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Advection of finite-size particles in open flows
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It is known that small, spherical particles with inertia do not follow the local velocity field of the flow. Here
we investigate the motion of such particles and particle ensembles immersed in open, unsteady flows which, in
the case of ideal pointlike tracers, generate chaotic Lagrangian trajectories. Due to the extra force terms in the
equations of motiorisuch as Stokes drag, added mabe inertial tracer trajectories become described by a
high-dimensional (2+ 1, with d being the flow’s dimensionchaotic dynamics, which can drastically differ
from the d+ 1)-dimensional ideal tracer dynamics. As a consequence, we find parameter régiteess of
density and size where long-term tracer trapping can occur for the inertial particle, even for flows in which no
ideal, pointlike passive tracers can be trapped. These studies are performed in a model of a two-dimensional
channel flow past a cylindrical obstacle. Since the Lagrangian tracer dynamics is sensitive to the particle
density and size parameters, a simple geometric setup in such flows could be usénhadensity particle
mixture segregator.
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[. INTRODUCTION inertial dynamics, even in open flows. In Sec. VI we study
the nature of these attractors. In Sec. VII we present how a
Recently, there has been an increasing interest in chaot®mple geometrical setup can be used as a particle mixture
advection[1—-3] and its applications. In many situations it is Segregator. Next we demonstrate with a simple calculation
important to take into account that the advected particles aré1at the phenomenon of trapping is a generic property result-
of finite sizeand can beheavier or lighterthan the fluid. ing from the nonlinear interaction of the temporal depen-
Therefore, such particles will follow the fluid motion with dence of the underlying flow and the size and inertia effects.
someinertia only [4—21]. This means that they have the The last section contains concluding remarks.
tendency to take over the velocity of the surrounding fluid
due to viscosity(Stokes drag and will do so if the fluid
velocity does not change at all, or if it changes very slowly.
In the general case, however, the fluid has changed its veloc- The total force exerted on a small spherical particle of
ity by the time the particle could have approached it. Thisradiusa and massn, immersed in a fluid is given by
effect alone can be a source of chaotic behaj2ai.
Understanding the dynamics of inertial particles and en-
sembles is of paramount importance for many practical ap- Fi=m,g;+ jg ojnds, i=1,...4d, (N)
plications, ranging from geophysical sciendesch as pol-
lutant transport, cloud formation, motion of balloons or
buoys to industrial applicationg13,9,11. Many practical where g is the gravitational acceleratiofand creates the
studies target the modeling of aerosol and pollutant transporbuoyancy forcg o; is the fluid stress tensor on the sphere
using large scale simulations. The majority of simulationsand the integration is over the surface of the sphere. Héege
models the particle transport as if it were a passive, masslesthie dimensionality of the flow, typicallg=2 or d=3. In
pointlike (idea) tracer, which simply follows the flow. This this paper we concentrate on two-dimensiorgaQ) flows,
approximation, as we show, can lead to rather severe errorand assume that the buoyancy force is nonexistent. The pres-
of order one, in computing tracer trajectories or ensemblence of the particle in the fluid adds a no-slip boundary con-
dynamics. dition to the time-dependent Navier-Stokes equation modify-
The paper is organized as follows. In Sec. Il we brieflying the flow locally. The stress tensor can be approximately
recall the equation of motion for advected particles if theyevaluated to yield the most important force terms in the
are of finite size and have small inertia. In Sec. Il we defineequation of motion for the particlg—13]
the analytical model flow used in this paper, which is an
ogen,flow in the wake of a solid cylinder where the von du m(dv, du;
Karman vortex street is located. Section IV discusses the Fi=mf—'——<—'——'
form of the inertial particle trajectories in comparison with dt 2 1dt dt
the passive ones. The principal characteristics of the en-
semble dynamics are treated in Sec. V: the escape rA)es ( where the terms from left to right are as follows.
the residence time statisticB), and the invariant sets with (1) The fluid force on the particle from the undisturbed
fractal properties at different time scaleS)( We point out  flow field u, andd/dt is the total derivative following the
the possibility for light particles of having attractors in the fluid motion, i.e.,

