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Advection of finite-size particles in open flows
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It is known that small, spherical particles with inertia do not follow the local velocity field of the flow. Here
we investigate the motion of such particles and particle ensembles immersed in open, unsteady flows which, in
the case of ideal pointlike tracers, generate chaotic Lagrangian trajectories. Due to the extra force terms in the
equations of motion~such as Stokes drag, added mass! the inertial tracer trajectories become described by a
high-dimensional (2d11, with d being the flow’s dimension! chaotic dynamics, which can drastically differ
from the (d11)-dimensional ideal tracer dynamics. As a consequence, we find parameter regimes~in terms of
density and size!, where long-term tracer trapping can occur for the inertial particle, even for flows in which no
ideal, pointlike passive tracers can be trapped. These studies are performed in a model of a two-dimensional
channel flow past a cylindrical obstacle. Since the Lagrangian tracer dynamics is sensitive to the particle
density and size parameters, a simple geometric setup in such flows could be used as a~low-density! particle
mixture segregator.

DOI: 10.1103/PhysRevE.67.036303 PACS number~s!: 47.52.1j, 07.07.Df, 05.45.Jn, 47.55.Kf
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I. INTRODUCTION

Recently, there has been an increasing interest in cha
advection@1–3# and its applications. In many situations it
important to take into account that the advected particles
of finite sizeand can beheavier or lighter than the fluid.
Therefore, such particles will follow the fluid motion wit
some inertia only @4–21#. This means that they have th
tendency to take over the velocity of the surrounding flu
due to viscosity~Stokes drag!, and will do so if the fluid
velocity does not change at all, or if it changes very slow
In the general case, however, the fluid has changed its ve
ity by the time the particle could have approached it. T
effect alone can be a source of chaotic behavior@22#.

Understanding the dynamics of inertial particles and
sembles is of paramount importance for many practical
plications, ranging from geophysical sciences~such as pol-
lutant transport, cloud formation, motion of balloons
buoys! to industrial applications@13,9,11#. Many practical
studies target the modeling of aerosol and pollutant transp
using large scale simulations. The majority of simulatio
models the particle transport as if it were a passive, mass
pointlike ~ideal! tracer, which simply follows the flow. This
approximation, as we show, can lead to rather severe er
of order one, in computing tracer trajectories or ensem
dynamics.

The paper is organized as follows. In Sec. II we brie
recall the equation of motion for advected particles if th
are of finite size and have small inertia. In Sec. III we defi
the analytical model flow used in this paper, which is
open flow in the wake of a solid cylinder where the v
Kármán vortex street is located. Section IV discusses
form of the inertial particle trajectories in comparison wi
the passive ones. The principal characteristics of the
semble dynamics are treated in Sec. V: the escape ratesA),
the residence time statistics (B), and the invariant sets with
fractal properties at different time scales (C). We point out
the possibility for light particles of having attractors in th
1063-651X/2003/67~3!/036303~11!/$20.00 67 0363
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inertial dynamics, even in open flows. In Sec. VI we stu
the nature of these attractors. In Sec. VII we present ho
simple geometrical setup can be used as a particle mix
segregator. Next we demonstrate with a simple calcula
that the phenomenon of trapping is a generic property res
ing from the nonlinear interaction of the temporal depe
dence of the underlying flow and the size and inertia effe
The last section contains concluding remarks.

II. THE EQUATION OF MOTION

The total force exerted on a small spherical particle
radiusa and massmp immersed in a fluid is given by

Fi5mpgi1 R s i j njdS, i 51, . . . ,d, ~1!

where g is the gravitational acceleration~and creates the
buoyancy force!, s i j is the fluid stress tensor on the sphe
and the integration is over the surface of the sphere. Hered is
the dimensionality of the flow, typicallyd52 or d53. In
this paper we concentrate on two-dimensional (d52) flows,
and assume that the buoyancy force is nonexistent. The p
ence of the particle in the fluid adds a no-slip boundary c
dition to the time-dependent Navier-Stokes equation mod
ing the flow locally. The stress tensor can be approximat
evaluated to yield the most important force terms in t
equation of motion for the particle@5–13#

Fi5mf

dui

dt
2

mf

2 S dv i

dt
2

dui

dt D26pam~v i2ui !, ~2!

where the terms from left to right are as follows.
~1! The fluid force on the particle from the undisturbe

flow field u, and d/dt is the total derivative following the
fluid motion, i.e.,
©2003 The American Physical Society03-1
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dui

dt
5

]ui

]t
1~u•“ !ui . ~3!

