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Fluctuation theorems for entropy production in open systems
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We derive a fluctuation theorem to describe entropy fluctuations in steady states of systems with density
gradients due to open boundaries. The fluctuations are related to the growth rate of the phase-space density,
instead of the phase-space contraction rate. Explicit derivations are presented for a multibaker map, but the
arguments are rather general, and should hold for a much wider class of dynamical systems. A comparison with
recent results for stochastic systems is also given.
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The connection between nonequilibrium statistical physerage densities in regions of macroscopically small extent;
ics and chaotic microscopic dynamics has become a subjeand the usual invariant measures of dynamical systems. For
of vivid interest[1]. Particular attention2—5] has been de- smooth initial distributions, the usual, exact phase-space
voted to the observatioff] that in steady states there are densityo(x,p) never stops evolving in time, while CG den-
fluctuating quantities, like the phase-space contraction ratsities quickly reach their stationary values.

[2,3] or the displacement of trajectorip$], whose average In macroscopic steady states of open systems with CG
along trajectory segments of fixed duratibomccurs with a  density gradients, the irreversible entropy productidh™)
probability distributionlT, fulfilling per particle was shown to be the average of the growth rate
o, of gi(x,p) [11] (rather thano). The quantityo, is de-
1 | Hye) fined by
—IN|=——|=a. (1)
t (- a)
(x ):}mef(x,p) ©
The Gallavotti-Cohen fluctuation theorei@CFT) [3] states T X.P)= 2o(X,p)’

that for sufficiently large(in the sense of large deviation
theor» t, Eq. (]_) is a generic property of time-reversible, wherer is a short time interval. Thitocal expression holds
strongly chaotic systems, whete is the averager of the  irrespective of boundary conditions. Besides phase-space
local phase_space contraction rafex’p) a|0ng trajectory Contraction,()'e Ch&}racterizlels the miXing.Of regions with dlf- -
segments of length Here, &,p) is a point in phase space. ferent macroscopic densities. Hence, it does not va}nlsh in
The physical relevance of the theorem is based on the iderlpoundary—drlven, volume-preservmg systems. Only in sys-
tification of the average of(x,p) with the rate of specific t€ms with macroscopically homogeneous steady states
irreversible entropy productiom(") in steady state§7].  To(X,Pp) reduces tar(x,p) [see Eq(4) with m-independent
Then, o is the contribution of trajectory segments of length €ml- In the following, we show how the validity of Eq1)
to the entropy production. In this sense, the GCFT extend§an be extended to time-reversible systems with open bound-
the Onsager relations away from equilibrium, and yields theries by takinga= o, . Subsequently, we discuss the con-
Green-Kubo relations for weak drivir@]. nection between the GCFT derived on the basis of determin-
We note that a|though the Concept of entropy often is noiStiC dynamiCS, and fluctuation theorems for stochastic
clearly defined in this context, the notion of entropy produc-Processe$4]. _ _ _ _
tion is widely used. This apparent contradiction has been Here, we consider multibaker maps, which model certain
resolved in the framework of multibaker modé®-11 by ~ aspects of transport processgs-11], even though their
introducing acoarse_grainedCG) entropy, which forma”y phySicaI limitations are still a matter of discussion. Multibak-
fulfills an entropy-balance equation in the form known from €rs are appealing, being the simplest spatially extended dy-
thermodynamics. Starting with the area-preserving exampl8amical systems with the possibility for a biased time evo-
of Gaspard9] explicit calculations[10—13 have revealed lution and nontrivi:_:xl boundary conditions. At present they
that the identification of the phase-space contraction with th@re the only analytically tractable models allowing us to ex-
irreversible entropy production is not justified in general. plore the structure of quctua‘gion theorems for steady states of
Fluctuation theorems hold for steady states. We distinSystems with density gradients. The phase space of the
guish two classes of steady statewcroscopicsteady states, model consists of a strip of siz&NXb in the (x,p) plane,

