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Fluctuation theorems for entropy production in open systems
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We derive a fluctuation theorem to describe entropy fluctuations in steady states of systems with density
gradients due to open boundaries. The fluctuations are related to the growth rate of the phase-space density,
instead of the phase-space contraction rate. Explicit derivations are presented for a multibaker map, but the
arguments are rather general, and should hold for a much wider class of dynamical systems. A comparison with
recent results for stochastic systems is also given.
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The connection between nonequilibrium statistical ph
ics and chaotic microscopic dynamics has become a sub
of vivid interest@1#. Particular attention@2–5# has been de-
voted to the observation@6# that in steady states there a
fluctuating quantities, like the phase-space contraction
@2,3# or the displacement of trajectories@4#, whose averagea
along trajectory segments of fixed durationt occurs with a
probability distributionP t fulfilling

1

t
ln F P t~a!

P t~2a!G5a. ~1!

The Gallavotti-Cohen fluctuation theorem~GCFT! @3# states
that for sufficiently large~in the sense of large deviatio
theory! t, Eq. ~1! is a generic property of time-reversible
strongly chaotic systems, wherea is the averages of the
local phase-space contraction rates(x,p) along trajectory
segments of lengtht. Here, (x,p) is a point in phase space
The physical relevance of the theorem is based on the id
tification of the average ofs(x,p) with the rate of specific
irreversible entropy productions ( irr ) in steady states@7#.
Then,s is the contribution of trajectory segments of lengtt
to the entropy production. In this sense, the GCFT exte
the Onsager relations away from equilibrium, and yields
Green-Kubo relations for weak driving@8#.

We note that although the concept of entropy often is
clearly defined in this context, the notion of entropy produ
tion is widely used. This apparent contradiction has be
resolved in the framework of multibaker models@9–11# by
introducing acoarse-grained~CG! entropy, which formally
fulfills an entropy-balance equation in the form known fro
thermodynamics. Starting with the area-preserving exam
of Gaspard@9# explicit calculations@10–13# have revealed
that the identification of the phase-space contraction with
irreversible entropy production is not justified in general.

Fluctuation theorems hold for steady states. We dis
guish two classes of steady states:macroscopicsteady states
characterized by stationary CG densities, i.e., stationary
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erage densities in regions of macroscopically small exte
and the usual invariant measures of dynamical systems.
smooth initial distributions, the usual, orexact, phase-space
density% t(x,p) never stops evolving in time, while CG den
sities quickly reach their stationary values.

In macroscopic steady states of open systems with
density gradients, the irreversible entropy productions ( irr )

per particle was shown to be the average of the growth
s% of % t(x,p) @11# ~rather thans). The quantitys% is de-
fined by

s%~x,p![
1

t
ln

%t~x,p!

%0~x,p!
, ~2!

wheret is a short time interval. Thislocal expression holds
irrespective of boundary conditions. Besides phase-sp
contraction,s% characterizes the mixing of regions with di
ferent macroscopic densities. Hence, it does not vanish
boundary-driven, volume-preserving systems. Only in s
tems with macroscopically homogeneous steady st
s%(x,p) reduces tos(x,p) @see Eq.~4! with m-independent
%m]. In the following, we show how the validity of Eq.~1!
can be extended to time-reversible systems with open bou
aries by takinga5s% . Subsequently, we discuss the co
nection between the GCFT derived on the basis of determ
istic dynamics, and fluctuation theorems for stochas
processes@4#.

Here, we consider multibaker maps, which model cert
aspects of transport processes@9–11#, even though their
physical limitations are still a matter of discussion. Multiba
ers are appealing, being the simplest spatially extended
namical systems with the possibility for a biased time ev
lution and nontrivial boundary conditions. At present th
are the only analytically tractable models allowing us to e
plore the structure of fluctuation theorems for steady state
systems with density gradients. The phase space of
model consists of a strip of sizeaN3b in the (x,p) plane,
which is divided intoN identical cells of sizea3b labeled
by the indexm. After each time unitt, every cell is divided
into three vertical columns~cf. Fig. 1!: the rightmost~left-
most! column of widthra ( la) of every cell is squeezed an
stretched into a strip of widtha and heightr̃ b ( l̃ b) in the cell
to the right~left!. They are responsible for transport in on

en,
r-
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time step. The middle column of widthsa remains in the
cell, modeling motion that doesnot contribute to transport. It
is mapped onto a strip of widtha and heightsb so that the
internal dynamics is area preserving. Motivated by m
general models, global phase-space conservation is requ
which impliess1 l 1r 515s1 l̃ 1 r̃ .