~2! The added mass term, expressing the fact that an
ertial particle brings into motion a certain amount of flui
too, proportional to half of its volume, wheremf is the mass
of the displaced fluid~here we use the corrected version
derived by Autonet al. @7#!.

~3! The Stokes drag, proportional to the difference b
tweenv i , the particle velocity andui , the flow velocity, and
vanishing for pointlike tracers . An additional force contrib
tion is the Boussinesq-Basset history integral te
26pa2m*0

t dt$@d(v i2ui)#/dt%/Apn(t2t), where m and
n are the fluid’s dynamic and kinematic viscosities, resp
tively. The history term represents the effects of the diffus
of vorticity around the spherical particle, but in many case
can be dropped from the equations. For a list of conditio
where this cannot be neglected, see Ref.@13#. In the follow-
ing we will drop from our calculations the history term
which in the parameter region studied by us is justified@13#.
We assume that the particles are so small, and their con
tration so low, that they do not modify the flow field o
interact with each other. A first step towards the descript
of cases with large particle concentration could be the inv
tigation of excluded volume effects and the inclusion of lo
velocity fields, Stokeslets, generated by each moving par
@23#, which we leave for further studies.

Thus, based on Eq.~2!, the equations of motionFi
5mpdv i /dt for an inertial tracer can be cast in the dime
sionless form@20#:

dv

dt
2

3

2
R

du

dt
52A~v2u!. ~4!

The two parameters are the ‘‘mass ratio parameter’’R and
the ‘‘inertia or size parameter’’A given by

R5
2r f

r f12rp
, ~5!

A5R/St, St5
2

9 S a

L D 2

Re, ~6!

wherer f andrp are the densities of the fluid and the partic
St is the particle Stokes number~or the dimensionless deca
time due to the Stokes drag!, Re5UL/n is the fluid Rey-
nolds number,L is a typical large-scale mixing length andU
is a typical large-scale fluid velocity. The tracer equation~4!
is valid only for initial tracer velocities matching the flui
velocity @5#.

The presence of the coefficient 3R/2 expresses the adde
mass effect, which is not present for neutrally buoyant p
ticles, whereR52/3. If 0,R,2/3, the particle is heavie
than the fluid. This is called theaerosol range@6#. For 2/3
,R,2 the particle is lighter than the surrounding fluid. Th
is called thebubblerange@6#.

The limit A→` ~irrespective ofR) corresponds to the
passive ideal tracer limit. As we shall see, the most relev
parameter responsible for tracer and fluid trajectory de
03630
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tions is the inertia parameterA. The smallerA, the more
pronounced is the effect. This effect can be of order one e
for very small particles in a flow with chaotic Lagrangia
dynamics@19,22#, or in turbulent flows@16#.

For nonturbulent, low Reynolds number~Re! flows, with
Re on the order of hundreds, the particle dynamics is ty
cally chaotic@1–3#. Therefore, small deviations between pa
ticle trajectories will grow exponentially in time at a ra
given by the largest positive Lyapunov exponent.

From Eq.~4! it follows that the inertial dynamics is dis
sipative. In incompressible flows, to which we restrict ou
selves, the phase space contraction rate isdA, positive in
contrast to the ideal case which is area preserving. T
opens the possibility of having attractors in the dynamics

The general inertial dynamics~4! possesses a high
dimensional phase space. For advection in planar flows,
sides the two coordinates (x,y), two velocity components
(vx ,vy) should also be taken into account. Since the flow
shall consider is time dependent, periodic, the phase spa
five dimensional. On stroboscopic snapshots, a fo
dimensional map with variables (x,y,vx ,vy) governs the dy-
namics. It is to be noted that attractors or any other invari
sets exist in the full phase space, but what we observe in
plane of the flow is always aprojectionof these sets on the
configuration space. The mere position of the particle d
not contain information on the tracer velocity, which is
general different from that of the flow.

III. THE OPEN FLOW MODEL

In this paper, we show that the inclusion of inertia a
size parameters of a small spherical particle as shown in
~4!, can lead to drastic changes in the chaotic advection
namics of the inertial tracer even in open flows@20#. In par-
ticular we are interested in the behavior of finite-size trac
in the wake of obstacles~such as a stick, a pillar or an island!
for low-Re flows, where the Eulerian velocity is smooth
space and periodic in time. Ideal tracers are known to exh
in such time-periodic open flows transient chaos@24#: they
can stay in the wake over finite times, but ultimately all t
particles escape. This behavior is in contrast with the eve
day observation according to which light particles or objec
like e.g., empty coke cans, can be trapped in the wake
arbitrarily long times. This will be explained by the finite
size effects described by Eq.~4!.