Il. THE EQUATION OF MOTION

) —6mau(vi—u), (2
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du; du; tions is the inertia parameték. The smallerA, the more
ai - TV (3)  pronounced is the effect. This effect can be of order one even
for very small particles in a flow with chaotic Lagrangian
(2) The added mass term, expressing the fact that an ifdynamics[19,22, or in turbulent flowq16].
ertial particle brings into motion a certain amount of fluid,  For nonturbulent, low Reynolds numbgRe) flows, with
too, proportional to half of its volume, wheng; is the mass Re on the order of hundreds, the particle dynamics is typi-
of the displaced fluidhere we use the corrected version ascally chaotic[1-3]. Therefore, small deviations between par-

derived by Autoret al. [7]). ticle trajectories will grow exponentially in time at a rate
(3) The Stokes drag, proportional to the difference be-given by the largest positive Lyapunov exponent.
tweenv; , the particle velocity and; , the flow velocity, and From Eq.(4) it follows that the inertial dynamics is dis-

vanishing for pointlike tracers . An additional force contribu- Sipative. In incompressible flows, to which we restrict our-
tion is the Boussinesg-Basset history integral termselves, the phase space contraction ratdAs positive in
—6ma’uftdr{[d(v;—u;)]/d7}/ [7v(t—7), where . and contrast to the. |d¢al caselwhlch is area preserving. This
v are the fluid’s dynamic and kinematic viscosities, respec®Pens the possibility of having attractors in the dynamics.
tively. The history term represents the effects of the diffusion _ 1he general inertial dynamice4) possesses a high-

of vorticity around the spherical particle, but in many cases iimensional phase space. For advection in planar flows, be-
can be dropped from the equations. For a list of condition§ides the two coordinatesy), two velocity components
where this cannot be neglected, see RES]. In the follow- (vx,vy) sh.ould_als.o be taken into account. Since the flow we
ing we will drop from our calculations the history term shall cpnadgr is time dependent, per|od|c, the phase space is
which in the parameter region studied by us is justifigg]. ~ five dimensional. On stroboscopic snapshots, a four-
We assume that the particles are so small, and their conceAimensional map with variabley,v,,v,) governs the dy-
tration so low, that they do not modify the flow field or N@mics. Itis to be noted that attractors or any other invariant
interact with each other. A first step towards the descriptiors€tS exist in the full phase space, but what we observe in the
of cases with large particle concentration could be the invesPlane of the flow is always projectionof these sets on the
tigation of excluded volume effects and the inclusion of localconfiguration space. The mere position of the particle does
velocity fields, Stokeslets, generated by each moving particl80t contain information on the tracer velocity, which is in

[23], which we leave for further studies. general different from that of the flow.
Thus, based on Eq(2), the equations of motiorF;
=m,dv; /dt for an inertial tracer can be cast in the dimen- IIl. THE OPEN ELOW MODEL

sionless form 20]:
In this paper, we show that the inclusion of inertia and
dv. 3 _du size parameters of a small spherical particle as shown in Eq.
gt 2Rgr AT ) (4), can lead to drastic changes in the chaotic advection dy-
namics of the inertial tracer even in open floj@9]. In par-
The two parameters are the “mass ratio parame®rdnd ticular we are interested in the behavior of finite-size tracers

the “inertia or size parameterA given by in the wake of obstaclesuch as a stick, a pillar or an island
for low-Re flows, where the Eulerian velocity is smooth in
_ 2p1 (5) space and periodic in time. Ideal tracers are known to exhibit
pit+2py’ in such time-periodic open flows transient ch24]: they

) can stay in the wake over finite times, but ultimately all the

A=R/St St E(E) Re ©) particles escape. This behavior is in contrast with the every-