The details of the transport process described by
model depend on the boundary conditions@11#, since they
determine the distribution of the CG density%m ~i.e., the
average density in every cell!, which we assume to be know
in the steady state@14,21#. Results that are consistent wit
thermodynamics are obtained in themacroscopic limit a,t
→0, in which the density evolves according to an advecti
diffusion equation with constant driftv and diffusion coeffi-
cientD. In taking the limit, the parametersr andl of the map
scale witha andt like

v5a~r 2 l !/t, D5a2~r 1 l !/~2t!. ~3!

The total length of the chain is fixed toL5aN, and the
physical time ist5tn.

In the multibaker model, the single time step contributi
of a trajectory to the growth rates% of the phase-space den
sity is @recall Eq.~2! and Fig. 1#

1

t
lnF r%m

r̃%m11
G for a step from cellm to m11,

0 whenever it stays in cellm, ~4!

1

t
lnF l%m

l̃ %m21
G for a step from cellm to m21.

Here% j denotes the CG density@15# in cell j, which is time-
independent in a steady state. The density ratios enter Eq~4!
because of the mixing in cellm of different CG densities

FIG. 1. Graphical illustration of the action of the multibak
map on a unit cellm. The three columns in the cell are uniform
squeezed and stretched leading to the shown deformation of the
L, S, andR.
e
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e
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coming from the neighboring cellsm21, m11. @For com-
parison, the phase-space contraction rates is like ~4!, but
without the% factors.# In the present paper, we only consid
stationary CG density distributions%m , so that the expres
sions given in Eq.~4! can be interpreted as contributions
the entropy production@cf. Eq. ~2! and Ref.@11##. Conse-
quently, the average entropy production of trajectories
lengthn, which makenl (nr) steps to the left~right! and are
centered at the half-integer cell indexm, i.e., which start in
cell m5m2Dn/2 and end inm1Dn/2, whereDn[nr2nl
is the displacement, is

s%
(m)~nl ,nr !5

1

nt
ln F S r

r̃
D nrS l

l̃
D nl %m2Dn/2

%m1Dn/2
G . ~5!

It is independent of the details of the sequence of steps.
First, we chooser 5 l̃ , l 5 r̃ , which leads to a dissipative

time-reversal symmetric dynamics, as in thermostatted s
tems@10,11#. Later we drop this condition to studyimprop-
erly thermostatedmultibaker models.

For the time-reversible model, the rates%
(m)(nl ,nr) only

depends onnl and nr through Dn. Hence, the probability
P t

(m)(s%) of finding a values%[s%
(m)(Dn) for trajectory

segments of lengtht5nt centered atm is

P t
(m)@s%

(m)~Dn!#5
%m2Dn/2

(
m51

N

%m

(
nl ,ns ,nr

nr1ns1nl5n
nr2nl5Dn

N t
(m)~nl ,nr !

3 l nl sns r nr, ~6!

with normalization(m,s%
P t

(m)(s%)51 @16#. The first factor
accounts for the probability that the trajectory segment st
in cell m2Dn/2, while the second factor is the probability t
find a segment with displacementDn; N t

(m)(nl ,nr) denotes
the number of trajectories of lengthn5t/t, which are cen-
tered atm, makenl (nr) steps to the left~right!, and never
leave the chain. Here, consistently with the piecewise-lin
character of the multibaker dynamics, these probabilities
taken to be independent. Comparing trajectories with th
time-reversed counterparts, we find thatN t

(m)(nl ,nr)
5N t

(m)(nr ,nl). In particular, N t
(m)(nl ,nr)