characterized by stationary CG densities, i.e., stationary awhich is divided intoN identical cells of sizeaxb labeled
by the indexm. After each time unitr, every cell is divided

into three vertical columnscf. Fig. 1): the rightmost(left-
*Present addresses: Fachbereich Physik, Universitat-GH EsseW,OSD column of widthra (la) of every CE” 'E squeezed and
D-45117 Essen, Germany and MPI for Polymer Research, Ackerstretched into a strip of width and heightb (Ib) in the cell
mannweg 9, D-55128 Mainz, Germany. to the right(left). They are responsible for transport in one
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gronnnmees — ] br coming from the neighboring cellm—1, m+ 1. [For com-
S R > : = pt i bs parison, the phase-space contraction rates like (4), but
~ = i without thep factors] In the present paper, we only consider
e : stationary CG density distributions,,, so that the expres-
al as ' ar

sions given in Eq(4) can be interpreted as contributions to
the entropy productioficf. Eq. (2) and Ref.[11]]. Conse-
FIG. 1. Graphical illustration of the action of the multibaker quently, the average entropy production of trajectories of
map on a unit celm. The three columns in the cell are uniformly lengthn, which maken, (n,) steps to the leftright) and are
squeezed and stretched leading to the shown deformation of the tagentered at the half-integer cell indgx i.e., which start in

L, S andR cell m=u—An/2 and end inu+An/2, whereAn=n,—n,
is the displacement, is
ny n

. . . . T T @u+ane
is mapped onto a strip of width and heightsb so that the
internal dynamics is area preserving. Motivated by more .
general models, global phase-space conservation is requiréd s independent of the details of the sequence of steps.
which impliess+1+r=1=s+1+T. First, we choose=1, | =r, which leads to a dissipative,

The details of the transport process described by thdme-reversal symmetric dynamics, as in thermostatted sys-
model depend on the boundary conditidiid], since they tems[10,11]. Later we drop this condition to studsnprop-
determine the distribution of the CG density, (i.e., the  erly thermostatednultibaker models.
average density in every celivhich we assume to be known  For the time-reversible model, the raté* (n;,n;) only
in the steady statf14,21]. Results that are consistent with depends om; and n, through An. Hence, the probability
thermodynamics are obtained in theacroscopic limit ar Hﬁ”)(crg) of finding a ValuechEcr(Q”)(An) for trajectory
—0, in which the density evolves according to an advectionsegments of length=n7 centered aj is
diffusion equation with constant drift and diffusion coeffi-

cientD. In taking the limit, the parametersand| of the map 0 u—anp2
scale witha and 7 like HE“)[U(Q“)(AH)]:N— > NW(yn)

n;,Ng,n
2 0 ne+ng¥n=n
m n.—n=An
m=1 r |

m m-1 m m+1

time step. The middle column of widtha remains in the () 1
cell, modeling motion that doa®ot contribute to transport. It ag’(n,n;)= n_rln

. (5

v=a(r—)/r, D=a%r+1)/(27). ©)
XM gNs M, (6)
The total length of the chain is fixed tb=aN, and the
physical time ist=rn. with normalizationEM,%HE“)(%)= 1 [16]. The first factor
In the multibaker model, the single time step contributionaccounts for the probability that the trajectory segment starts

of a trajectory to the growth rate, of the phase-space den- in cell »—An/2, while the second factor is the probability to
sity is [recall Eq.(2) and Fig. 1 find a segment with displacemetn; N{“)(n,,n,) denotes
the number of trajectories of length=t/7, which are cen-

lln rm for a step from cel to m+ 1 tered atu, maken; (n,) steps to the leftright), and never
T | Tomy ' leave the chain. Here, consistently with the piecewise-linear
character of the multibaker dynamics, these probabilities are
0 whenever it stays in ceth, (4)  taken to be independent. Comparing trajectories with their
time-reversed counterparts, we find that{“)(n,,n,)
1| lon =N®M(n,,n). In particular, N¥(n,n,)
ZIn Too . for a step from celmtom—1. =n!/(n! ng n,!), if all trajectories stay inside the chain.