9\L ' day observation according to which light particles or objects,

like e.g., empty coke cans, can be trapped in the wake for
wherep; andp, are the densities of the fluid and the particle, arbitrarily long times. This will be explained by the finite-
Stis the particle Stokes numbéar the dimensionless decay size effects described by E).
time due to the Stokes dragRe=UL/v is the fluid Rey- As a workbanch system, we consider a model of the von
nolds numberl is a typical large-scale mixing length abd ~ Karman vortex street in the wake of a cylindg4]. Due to
is a typical large-scale fluid velocity. The tracer equafién the incompressibility of the flow, we can define a stream-
is valid only for initial tracer velocities matching the fluid functionW =¥ (x,y,t) such that
velocity [5].
The presence of the coefficienRB expresses the added o o
mass effect, which is not present for neutrally buoyant par- U=——, Uy=———. (7)
ticles, whereR=2/3. If 0<R<2/3, the particle is heavier ay 28
than the fluid. This is called thaerosolrange[6]. For 2/3
<R<2 the particle is lighter than the surrounding fluid. This By measuring the length in units of the cylinder radius,
is called thebubblerange[6]. which is simultaneously the characteristic linear dizef the
The limit A—oo (irrespective ofR) corresponds to the flow, and taking the perio@ of the flow as the time unit, the

passive ideal tracer limit. As we shall see, the most relevandimensionless model streamfunction is given by the product:
parameter responsible for tracer and fluid trajectory devia¥ =fg, where
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f(X’y)zl_e_(VXZTyz_l)z (8) A)

ensures the presence of a boundary ldflerd velocity dis-
appearing along the unit circle, which is the surface of the
cylinden, and

g=—wh;g; +wh,g,+Ugys 9

describes the periodic detachment of vortices. Herepre-
sents the average strength of the vortices, and

hy(t)=sir?(wt), hy(t)=cog(mt), (10

are functions characterizing the time evolution of the vortic-
ity. In EqQ. (9) ug is the dimensionless background velocity, C)
and s=s(x,y)=1—exg—(x—1)%c>—(y)?] is a shielding
factor, which suppresses the background velocity in the
wake. The factors

gi(X'y,t):e_rO[(X_X‘)2+CZ(y+(_1)Iy°)2], i=1,2 (11) FIG. 1. Aerosol,R=0.5. Inertial and passive tracer trajectory
comparison in the X;y) plane. All trajectories were started from

describe the Gaussian forms of the vortices of dimensionlesg=—2.0, yo=—0.11 att,=0w=192/7. (A) A=20, (B) A
size 1/\/r_, whose positions in the wake amg(t),y, and =200, (C) A=2000. The dashed line is the passive tracer’s trajec-
Xo(t),— Yo, respectively, withx,(t)=1+1{t},x,(t)=x,(t  tory (A=x).
—1/2), wherd is the dimensionless distance a vortex passes
during its lifetime, and &{z} <1 denotes the fractional part
of z. The parameters held fixed in this paper age=14, r

—0.35,y,=0.3, c=2, andl=2. The same model with, ticle will be captured for longer times in the wake since the

—|sin(m)], h,=|cos()|, w=24 has been checked to be anticentrifugal force is an effective force of attraction to-

consistent with the passive advection in a Navier-Stoked/ards the center of a closed orbit. In particular, the bubble
simulation at fluid Reynolds number about 28]. Since will t_rave_l Wlth.the vortex for a longer period. A%mc_reases
the dynamics of inertial tracers contains the temporal derivathe inertial trajectory converges to the passive @fig. 2).

tive of the velocity, we are replacing the original forms of
h;,h, by the smoother terms given by E(.0). In order to
produce the same qualitative behavior, we have to consider a
flow with larger values ofw then in Ref.[24] so that the
vortex strength averaged over time units stays the same. i
the following we present the numerical results either for the®)
enlarged valueav=192/r or for w=24.

IV. SAMPLE TRAJECTORIES

In this section we demonstrate pictorially how, due to the T e
finite-size effects, the inertial tracer’s trajectories deviate )
from the passive ones and how their complicated shapes ar.
proach the Hamiltonian limit, a& increases. We present the
results of a few runs to compare inertial tracer trajectories
with the same initial conditions but for different particle den-
sities and inertia. Equatio) is valid for small particle
Stokes numbersalU/v) only. Therefore, our detailed study \ ---------