As a workbanch system, we consider a model of the v
Kármán vortex street in the wake of a cylinder@24#. Due to
the incompressibility of the flow, we can define a strea
function C5C(x,y,t) such that

ux5
]C

]y
, uy52

]C

]x
. ~7!

By measuring the length in units of the cylinder radiu
which is simultaneously the characteristic linear sizeL of the
flow, and taking the periodT of the flow as the time unit, the
dimensionless model streamfunction is given by the prod
C5 f g, where
3-2
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f ~x,y!512e2(Ax21y221)2 ~8!

ensures the presence of a boundary layer~fluid velocity dis-
appearing along the unit circle, which is the surface of
cylinder!, and

g52wh1g11wh2g21u0ys ~9!

describes the periodic detachment of vortices. Herew repre-
sents the average strength of the vortices, and

h1~ t !5sin2~pt !, h2~ t !5cos2~pt !, ~10!

are functions characterizing the time evolution of the vort
ity. In Eq. ~9! u0 is the dimensionless background veloci
and s5s(x,y)512exp@2(x21)2/c22(y)2# is a shielding
factor, which suppresses the background velocity in
wake. The factors

gi~x,y,t !5e2r 0[(x2xi )
21c2(y1(21)i y0)2] , i 51,2 ~11!

describe the Gaussian forms of the vortices of dimension
size 1/Ar 0, whose positions in the wake arex1(t),y0 and
x2(t),2y0, respectively, with x1(t)511 l $t%,x2(t)5x1(t
21/2), wherel is the dimensionless distance a vortex pas
during its lifetime, and 0<$z%,1 denotes the fractional pa
of z. The parameters held fixed in this paper areu0514, r 0
50.35, y050.3, c52, andl 52. The same model withh1
5usin(pt)u, h25ucos(pt)u, w524 has been checked to b
consistent with the passive advection in a Navier-Sto
simulation at fluid Reynolds number about 250@24#. Since
the dynamics of inertial tracers contains the temporal der
tive of the velocity, we are replacing the original forms
h1 ,h2 by the smoother terms given by Eq.~10!. In order to
produce the same qualitative behavior, we have to consid
flow with larger values ofw then in Ref.@24# so that the
vortex strength averaged over time units stays the same
the following we present the numerical results either for
enlarged valuew5192/p or for w524.

IV. SAMPLE TRAJECTORIES

In this section we demonstrate pictorially how, due to t
finite-size effects, the inertial tracer’s trajectories devi
from the passive ones and how their complicated shapes
proach the Hamiltonian limit, asA increases. We present th
results of a few runs to compare inertial tracer trajector
with the same initial conditions but for different particle de
sities and inertia. Equation~4! is valid for small particle
Stokes numbers (aU/n) only. Therefore, our detailed stud
is restricted toSt,0.1, A.10.

In the aerosol(R,2/3) regime one expects that the pa
ticles exit the wake faster on average than the ideal trac
The aerosol will be harder to be captured in the wake, si
the centrifugal force along any closed orbit is pushing

particle outward. Figure 1 shows the inertial particle trajec
tories for increasing values ofA. Certainly, the inertial tra-
jectory has to converge to the passive one, asA increases,
and this is indeed the case.

In the bubble(R.2/3) regime one expects that the par-
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ticle will be captured for longer times in the wake since t
anticentrifugal force is an effective force of attraction t
wards the center of a closed orbit. In particular, the bub
will travel with the vortex for a longer period. AsA increases
the inertial trajectory converges to the passive one~Fig. 2!.

FIG. 1. Aerosol,R50.5. Inertial and passive tracer trajecto
comparison in the (x,y) plane. All trajectories were started from
x0522.0, y0520.11 at t050,w5192/p. ~A! A520, ~B! A
5200, ~C! A52000. The dashed line is the passive tracer’s traj
tory (A5`).