To extend the validity of Eq(1l) to distributions like
Hereg; denotes the CG densifit5] in cell j, which is time- I1{*, observe that time-reversed trajectory segments pro-
independent in a steady state. The density ratios enteEq. duce the same entropy up to a change of si;ggf?(An)z
because of the mixing in celh of different CG densities —o-(e“)(—An), as seen by exchangimg andn; in (5). Thus,

@ u—Ani2 > NS (ny,n,) IMgnsr
Ng,N

Ny Ng Ny
N +ng+n=n
e (An)] _ h—ni=An ZQ,LAn/z([)An @
(W () — I
¥ [oy”(—An)] Cueanz nEH NS0y n,) 17eshsr 0 u+Ani2
| Mgty

ne+ngtn=n
ne—n=An
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After taking the logarithm of both sides, the right-hand sidether both vanishing or both nonzero, but no assumption on

givest=nr timesa'y)(An). Therefore, Eq(7) constitutes a  time-reversal invariance is made. Their basic variable, the

local fluctuation theorenf17], in the sense that it takes the action functionaW(t), is proportional to the current of par-

form of Eq. (1) with a= g(#)(An) but concerns trajectories ticles integrated over the tintelt is a function of solely the

of given centeru and f|n|te lengtm . transition probabilities along the stochastic trajectory. For
In order to obtain aylobal fluctuation theorem one needs —, w=W/t becomes a continuous random variable whose

the probability1,(o,) of finding a values, irrespective of probability distributionll,(w) fulfills Eq. (1) with a=w [4].

the position of the trajectory. This is obtained by summing In our settingW corresponds to a quantity proportional to

up the contributions of am(m(%) w=122% ... N, and the partlc!e dlsplacemerzfm. Smc_e the multlbakgr map is a

observing thaj contributes td-[t(%) if and only |f there is discrete time model, we first write a large deviation theory

N for An in the spirit of[4], but keep the time unit finite, as
a displacemenan,, with o, =g ¢’ (An,). Consequently, considered ir{1p8] for random warl)ks without bias. The dy-
namics along thes axis is equivalent to a Markov process
y(o,)=> OM[a$(An,)] with transition ratest; j,,=r, t;;_;=I, andt; ;=s, over
n time 7, i.e., it generates a biased random walk The moment
0 An generating functiore(A) of the random walk is defined via
— "A”u’z([) #H(")[o("“)(—An ) (exp(—arAn))~exd —te(\)] for large timest. Due to the
| ! e a translation invariance of the transition rates, it takes the form
e(\)=—(1/7) In[l exp@\) +s+r exp(—a\)]. Note thate(\)
only contains the transition rates and not the parametérs
of the multibaker. It characterizes the random walk along the
X axis, but does not concern phase-space dynamics.
The probability to find an average velocity=aAn/t
nraong a trajectory of length can be written aslI,(u)
~exfd —tg(u)] for large t. A saddle point approximation
shows[4,18] that g(u) is the Legendre transform @&f{\).
For the multibaker map one obtains

n Qu+an, 2
=exp(to,)Il(—o,), (8)

where we used Eqg5) and(7) with An,, to obtain the sec-
ond equality. We hereby have derived our key result: (E).
holds with =0, in the stationary distributiorp,, of the
time-reversible system. Moreover, the result does not depe
on the particular choice of boundary conditions.

To recover continuum relations with a form known from
thermodynamics, we take the macroscopic limit of the
growth rates, . Provided the density difference between the

two ends of trajectories is small, i.€Q,+an2— € .—ana2 (u)———l a(R+as) _u | R—s(u7) 10
<@, , we obtain —(ur)? 2l(a+urn) |’
(X:U) = uj (9) Where R={s?(ur)?+4lr[a?— (u7)?]}*2 [19]. In this case
p(x)D’ Eqg. (1) with a@=u only holds in a modified form: the right-