is restricted toSt<0.1, A>10. C)
In the aerosol(R<2/3) regime one expects that the par-
ticles exit the wake faster on average than the ideal tracers
The aerosol will be harder to be captured in the wake, since
the centrifugal force along any closed orbit is pushing the
particle outward. Figure 1 shows the inertial particle trajec- FIG. 2. Bubble,R=0.8. Inertial and passive tracer trajectory
tories for increasing values &. Certainly, the inertial tra- comparison. All trajectories were started fromy=—2.0, y,
jectory has to converge to the passive oneAdscreases, =0.06 att,=0. All other parameters as in Fig. 1. The dashed line
and this is indeed the case. is the passive tracer’s trajectonp€ ). In all the runs, the parti-
In the bubble (R>2/3) regime one expects that the par- cle’s initial velocity is matched to that of the fluid.
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FIG. 3. Aerosol. Dependence of the escape rate on the inertia FIG. 4. Bubble. Dependence of the escape rate on the inertia
parameteA for R=0.5, w=192/r. The horizontal line represents parameteA for R=1.7, w=192/r. The dashed line represents the
the Hamiltonian value ok. We started 10 randomly distributed  Hamiltonian value ofc. We use the same i@article ensemble and
particles in the domaif0.6,4] X[ —2,2] around the cylinder and perform the same steps as in the case of aerosols. We detetmine
measured the numbeéd(t) of surviving particles. A particle was as the average slope in the time period 5-25 of tineva t plot.
considered to have escaped if it passed the Xinet, or if it ap- Error bars are in both Figs. 3 and 4 smaller than the size of the dots.
proached the cylinder within a distance of 0.014. The exit on the
surface qf the gyliqder was taken into account to separat.e the NORA the phase space with a visible component in the configu-
hyperbolic motlo_n in the boundary layer from tht_a dyna_rmcs 'n_theration space. In order to show this, in Fig. 5 we present the
wake. To determine, we took the average slope in the time period residence timé20] of the inertial tracergin the bubble re-
2-9 of the N vs t plot. gime only on the plane of initial conditions taken at a cer-

V. ENSEMBLE DYNAMICS tain instantt, of time (modulo the period =1 of the flow.
The shades of blue, yellow and red depict residence times in
A. Escape rates increasing order. Dark red corresponds to initial conditions

A statistical measure of the sensitive selectivity of thethat lead to permanently trapped particles. The cylinder is
flow on the inertia and mass parameters is obtained from thehadded dark blue. By definition, the dark red domains cor-
study of the escape raf@5]. We start a large number of respond to the basin of attraction of the attractors that ap-
particles uniformly distributed in a fixed region in the wake. peared in the configuration space.

The number of nonescaped particles after time propor- As a comparison we include in Fig. 6 the residence times
tional to exp(-«t), wherex is the escape rate. in the passive advection problem, too. The yellow filaments

The passive advectiomproblem with w=192/7 and w represent the stable manifold of the chaotic saddle that gov-
=24 is characterized by the escape rate0.36 andx  erns the passive dynamics. The red points correspond to
=0.19, respectively. small KAM tori appearing for this value of in the advec-

From theaerosolregime we consider a fixed value of the tion dynamics(cf. the inset in Fig. &
mass ratioR, and study the escape rate as function of the
inertia parameteA. One can observécf. Fig. 3 that the 1
exponential decay of the aerosols takes place much faster '
than in the Hamiltonian case. y

For thebubbleregime we perform the same computation g5
as in the case of aerosols. We find that the bubbles spend
much more time in the wake. The escape rate vanishes in the
range 14 A<45, and then foA— it converges to thex
value obtained in the Hamiltonian case, as it should. This
behavior is shown in Fig. 4. In the range<tA <45 there is
an extended region in the wake from which particles do not g
escape at all. Along with this, two isolated orbits behind the
cylinder become attractiv€for more detail concerning the
attractors see Sec. VIBoth the efficient decrease of the )
escape rate and the disappearance of escape is interpretedeé 05 06 07 08 0.9 1 1.1 1.2
a statistical consequence of the anticentrifugal force acting X
on the bubble$26], mentioned in Sec. IV.

o

FIG. 5. (Color) Residence times for a bubble. The parameters
are:A=30,R=1.33,w=24,1t,=0.3. We started a particle in every
point of a (540<540) grid covering the region shown around the

The region of vanishing in Fig. 4 implies that the inertia cylinder, and measured the time needed to leave this region down-
can modify the dynamics to the point where attractors appeastream.

