flux and the irreversible entro
production, respectively. Following Refs.@6# and in harmony
th
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with Eq. ~4!, we define the Gibbs entropy as

S(G)52E dx dp %~x,p! ln@%~x,p! T~x,p!2g#. ~9!

In view of Eq. ~8a!, the entropy flux is the temporal chang
of the Gibbs entropy. Moreover, Eq.~8b! is a meaningful
measure for the rate of irreversible entropy production, si
according to the information-theoretic interpretation of e
tropies, it describes the increase per unit time of the lack
information due to coarse-graining. Hence, it is positive. T
dependence ofSm2Sm

(G) on details of the coarse grainin
drops out when taking the time derivative@6#.

In view of these considerations, we find the followin
expressions for the entropy flux and the rate of irreversi
entropy production@cf. Fig. 2 and Eqs.~1,2!#:
DeSm

t
52

a

t F ~%m8 2%m! ln~%mTm
2g!1%m8 ln

Tm,s8 2g

Tm
2g

1%m21r m21lnS %m,r8

%m

Tm,r8 2g

Tm,s8 2gD 1%m11l m11lnS %m,l8

%m

Tm,l8 2g

Tm,s8 2gD G ,

~10a!

D iSm

t
5

a

t F2%m8 lnS %m8 Tm8
2g

%mTm,s8 2gD 1%m21r m21lnS %m,r8 Tm,r8 2g

%mTm,s8 2g D 1%m11l m11lnS %m,l8 Tm,l8 2g

%mTm,s8 2g D G . ~10b!
-
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In the last equation we made use of the fact that due to
originally homogeneous field distributions, the initial coars
grained and microscopic densities coincide such thatSm

5Sm
(G) .

A detailed discussion of the entropy current will be giv
elsewhere@13#. Concerning the entropy production in
steady state we only mention the following interesting re
tion: The irreversible change of the specific entropy per u
time appears to be the average of the growth rates%/%* of
the relative density%(x,p)/%* (x,p), i.e., D iSm /(at%m)
5^s%/%* &ss, where the growth rate is defined as

s%/%* ~x,p![
1

t
ln

@%~x,p!/%* ~x,p!#t

@%~x,p!/%* ~x,p!#0

. ~11!

This rule is a direct extension of the result for uniform te
perature@6#, where only the growth rate of the density a
peared.

Next, we evaluate the entropy balance~for a general time-
dependent state! in the macroscopic limit. It is obtained b
refining the partition of the finite total lengthL5Na of the
chain. Technically this meansa,t→0 with fixed L and dif-
fusion coefficientD. @By this condition a macroscopic limi
v(T,]xT) is obtained for the total driftvm]. The macroscopic
spatial coordinate is defined asx[am, and the spatial de
pendence of any fieldc5% or T can be expressed as

cm61→c6a]xc1
a2

2
]x

2c. ~12!
e
-

-
it

-

By dividing Eq. ~7! by at, we find in this limit a balance
equation for the entropy densitySm /a→s in the form ] ts
5F1s (irr) with

F[ lim
a,t→0

DeSm

a t
52]xj (s)1F (thermostat), ~13a!

s (irr)[ lim
a,t→0

D iSm

a t
5

j 2

%D
1g%DF]xT

T G2

. ~13b!

Here,F (thermostat)stands for the entropy flux into the thermo
stat, andj and j (s) are the current and entropy current den
ties, respectively. The former is obtained from the time e
lution ~5! of the density, which becomes an advectio
diffusion equation in the thermodynamic limit with a curre
j 5% v(T,]xT)2D ]x%. The entropy current can be ex
pressed as

j (s)52@11 ln~%T2g!# j 2g%D ]xT/T, ~14!

and for the flux into the thermostat we obtain

F (thermostat)5g%q2v j /D. ~15!

The expression for the currents and the irreversible
tropy production are in harmony with thermodynamics@16#.
A comparison shows thatl[g%D plays the role of the hea
conductivity, and2T(11 ln@%T2g)#)/e is the Peltier coeffi-
cient (e stands for the unit charge!. The appropriate form of
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v(T,]xT) follows from Onsager’s reciprocity relation@13#.
Thus, we have expressed all the kinetic coefficients with s
tem parameters.

For a system isolated from the thermostat~a nonthermo-
statted system! one hasF (thermostat)50, which fixesq to be
v j /l. This choice ofq exactly corresponds to classical the
modynamics, where the full entropy flux can be written
the negative divergence of the entropy current. In this ca
the heat leads to a rise of temperature, reflected in the so
term qT5v jT/l of the evolution equation] tT5qT
1]x(l ]xT)/(g%)2( j /%) ]xT for the local temperature@i.e.,
the macroscopic limit of Eq.~6!#. The caseq50 corresponds
to a Gaussian thermostat commonly applied in NEMD sim
lations @15#. Other choices ofq describe stationary state
stabilized by appropriate entropy fluxes to~or from! the ther-
mostat. Temperature profiles, which are not steady in th
modynamics, appear then as steady states by a proper c
of q, implying F (thermostat)Þ0, which represents a genera
zation of the classical thermodynamic entropy balance.