FIG. 2. Bubble,R50.8. Inertial and passive tracer trajecto
comparison. All trajectories were started fromx0522.0, y0

50.06 att050. All other parameters as in Fig. 1. The dashed li
is the passive tracer’s trajectory (A5`). In all the runs, the parti-
cle’s initial velocity is matched to that of the fluid.
3-3
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V. ENSEMBLE DYNAMICS

A. Escape rates

A statistical measure of the sensitive selectivity of t
flow on the inertia and mass parameters is obtained from
study of the escape rate@25#. We start a large number o
particles uniformly distributed in a fixed region in the wak
The number of nonescaped particles after timet is propor-
tional to exp(2kt), wherek is the escape rate.

The passive advectionproblem with w5192/p and w
524 is characterized by the escape ratek50.36 andk
50.19, respectively.

From theaerosolregime we consider a fixed value of th
mass ratioR, and study the escape rate as function of
inertia parameterA. One can observe~cf. Fig. 3! that the
exponential decay of the aerosols takes place much fa
than in the Hamiltonian case.

For thebubbleregime we perform the same computati
as in the case of aerosols. We find that the bubbles sp
much more time in the wake. The escape rate vanishes in
range 14,A,45, and then forA→` it converges to thek
value obtained in the Hamiltonian case, as it should. T
behavior is shown in Fig. 4. In the range 14,A,45 there is
an extended region in the wake from which particles do
escape at all. Along with this, two isolated orbits behind
cylinder become attractive~for more detail concerning the
attractors see Sec. VI!. Both the efficient decrease of th
escape rate and the disappearance of escape is interpre
a statistical consequence of the anticentrifugal force ac
on the bubbles@26#, mentioned in Sec. IV.

B. The residence time statistics

The region of vanishingk in Fig. 4 implies that the inertia
can modify the dynamics to the point where attractors app

FIG. 3. Aerosol. Dependence of the escape rate on the in
parameterA for R50.5, w5192/p. The horizontal line represent
the Hamiltonian value ofk. We started 106 randomly distributed
particles in the domain@0.6,4#3@22,2# around the cylinder and
measured the numberN(t) of surviving particles. A particle was
considered to have escaped if it passed the linex54, or if it ap-
proached the cylinder within a distance of 0.014. The exit on
surface of the cylinder was taken into account to separate the
hyperbolic motion in the boundary layer from the dynamics in
wake. To determinek, we took the average slope in the time peri
2–9 of the lnN vs t plot.
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in the phase space with a visible component in the confi
ration space. In order to show this, in Fig. 5 we present
residence time@20# of the inertial tracers~in the bubble re-
gime only! on the plane of initial conditions taken at a ce
tain instantt0 of time ~modulo the periodT51 of the flow!.
The shades of blue, yellow and red depict residence time
increasing order. Dark red corresponds to initial conditio
that lead to permanently trapped particles. The cylinde
shadded dark blue. By definition, the dark red domains c
respond to the basin of attraction of the attractors that
peared in the configuration space.

As a comparison we include in Fig. 6 the residence tim
in the passive advection problem, too. The yellow filame
represent the stable manifold of the chaotic saddle that g
erns the passive dynamics. The red points correspon
small KAM tori appearing for this value ofw in the advec-
tion dynamics~cf. the inset in Fig. 6!.

tia

e
n-

FIG. 4. Bubble. Dependence of the escape rate on the ine
parameterA for R51.7, w5192/p. The dashed line represents th
Hamiltonian value ofk. We use the same 106 particle ensemble and
perform the same steps as in the case of aerosols. We determk
as the average slope in the time period 5–25 of the lnN vs t plot.
Error bars are in both Figs. 3 and 4 smaller than the size of the d

FIG. 5. ~Color! Residence times for a bubble. The paramet
are:A530, R51.33,w524, t050.3. We started a particle in ever
point of a (5403540) grid covering the region shown around th
cylinder, and measured the time needed to leave this region do
stream.
3-4
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Due to inertia, these tori are transformed into attracto
and the basins of attraction appear along the stable filam
tation of the Hamiltonian system. By changing the valuew
524 to w5192/p the tori of the Hamiltonian system disap
pear, and we find only purely hyperbolic orbits. Even in th
case attractors can appear due to inertia@20#. Therefore, at-
tractors can be formed from both marginally stable tori a
purely unstable hyperbolic saddles of the passive advecti
Hamiltonian dynamics.

C. Different time scales in the decay dynamics

We recall that the passive advection problem of parti
ensembles is characterized by an exponential decay onl
short-time scales. This is caused by the existence of a cha
saddle in the wake. In the long-time behavior, however
power-law decay is observed due to the nearly margin
stable particle dynamics in the close vicinity of the surface
the cylinder@24#.