B. The residence time statistics
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FIG. 7. The number of nonescaped particles vs time based on an
ensemble initially covering the regiof0.6,4]X[—2,2]. (8 The
log-lin plot shows two segments with different slopés. The log-

FIG. 6. (Colon Residence times for an ideal passive tracer. Thel09 Plot shows a convergence towards a power law. To enhance this
parameters arav= 24, t,=0.3. The inset is a magnification of the nonhyperbolic foect we did poF cut out herg the ring of width 0.014
domain[0.89,0.94X[—0.75~0.5]. arround the cylindefas we did in parta)] which made the overall
decrease ofN slower. The parameters af®=1.33, A=30, w

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

Due to inertia, these tori are transformed into attractors, 24
and the basins of attraction appear along the stable filamen-
tation of the Hamiltonian system. By changing the value Note that in the aerosol range the escape is much faster and
=24 tow=192/r the tori of the Hamiltonian system disap- characterized by one single exponential decay. Hence the
pear, and we find only purely hyperbolic orbits. Even in thiscorresponding escape rate is extracted from the short time
case attractors can appear due to ind2@. Therefore, at- scales(see caption to Fig.)3
tractors can be formed from both marginally stable tori and In order to obtain the invariant sets, we used the method
purely unstable hyperbolic saddles of the passive advectionsf Ref. [27]: the idea is based on chosing an appropriate

Hamiltonian dynamics. numbern of time units comparable with the average lifetime
of chaos, and then following those particles from a large
C. Different time scales in the decay dynamics ensemble which do not escape the selected region of interest

. . ., up ton time units. These survivors can only be those who
We recall that the passive advection problem of particle P y

. . . came, within this period, sufficiently close to the chaotic
ensembles is characterized by an exponential decay only

hort-t les. This i dbv th ist fach ddle. Since such particles must have come in along the
short-time scales. This Is caused by the existence of a chaollg, 1o manifold and must leave the region along the unstable
saddle in the wake. In the long-time behavior, however,

. €l Bne, by plotting the positions of the surviving particles at
p:)vg?r-lavr\{[idlecgyn|smci)bs?nr\£ﬁd dlue o th(_et nefatrrlly ma}[g'na”ﬁimes 0n/2 and n, we obtain a good approximant to the
stablé particle dyhamics € close vicinity of the surface Olg,4q1e's stable manifold, to the saddle itself, and to its un-

the cylinder[24]. : .
S . . stable manifold, r .
In the inertial dynamics we observe—in contrast—two , respectively.

coexisting chaotic saddles in the wakene on short and
intermediate time scalgsnd a third nonhyperbolic chaotic
set (on long-time scales which is not only the obstacle’s The short-time decay is due to a hyperbolic chaotic
surface in this case. The short-time chaotic saddle is desaddle, which is separating a direct escape downstream from
formed in the limitA—c into the saddle responsible to the a turning back towards the obstacle. The stable manifold of
chaotic behavior in the passive dynamics. The others have rhis saddle coresponds to the green filaments of Fig. 8. The
direct counterparts in the passive advection problem, theipoints colored in magenta trace out the unstable manifold of
presence being due to inertial effects. this chaotic saddle. The chaotic saddle itself is the common

The three different time scales associated with these inpart of the stable and unstable manifolds. The saddle is hy-
variant sets can be read off from the graph of the number operbolic, which is manifest from it's Cantor-set structure. It
nonescaped particles vs time. In the log-lin plot one findggenerates short, transiently chaotic trajectories, which exit
two segments with different slopes, the first in the range 0—5the wake downstream.
the second in the range 6—25 time units, corresponding to the The exponential decagn intermediate time scalés due
short- and intermediate-time scaldsg. 7(a)], respectively. to another chaotic saddle, which separates the escape to one
In the range of 30—150 time units the decay is different andf the two periodic attractors from the escape to the wall of
tends towards a power lajfFig. 7(b)]. the cylinder(Fig. 9). Since all the invariant sets lie in the full

We present a detailed study at the fixed parameters: phase space, we show the saddle inxhev, space of the
=1.33, A=30, w=24, but emphasize that the behavior strobosocopic map. On this time scales we find particles that
found here is typical. The classification of the decay dynamare trapped permanently in the wake. They have three possi-
ics holds in the wholéA andR range where attractors exist. bilities: either to go directly to one of the attractors, or to first