5n!/(nl ! ns! nr !), if all trajectories stay inside the chain.
To extend the validity of Eq.~1! to distributions like

P t
(m) , observe that time-reversed trajectory segments p

duce the same entropy up to a change of sign,s%
(m)(Dn)5

2s%
(m)(2Dn), as seen by exchangingnr andnl in ~5!. Thus,

gs
P t
(m)@s%

(m)~Dn!#

P t
(m)@s%

(m)~2Dn!#
5

%m2Dn/2 (
nl ,ns ,nr

nr1ns1nl5n
nr2nl5Dn

N t
(m)~nl ,nr ! l nlsnsr nr

%m1Dn/2 (
nl ,ns ,nr

nr1ns1nl5n
nr2nl5Dn

N t
(m)~nl ,nr ! l nrsnsr nl

5
%m2Dn/2

%m1Dn/2
S r

l D
Dn

. ~7!
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After taking the logarithm of both sides, the right-hand si
givest5nt timess%

(m)(Dn). Therefore, Eq.~7! constitutes a
local fluctuation theorem@17#, in the sense that it takes th
form of Eq. ~1! with a5s%

(m)(Dn), but concerns trajectorie
of given centerm and finite lengthnt.

In order to obtain aglobal fluctuation theorem one need
the probabilityP t(s%) of finding a values% irrespective of
the position of the trajectory. This is obtained by summi

up the contributions of allP t
(m)(s%),m51,3

2 ,2,52 , . . . ,N, and
observing thatm contributes toP t(s%) if and only if there is
a displacementDnm with s%5s%

(m)(Dnm). Consequently,

P t~s%!5(
m

P t
(m)@s%

(m)~Dnm!#

5(
m

%m2Dnm/2

%m1Dnm/2
S r

l D
Dnm

P t
(m)@s%

(m)~2Dnm!#

5exp~ ts%!P t~2s%!, ~8!

where we used Eqs.~5! and ~7! with Dnm to obtain the sec-
ond equality. We hereby have derived our key result: Eq.~1!
holds with a5s% in the stationary distribution%m of the
time-reversible system. Moreover, the result does not dep
on the particular choice of boundary conditions.

To recover continuum relations with a form known fro
thermodynamics, we take the macroscopic limit of t
growth rates% . Provided the density difference between t
two ends of trajectories is small, i.e.,%m1Dn/22%m2Dn/2
!%m , we obtain

s%~x;u!5
u j

r~x!D
, ~9!

where u[aDn/t is the average velocity of the considere
trajectory,r(x)5b%m is the density at positionx5am, and
j 5vr(x)2D]xr(x) denotes the current density, which
independent ofx in a steady state. Since the expectati
value ofu is the local streaming velocityj /r(x), the expec-
tation value for the growth rate iss ( irr )(x)5 j 2/@r(x)2D#.
Thus, we formally recover the well-known relation betwe
entropy production and Joule’s heat by using~cf. @11#! the
‘‘Einstein relation’’ rD5selT, where sel represents the
electric conductivity andT the temperature.

Let us consider now the improperly thermostatted mu
baker model~i.e., we no longer requirer̃ 5 l , l̃ 5r ). The
growth rate depends then onnl and nr separately@cf. Eq.
~5!#, while the probabilityP t

(m)@s%
(m)(nl ,nr)# is unchanged.

Since s%
(m) is now no longer a function ofnr2nl only, it

does no longer change sign when comparing a trajectory
ment with its time-reversed image. Therefore, the argum
leading to Eq.~7! no longer applies, and we cannot derive
relation like Eq.~1!. We conclude, that fluctuation theorem
for deterministic systems can only hold for time reversib
dynamics.

Finally, we turn to a comparison with fluctuation the
rems for systems with stochastic dynamics. In Ref.@4# Leb-
owitz and Spohn~LS! considerjump processesdescribed by
a master equation. It is assumed that the direct and the
versed transition probabilities between any two states are
nd

-

g-
nt

re-
i-

ther both vanishing or both nonzero, but no assumption
time-reversal invariance is made. Their basic variable,
action functionalW(t), is proportional to the current of par
ticles integrated over the timet. It is a function of solely the
transition probabilities along the stochastic trajectory. Fot
→`, w5W/t becomes a continuous random variable who
probability distributionP t(w) fulfills Eq. ~1! with a5w @4#.