In the inertial dynamics we observe—in contrast—tw
coexisting chaotic saddles in the wake~one on short and
intermediate time scales! and a third nonhyperbolic chaoti
set ~on long-time scales!, which is not only the obstacle’s
surface in this case. The short-time chaotic saddle is
formed in the limitA→` into the saddle responsible to th
chaotic behavior in the passive dynamics. The others hav
direct counterparts in the passive advection problem, t
presence being due to inertial effects.

The three different time scales associated with these
variant sets can be read off from the graph of the numbe
nonescaped particles vs time. In the log-lin plot one fin
two segments with different slopes, the first in the range 0
the second in the range 6–25 time units, corresponding to
short- and intermediate-time scales@Fig. 7~a!#, respectively.
In the range of 30–150 time units the decay is different a
tends towards a power law@Fig. 7~b!#.

We present a detailed study at the fixed parametersR
51.33, A530, w524, but emphasize that the behavi
found here is typical. The classification of the decay dyna
ics holds in the wholeA andR range where attractors exis

FIG. 6. ~Color! Residence times for an ideal passive tracer. T
parameters are:w524, t050.3. The inset is a magnification of th
domain@0.89,0.94#3@20.75,20.5#.
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Note that in the aerosol range the escape is much faster
characterized by one single exponential decay. Hence
corresponding escape rate is extracted from the short
scales~see caption to Fig. 3!.

In order to obtain the invariant sets, we used the meth
of Ref. @27#: the idea is based on chosing an appropri
numbern of time units comparable with the average lifetim
of chaos, and then following those particles from a lar
ensemble which do not escape the selected region of inte
up to n time units. These survivors can only be those w
came, within this period, sufficiently close to the chao
saddle. Since such particles must have come in along
stable manifold and must leave the region along the unst
one, by plotting the positions of the surviving particles
times 0,n/2 and n, we obtain a good approximant to th
saddle’s stable manifold, to the saddle itself, and to its
stable manifold, respectively.

D. Hyperbolic behavior

The short-time decay is due to a hyperbolic chaot
saddle, which is separating a direct escape downstream
a turning back towards the obstacle. The stable manifold
this saddle coresponds to the green filaments of Fig. 8.
points colored in magenta trace out the unstable manifold
this chaotic saddle. The chaotic saddle itself is the comm
part of the stable and unstable manifolds. The saddle is
perbolic, which is manifest from it’s Cantor-set structure.
generates short, transiently chaotic trajectories, which
the wake downstream.

The exponential decayon intermediate time scalesis due
to another chaotic saddle, which separates the escape to
of the two periodic attractors from the escape to the wall
the cylinder~Fig. 9!. Since all the invariant sets lie in the fu
phase space, we show the saddle in thex,y,vx space of the
strobosocopic map. On this time scales we find particles
are trapped permanently in the wake. They have three po
bilities: either to go directly to one of the attractors, or to fir

e

FIG. 7. The number of nonescaped particles vs time based o
ensemble initially covering the region@0.6,4#3@22,2#. ~a! The
log-lin plot shows two segments with different slopes.~b! The log-
log plot shows a convergence towards a power law. To enhance
nonhyperbolic effect we did not cut out here the ring of width 0.0
arround the cylinder@as we did in part~a!# which made the overall
decrease ofN slower. The parameters areR51.33, A530, w
524.
3-5
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BENCZIK, TOROCZKAI, AND TÉL PHYSICAL REVIEW E 67, 036303 ~2003!
approach the surface of the obstacle, then pass along the
with velocity close to zero before being trapped by any of
attractors, permanently. Therefore, we can consider the
as a temporary attractor. In order to determine this saddle
its manifolds, we determine a small region of linear s
0.014 around the attractors and around the cylinder, and
sider a particle escaped if it falls within any of these regio

The initial positions of the particles mentioned above
in the basin of attractionof the attractors. The basins o
attraction determined by this method@Fig. 10~a!# are of finite
area and extend upstream~the orange domain of Fig. 8!. This
indicates that there is a nonzero probability for a random
chosen particle to be trapped in the wake. By definition,
fractal boundary between the basins shown is the st
manifold of the chaotic saddle of Fig. 9.

To make the picture complete, we determined the unsta
manifold of the saddle, too~see Fig. 11!.