D. Hyperbolic behavior
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2

E. Nonhyperbolic behavior
1.5 ¢ 1 On the long-time scales we find in the wake only those
y 1L i particles which came back from the boundary layer. Their
&5 Sy behavior is dominated by nonhyperbolic effects. We have
' found that the saddle on this time scale is the same as the
0 1 unstable manifold of Fig. 11. It does not exhibit any Cantor-
05 i set-like behavior in one direction of the plane of the flow.
il | This local fattening up of the chaotic set is the reason of the
’ B power-law decay of the number of nonescaped particles
0, 4 0 1 > 3 4 [28-30
5 In order to find the stable manifold of this chaotic set, we

determine the basins of attraction in Fig.(B0 The inter-

FIG. 8. (Colop Initial conditions of particles not leaving the spersion of the red and blue filaments is a sign of the basin’s
region shown within the first time uniR=1.33, A=30, w=24, tendency to fill the 2D plane. Repeating the same measure-
to=0. We started an ensemble initially covering the whole regionments on longer-time scales (100 time upitthe basin
shown, and measured the time needed to pass the#@e Points  boundary, i.e., the stable manifold, appears to be two dimen-
escaping within the first 4 units are colored green. The endpoinsional in the &,y) plane. The boundary between the basins

taken at time 4 of the particles trajectories starting from the greemf attraction becomes a fat fractal, it fills the 2D plane, as a
region is colored in magenta. Points in orange do not leave th&jgn of nonhyperbolic behavior.

wake over 100 time units.

VI. ATTRACTORS
approach the surface of the obstacle, then pass along the wall
with velocity close to zero before being trapped by any of the
attractors, permanently. Therefore, we can consider the w
as a temporary attractor. Ir_1 order to determine this_ saddle_ar] ertia attractors appear in the phase space which are not
its manifolds, we determine a small region Qf linear S'Zepresent in the passive tracer limit.

0.014 around the attractors and around the cylinder, and con- A gecond important observation is that the longer lifetime

sider a particle escaped if it falls within any of these regionsof chaos and trapping is not only due to the surface of the
The initial positions of the particles mentioned above liecylinder. The attractors are actually situated in the wake,
in the basin of attractionof the attractors. The basins of away from the boundary of the cylinder. The attractorRat
attraction determined by this methfieig. 10@)] are of finite =17, A=30,w=192/ris a periodT =1, bean-shaped loop
area and extend upstredthe orange domain of Fig)8This  (on either sides of=0), i.e., it is a fixed point of the stro-
indicates that there is a nonzero probability for a randomlyboscopic map. Figure 12 shows the form of one of these
chosen particle to be trapped in the wake. By definition, theattractors, and the velocity-differences along the attractor.
fractal boundary between the basins shown is the stable A bounded particle trajectory can only exist if the particle

As illustrated in Sec. V, our main observation is that in
ontrast to the passive case, bubldes get trapped perma-
ntly in the wake of the obstacle. This means that due to

manifold of the chaotic saddle of Fig. 9. is for some time faster, and then for some time slower than
To make the picture complete, we determined the unstablthe flow. The inset of Fig. 12 shows the velocity of the par-
manifold of the saddle, totsee Fig. 1L ticle and the relative velocity between particle and flow

along a periodic attractor. Note that the integrabgf-u, is
Zero over one period.

As the particle becomes less dense, as R incre@es
fixed A), these isolated periodic attractors are transformed
into two chaotic attractorgFig. 13 through aninverse
period-doubling sequencsee Fig. 14. At smaller values of
R, these chaotic attractors are transformed into a single at-
tractor which contains the surface of the cylinder.

By fixing R=1.7, we obtain for both increasing and de-
creasing values of the size paramefera period doubling
bifurcation sequencérig. 15.