To conclude, we point out that to our knowledge transp
with cross effects and the associated entropy balance
never been treated in the framework of dynamical syste
where both the properties of the underlying dynamics and
the thermodynamic time evolution can explicitly be work
out ~for early efforts based on Gaussian thermostats,
@17#!. It is remarkable that a thermodynamic description
transport driven by two independent forces could be deri
from a model as simple as a piecewise-linear map. The m
mum requirements on the model in order to be consis
-
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with thermodynamics are found to be~i! a time-reversible
dissipation mechanism,~ii ! inclusion of a new fieldT de-
scribing a local kinetic-energy density,~iii ! defining the en-
tropy with a T-dependent reference density, and~iv! inclu-
sion of a source term in the time evolution of the fieldT,
which can model the effect of Joule’s heat.

Observations that seem to be valid beyond the frame
multibaker models are~a! Dissipation and thermostattin
play different roles. With time-reversible dissipation we c
also describe systems isolated from a thermostat.~b! Differ-
ent choices of the source term in the temperature dynam
correspond to changes in the coupling of the system to
thermostat.~c! A proper expression for the total irreversib
entropy production should involve the steady-state aver
of the relative density%/%* , instead of phase-space contra
tion. ~d! In macroscopic steady states, when the coar
grained densities do not change in time, the transition pr
abilities and the source term in the dynamics are fixed
time-independent values. In this case, one finds astationary
entropy balance based on an inhomogeneous l
dimensional mapping acting on a spatially extended~i.e.,
macroscopic! domain.

We are grateful to G. Nicolis for many enlightening di
cussions. Support from the Hungarian Science Founda
~Contract No. OTKA T17493, T19483!, the German-
Hungarian D125 Cooperation, and the TMR-networkSpa-
tially Extended Dynamicsis acknowledged.
.

-

s

@1# J.R. Dorfman,An Introduction to Chaos in Non-Equilibrium
Statistical Mechanics~Cambridge University Press, Cam
bridge, England, 1999!; Chaos8 ~2!, 309 ~1998!, Focus issue
on Chaos and Irreversibility.

@2# T. Geisel and J. Nierwetberg, Phys. Rev. Lett.48, 7 ~1982!; H.
Fujisaka, S. Grossmann, and S. Thomae, Z. Naturforsch.
A 40a, 867 ~1986!; R. Klages and J.R. Dorfman, Phys. Re
Lett. 74, 387 ~1995!; G. Radons,ibid. 77, 4748~1996!.

@3# N.I. Chernov et al., Phys. Rev. Lett.70, 2209 ~1993!; D.
Ruelle, J. Stat. Phys.85, 1 ~1996!; , 86, 935 ~1997!; W. Brey-
mann, T. Te´l, and J. Vollmer, Phys. Rev. Lett.77, 2945
~1996!; G. Nicolis and D. Daems, J. Phys. Chem.1000, 19 187
~1996!.

@4# P. Gaspard, J. Stat. Phys.88, 1215~1997!.
@5# J. Vollmer, T. Tél, and W. Breymann, Phys. Rev. Lett.79,

2759 ~1997!.
@6# J. Vollmer, T. Tél, and W. Breymann, Phys. Rev. E58, 1672

~1998!; W. Breymann, T. Te´l, and J. Vollmer, Chaos8, 396
~1998!.

@7# D.J. Evans, E.G.D. Cohen, and G.P. Morriss, Phys. Rev. L
71, 2401 ~1993!; G. Gallavotti and E.G.D. Cohen,ibid. 74,
2694 ~1995!; J. Stat. Phys.80, 931 ~1995!; E.G.D. Cohen,
il

tt.

Physica A240, 43 ~1997!.
@8# L. Rondoni, T. Te´l, and J. Vollmer, Phys. Rev. E~to be pub-

lished!.
@9# P. Gaspard, J. Stat. Phys.68, 673 ~1992!; S. Tasaki and P.

Gaspard,ibid. 81, 935 ~1995!.
@10# T. Tél, J. Vollmer, and W. Breymann, Europhys. Lett.35, 659

~1996!.
@11# T. Gilbert and J.R. Dorfman, J. Stat. Phys.96, 225 ~1999!.
@12# S. Tasaki and P. Gaspard, Theor. Chem. Acc.102, 385~1999!.
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