FIG. 8. ~Color! Initial conditions of particles not leaving th
region shown within the first time unit.R51.33, A530, w524,
t050. We started an ensemble initially covering the whole reg
shown, and measured the time needed to pass the linex54. Points
escaping within the first 4 units are colored green. The endp
taken at time 4 of the particles trajectories starting from the gr
region is colored in magenta. Points in orange do not leave
wake over 100 time units.

FIG. 9. ~Color! The saddle~and its projection on thex,y
plane—in blue! governing the dynamics on intermediate time sca
5,t,20 in 3D.R51.33,A530, w524. The figure is obtained by
plotting the positions at time 10 of the particles which started
time t50 and came close to the attractors between 20 and 25
units. The green line represents the cylinder’s surface.
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E. Nonhyperbolic behavior

On the long-time scales we find in the wake only tho
particles which came back from the boundary layer. Th
behavior is dominated by nonhyperbolic effects. We ha
found that the saddle on this time scale is the same as
unstable manifold of Fig. 11. It does not exhibit any Cant
set-like behavior in one direction of the plane of the flo
This local fattening up of the chaotic set is the reason of
power-law decay of the number of nonescaped partic
@28–30#.

In order to find the stable manifold of this chaotic set, w
determine the basins of attraction in Fig. 10~b!. The inter-
spersion of the red and blue filaments is a sign of the bas
tendency to fill the 2D plane. Repeating the same meas
ments on longer-time scales (100 time units!, the basin
boundary, i.e., the stable manifold, appears to be two dim
sional in the (x,y) plane. The boundary between the bas
of attraction becomes a fat fractal, it fills the 2D plane, a
sign of nonhyperbolic behavior.

VI. ATTRACTORS

As illustrated in Sec. V, our main observation is that
contrast to the passive case, bubblescan get trapped perma
nently in the wake of the obstacle. This means that due
inertia attractors appear in the phase space which are
present in the passive tracer limit.

A second important observation is that the longer lifetim
of chaos and trapping is not only due to the surface of
cylinder. The attractors are actually situated in the wa
away from the boundary of the cylinder. The attractor atR
51.7, A530, w5192/p is a periodT51, bean-shaped loop
~on either sides ofy50), i.e., it is a fixed point of the stro
boscopic map. Figure 12 shows the form of one of the
attractors, and the velocity-differences along the attracto

A bounded particle trajectory can only exist if the partic
is for some time faster, and then for some time slower th
the flow. The inset of Fig. 12 shows the velocity of the pa
ticle and the relative velocity between particle and flo
along a periodic attractor. Note that the integral ofvx2ux is
zero over one period.

As the particle becomes less dense, as R increases~at a
fixed A), these isolated periodic attractors are transform
into two chaotic attractors~Fig. 13! through an inverse
period-doubling sequence, see Fig. 14. At smaller values o
R, these chaotic attractors are transformed into a single
tractor which contains the surface of the cylinder.

By fixing R51.7, we obtain for both increasing and d
creasing values of the size parameterA a period doubling
bifurcation sequence~Fig. 15!.

VII. SEGREGATION

As a consequence of the results above, particles ta
from a mixture of particles of different types have differe
dynamics as a function of size and inertia parameters. Th
fore, segregation can take place, for example when we s
with a mixture of particles of the same density but of diffe
ent size~sameR, differentA).
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FIG. 10. ~Color! Fractal boundary between the basins of attraction on intermediate time scales~a! and on long time scales~b!. In ~a! we
plot the initial positions of the particles, which approached the cylinder within a distance of 0.014, or reached one of the two attr
20 time units. Points within the narrow white stripes have not yet reached any of the attractors by time 20. In~b! we plot the initial positions
of the points which reach one of the attractors after 40 time units. The colors are: red/blue the basins of the upper/lower attractors a
the basin of attraction of the cylinder.R51.33, A530, w524, t050.
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Here we use a simple geometrical setup: the outgo
particle, which exits the chaotic region in the wake of
obstacle, becomes incoming particle for another obsta
situated downstream from the first. We consider a chain
several cylinders@31# situated at a distance of 8 cylinde
radius units from each other, where the flow field is appro
mately uniform. The fate of a droplet was followed whic
initially consisted of 53104 randomly distributed particles in
the range@22,21.5#3@20.5,0.5# with mass ratioR51.4
and with size:A520, A5120, colored in red and blue. Afte
passing several cylinders, the droplet exhibits a separatio
colors which is manifest from Fig. 16.