In our settingW corresponds to a quantity proportional
the particle displacementDn. Since the multibaker map is
discrete time model, we first write a large deviation theo
for Dn in the spirit of@4#, but keep the time unitt finite, as
considered in@18# for random walks without bias. The dy
namics along thex axis is equivalent to a Markov proces
with transition ratest j , j 115r , t j , j 215 l , and t j , j5s, over
time t, i.e., it generates a biased random walk. The mom
generating functione(l) of the random walk is defined via
^exp(2alDn)&;exp@2te(l)# for large timest. Due to the
translation invariance of the transition rates, it takes the fo
e(l)52(1/t) ln@l exp(al)1s1r exp(2al)#. Note thate(l)
only contains the transition rates and not the parametersr̃ , l̃
of the multibaker. It characterizes the random walk along
x axis, but does not concern phase-space dynamics.

The probability to find an average velocityu5aDn/t
along a trajectory of lengtht can be written asP t(u)
;exp@2tg(u)# for large t. A saddle point approximation
shows@4,18# that g(u) is the Legendre transform ofe(l).
For the multibaker map one obtains

g~u!52
1

t
lnF a~R1as!

a22~ut!2G2
u

a
lnF R2s~ut!

2l ~a1ut!G , ~10!

where R[$s2(ut)214lr @a22(ut)2#%1/2 @19#. In this case
Eq. ~1! with a5u only holds in a modified form: the right
hand side of Eq.~1! is no longera but the more genera
expressionA5cu with c5(1/a)ln(r/l). Although for the
variable a5w5W/t5cu considered in@4# this is of the
form of Eq. ~1! andA5w, the spirit is completely different:
the fluctuating quantityw is not necessarily related to en
tropy production. Equation~10! is valid for every random
walk, in particular for those described by one-dimensio
maps, where the concept of phase-space contraction, ne
to obtain the GCFT and Eq.~8!, does not apply. Hence, th
LS fluctuation theorem for the velocityu of an improperly
thermostatted system is still of the modified form of Eq.~1!

with A5uc, irrespective of the choice ofr̃ and l̃ . After all,
the LS approach is based on the transition ratesr and l only.
Thus, the GCFT and the LS fluctuation theorem are differe
Not even formally can they be identified for non tim
reversible dynamical systems.

In conclusion, we obtained strong evidence that both lo
and global entropy-related fluctuation theorems hold also
macroscopically inhomogeneous steady states of ti
reversible systems, and clarified the relation between fluc
tion theorems for chaotic and stochastic systems. For de
ministic dynamics these theorems should be based on
growth rate of the phase-space density. The essential
ingredients of our derivation are a contribution to the entro
production due to density gradients, and the assignment o
a priori probability for a trajectory segment to start at
given position. Although derived for a particular model, w
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believe that our results hold quite generally, since baker-t
maps are known to be paradigms of chaotic systems@20#.
Because of a slower convergence of more general mod
the theorems can, however, only be expected to hold w
evaluated for sufficiently long trajectory segments. Mo
over, for open macroscopic systems of finite sizeL the time
t should be limited from above by the typically much larg
value L2/D in order to ensure a representative sampling
phase space, i.e., to avoid escape of trajectories during
servation. Altogether, this still implies that entropy relat
fluctuation theorems hold for a much wider class of stea
states than previously thought. In particular, our version
the theorem also applies to area preserving systems~i.e., an
unbiased, time-reversal symmetric dynamics! driven by ap-
e

l-

-

to
lls
e

ls,
n

-

f
b-

y
f

propriate nonequilibrium boundary conditions, where there
no phase-space contraction. The local formulation of
fluctuation theorem also allows us to focus on the finite ti
entropy production of a selected number of particles resid
in a finite region of spatially extended systems.
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