hand side of Eq(1) is no longera but the more general
whereu=aAn/t is the average velocity of the considered expressionA=cu with c=(1/a)In(r/l). Although for the
trajectory,p(x) =bg, is the density at positior=am, and  variable a=w=W/t=cu considered in[4] this is of the
j=vp(x)—Ddyp(x) denotes the current density, which is form of Eq.(1) andA=w, the spirit is completely different:
independent ofx in a steady state. Since the expectationthe fluctuating quantityw is not necessarily related to en-
value ofu is the local streaming velocity/ p(x), the expec- tropy production. Equatiorf10) is valid for every random
tation value for the growth rate is(")(x)=j%/[p(x)?D].  walk, in particular for those described by one-dimensional
Thus, we formally recover the well-known relation betweenmaps, where the concept of phase-space contraction, needed
entropy production and Joule’s heat by usiwfl [11]) the  to obtain the GCFT and Eq8), does not apply. Hence, the
“Einstein relation” pD=0¢ T, Where o¢ represents the LS fluctuation theorem for the velocity of an improperly

electric conductivity and” the temperature. thermostatted system is still of the modified form of Ed).
Let us consider now the improperly thermostatted multi-yjth A=uc, irrespective of the choice af andT. After all,
baker model(i.e., we no longer require=1, T=r). The  the LS approach is based on the transition ratasd| only.

growth rate depends then on and n, separatelyicf. EQ.  Thus, the GCFT and the LS fluctuation theorem are different.
(5)], while the probabilitylI{*)[ o(n; ,n,)] is unchanged. Not even formally can they be identified for non time-
Since O'(Q’“) is now no longer a funct|on of,—n,; only, it  reversible dynamical systems.

does no longer change sign when comparing a trajectory seg- In conclusion, we obtained strong evidence that both local
ment with its time-reversed image. Therefore, the argumenand global entropy-related fluctuation theorems hold also in
leading to Eq(7) no longer applies, and we cannot derive amacroscopically inhomogeneous steady states of time-
relation like Eq.(1). We conclude, that fluctuation theorems reversible systems, and clarified the relation between fluctua-
for deterministic systems can only hold for time reversibletion theorems for chaotic and stochastic systems. For deter-

dynamics. ministic dynamics these theorems should be based on the
Finally, we turn to a comparison with fluctuation theo- growth rate of the phase-space density. The essential new
rems for systems with stochastic dynamics. In Réf.Leb-  ingredients of our derivation are a contribution to the entropy

owitz and SpohrLS) considerjump processedescribed by production due to density gradients, and the assignment of an
a master equation. It is assumed that the direct and the rex priori probability for a trajectory segment to start at a
versed transition probabilities between any two states are egiven position. Although derived for a particular model, we
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believe that our results hold quite generally, since baker-typeropriate nonequilibrium boundary conditions, where there is
maps are known to be paradigms of chaotic systE2@. no phase-space contraction. The local formulation of the
Because of a slower convergence of more general modelfuctuation theorem also allows us to focus on the finite time
the theorems can, however, only be expected to hold whegntropy production of a selected number of particles residing
evaluated for sufficiently long trajectory segments. More-jn a finite region of spatially extended systems.

over, for open macroscopic systems of finite dizéhe time

t should be limited from above by the typically much larger We are grateful to F. Bonetto, E. G. D. Cohen, J. R.
value L2/D in order to ensure a representative sampling ofPorfman, D. J. Evans, G. Gallavotti, L. Mgs, and G. Nic-
phase space, i.e., to avoid escape of trajectories during o®lis for enlightening discussions. Support from GNFM-CNR
servation. Altogether, this still implies that entropy related(ltaly), the EC (Contract No. ERBCHRXCT940460 the
fluctuation theorems hold for a much wider class of steadyHungarian Science Foundatid@rant No. OTKA T17493,
states than previously thought. In particular, our version off19483, the German-Hungarian D125 Cooperation, and
the theorem also applies to area preserving systemsan the TMR network Spatially Extended Dynamicsis
unbiased, time-reversal symmetric dynamidsven by ap- acknowledged.
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