FIG. 11. The unstable manifold of the saddle on the interme
ate time scales, obtained by plotting the endpoints at time 20 of
trajectories starting in the colored region of Fig. 10~a!.
03630
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VIII. STABILIZING UNSTABLE ORBITS VIA INERTIA IN
TIME PERIODIC FLOWS

A natural question to ask is how generic the phenome
of trapping is, namely, if one can expect similar behavior
other types of flows as well. Our claim is that the pheno
enon of trapping is ageneric property resulting from the
nonlinear interaction of thetemporal dependenceof the un-
derlying flow and of the inertial effects. In order to sho

i-
e

FIG. 12. The periodic attractor in the upper half plane, forR
51.7, A530, w5192/p. We also show the relative velocity (v-u)
vectors~which determine the Stokes drag! along the attractor, at a
few instants of time (tP$0.1,0.5,0.6,0.8,0.0%). The inset represents
the velocity componentvx of the bubble and the relative velocit
vx2ux between the tracer and the flow along the attractor.
3-7
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BENCZIK, TOROCZKAI, AND TÉL PHYSICAL REVIEW E 67, 036303 ~2003!
this, we now present a proof-of-principle type of calculati
in the case of a simple, generic flow model. This exhibit
single hyperbolic fixed-point in the origin~so a passive trace
would be repelled to infinity!. We show that there is a pa
rameter regime forbubbles, where this fixed-point become
attracting. Let us consider for this purpose a two
dimensional flow which has the streamfunction@2#

C~x,y,t !5
G

2
y22

GK

2
x2, ~12!

(G andK are real!. It generates the fluid velocity fieldu with
components ux(x,y,t)5]C/]y5Gy and uy(x,y,t)
52]C/]x5GKx. Therefore, the passive tracer motion
described by dx/dt5ux(x,y,t)5Gy, dy/dt5uy(x,y,t)
5GKx. It is easy to solve for the motion of the passi
tracer in this flow field, providedG andK are constants@2#.

WhenK.0, the fixed pointx50 is hyperbolic. The flow
exponentially diverges to infinity along the direction of th
eigenvector that belongs to the positive eigenvalue and,
ponentially contracts in the direction along the other eig
vector. WhenK,0 the flow is purely rotational. ForK50
we have a pure shearing motion, see Fig. 17.

FIG. 13. The chaotic attractor in the upper half plane atR
51.47, A530, w5192/p.

FIG. 14. The bifurcation diagram as a function ofR. The pa-
rameters are:w5192/p, A530. The plot was obtained by startin
8000 particles in the range@0.5,1.1#3@20.9,0.9# of the wake and
plotting theirx coordinate after 520 time units.
03630
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A. Inertial tracer motion

In the following we study how the inertia effects modif
the tracer trajectory compared to the Hamiltonian motion
the ideal tracers. The full set of equations takes the form

ẋ5vx , ~13!

ẏ5vy , ~14!

v̇x52Avx1~3/2!RG2Kx1AGy, ~15!

v̇y52Avy1AGKx1~3/2!RG2Ky, ~16!

where dots represent time derivatives. By introducing
notations:Z15x, Z25y, Z35vx , Z45vy , a53R/2, the
system above becomes

Ż5M Z , ~17!

where Z is the 431 column vector formed fromZi , i
51,2,3,4, andM is the 434 matrix:

M5F 0 0 1 0

0 0 0 1

aG2K AG 2A 0

AGK aG2K 0 2A

G . ~18!

Let

D (6)5AA264AGAK14aG2K

5A~A62GAK !214~a21!G2K ~19!

.

Then the four eigenvalues ofM are

L152
A

2
1

D (1)

2
, L252

A

2
2

D (1)

2
, ~20!

L352
A

2
1

D (2)

2
, L452

A

2
2

D (2)

2
. ~21!

FIG. 15. The bifurcation diagram as a function ofA. The pa-
rameters are:w5192/p, R51.7. The plot was obtained in a
analogous way as Fig. 14.
3-8
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FIG. 16. ~Color! A chaotic chromatograph: segregation of particles in the (x,y) plane after 10 time units in the periodic cylindrical flo
with R51.4 andA520, A5120, colored in red and blue, respectively. Ellipses mark the cylinders.
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B. Time-periodic flow

We redefine the streamfunction by replacing the cons
G by the time-periodic form

G~ t !511L sinvt, ~22!

whereL,v.0.

1. Hamiltonian tracer motion

The passive tracer motion is described by

ẋ5ux~x,y,t !5
]C

]y
5G~ t !y, ~23!

ẏ5uy~x,y,t !52
]C

]x
5G~ t !Kx. ~24!

It is easy to see from above that the Hamiltonian tracer
jectories in the (x,y) space remain the same as for the s
tionary (L50) case. The motion along these trajectories
changed however.

2. Inertial tracer motion

In this case, due to the explicit time-dependence, Eq.~4!
retains the time derivates ofu as well. We obtain

ẋ5vx , ~25!
03630
nt

-
-
s

ẏ5vy , ~26!

v̇x52Avx1aG2Kx1~AG1aĠ!y, ~27!

v̇y52Avy1~AG1aĠ!Kx1aG2Ky, ~28!

whereĠ(t)5Lv cosvt. The corresponding matrix equatio
is

Ż5M ~ t !Z, ~29!

where

M ~ t !5F 0 0 1 0

0 0 0 1

aG2K AG1aĠ 2A 0

~AG1aĠ!K aG2K 0 2A

G .

~30!

This system however is strongly nonautonomous which
plies the difficulty of finding an exact solution. Instead of a
exact solution, we are interested in showing that there can
values for the parameters such that the origin becomes
attractor for the inertial particle, in spite of the fact that f
the Hamiltonian tracer the origin is a hyperbolic fixed poin
Numerically, it is very easy
FIG. 17. Flow types for the model flow. HereG.0 was assumed.
3-9
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BENCZIK, TOROCZKAI, AND TÉL PHYSICAL REVIEW E 67, 036303 ~2003!
to find parameter values where the origin becomes attrac
for K.0, see for example, Fig. 18.

We would like to find a condition for stabilizing the ine
tial particle to the origin whenK.0. In order to further
simplify the calculations, we assume thatK51. By introduc-
ing the variables

z~ t !5x~ t !1y~ t !, v~ t !5vx~ t !1vy~ t !, ~31!

the equations of motion become

ż5v, v̇52Av1a~ t !z, ~32!

where

a~ t !5aG~ t !21AG~ t !1aĠ~ t !5A1a1Lav cos~vt !

1L~A12a!sin~vt !1L2a sin2~vt ! ~33!

is a periodic function in time. The initial conditions mu
satisfy

v~ t0!5G~ t0!z~ t0!. ~34!

The variablez(t) describes the projection of the motion o
the first bisector. If the motion is bounded in the (x,y) coor-
dinates, then the motion inz will be bounded, too. The con
verse is not necessarily true, and therefore requiring the
bility of the origin in the z motion will be a necessary
condition for the stability in the original motion. The syste
above is equivalent to the following second order differen
equation:

z̈1Aż5a~ t !z, ~35!

FIG. 18. Bubble trajectory spiraling into the origin for the tim
periodic model. The parameters are:K50.2, A520, R51.3, v
56p, L515, x055.2, y056.5.
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subject to initial conditions satisfyingż(t0)5z(t0)G(t0). Af-
ter the transformation,u5 ż/z1A/2, Eq. ~35! becomes

u̇1u25b~ t ! ~36!

with b(t)[A2/41a(t), and initial conditionu(t0)5G(t0)
1A/2. Thus, knowing a solutionu(t), one obtains a solution
for z as

z~ t !5z0 expH 2
A

2
~ t2t0!1E

t0

t

u~s!dsJ . ~37!

This means that the asymptotic stability of the origin inz will
be determined by the long-time behavior of the integ
Q(t)5* t0

t u(s)ds. If ū5 lim
t→`

Q(t)/t.A/2 the origin is at-

tracting, forū5A/2 it is marginally stable, and it is repelling
or unstable forū,A/2.

IX. CONCLUSIONS

Finite size and inertia effects may strongly modify th
advection dynamics, in particular in the bubble regime. H
the escaping process becomes slower, attractors may ap
and if so, fractal boundaries are created between the ba
of attractions. The attractors can be formed from both m
ginally stable tori and purely hyperbolic, unstable trajector
of the passive advection’s Hamiltonian dynamics.

We have pointed out the possibility that by a proper e
gineering of the geometry of the openchaoticflow, selective
inertial particle traps can be designed. The trapping phen
enon is at the same time a warning that a simple modelin
inertial particles as passive ideal tracers can lead to g
errors in forecasting particle motion. Our example shows t
a harmful substance while modeled as a passive tracer
clear the wake of an obstacle, but in reality it may be inde
nitely trapped there under the same conditions. These ob
vations might explain the enhanced accumulation of pol
ants in the atmospheric or aquatic media.
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