<
x

SO0S 0o
OO NONPS

X 05117 VIIl. SEGREGATION

FIG. 9. (Color) The saddle(and its projection on thex,y As a consequence of the results above, particles taken
plane—in blug governing the dynamics on intermediate time scalesffom a mixture of particles of different types have different
5<t<20 in 3D.R=1.33,A=30, w=24. The figure is obtained by dynamics as a function of size and inertia parameters. There-
plotting the positions at time 10 of the particles which started atfore, segregation can take place, for example when we start
time t=0 and came close to the attractors between 20 and 25 timwith a mixture of particles of the same density but of differ-
units. The green line represents the cylinder’s surface. ent size(sameR, differentA).
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FIG. 10. (Color) Fractal boundary between the basins of attraction on intermediate time &adesl on long time scalg®). In (a) we
plot the initial positions of the particles, which approached the cylinder within a distance of 0.014, or reached one of the two attractors in
20 time units. Points within the narrow white stripes have not yet reached any of the attractors by timé2edmplot the initial positions
of the points which reach one of the attractors after 40 time units. The colors are: red/blue the basins of the upper/lower attractors and yellow
the basin of attraction of the cylindéR=1.33, A=30, w=24, t,=0.

Here we use a simple geometrical setup: the outgoingVIll. STABILIZING UNSTABLE ORBITS VIA INERTIAIN
particle, which exits the chaotic region in the wake of an TIME PERIODIC FLOWS
obstacle, becomes incoming particle for another obstacle, A natural tion t Kis h ic the oh
situated downstream from the first. We consider a chain of hatural question 1o ask IS now generic the pnenomenon

several cylinderd31] situated at a distance of 8 cylinder gigg?ﬁpmss'; ?I?)Tvglz{slfvx(/)er]lle (C)ir; g:;?ricgssiwgﬁtrhzehﬁzgr::
radius units from each other, where the flow field is approxi- yp ’ P

mately uniform. The fate of a droplet was followed which enon of trapping is ayeneric property resulting from the

initially consisted of 5< 10* randomly distributed particles in nor:llnearﬂmteractlonf 0:1 thlaampolralﬁdependencm‘ the unh-
the range[ —2,— 1.5]X[ —0.5,0.5 with mass ratioR= 1.4 derlying flow and of the inertial effects. In order to show

and with sizeA=20, A=120, colored in red and blue. After 0.95

passing several cylinders, the droplet exhibits a separation of y 09 F
colors which is manifest from Fig. 16. 0.85 -
0.8
0.75 |
0.6 0.7
0.4 0.65 o.
0.2 0.6
0 0.
0.2 0.55 |
0.4 0.5 15 5
-0.6 o4s L0 L .,
0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
X

0.7
FIG. 12. The periodic attractor in the upper half plane, Ror
=1.7, A=30, w=192/7. We also show the relative velocity{u)
vectors(which determine the Stokes dpaglong the attractor, at a
FIG. 11. The unstable manifold of the saddle on the intermedifew instants of time {e{0.1,0.5,0.6,0.8,0}). The inset represents
ate time scales, obtained by plotting the endpoints at time 20 of théhe velocity component, of the bubble and the relative velocity
trajectories starting in the colored region of Fig(80 vy— Uy between the tracer and the flow along the attractor.
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0.92

09 f 09
y

0.88
08 r

0.86 [\
07 + 5 0.84 \

.82 lh/
06 | 08 li

0.78
05 r

0.76
0.4 1 1 1 1 1

0.4 0.5 0.6 0.7 0.8 0.9

X FIG. 15. The bifurcation diagram as a function &f The pa-

FIG. 13. The chaotic attractor in the upper half planeRat rameters arew=192/r, R=1.7. The plot was obtained in an
=1.47, A=30, w=192/r. analogous way as Fig. 14.

. - . A. Inertial tracer motion
this, we now present a proof-of-principle type of calculation

in the case of a simple, generic flow model. This exhibits a In the following we study how the inertia effects modify
single hyperbolic fixed-point in the origifso a passive tracer the tracer trajectory compared to the Hamiltonian motion of
would be repelled to infinity We show that there is a pa- the ideal tracers. The full set of equations takes the form
rameter regime fobubbles where this fixed-point becomes :

attracting Let us consider for this purpose a two- X=UVy, (13
dimensional flow which has the streamfuncti@j

y=vy, (14)
\If(x,y,t)=§y2— %XZ, (12) U= —Av,+ (3/2RGKX+AGY, (15)
vy=—Auv,+AGKx+(3/2 RGKy, (16)

(G andK are real. It generates the fluid velocity fieldwith — \yhere dots represent time derivatives. By introducing the
components  u,(x,y,t)=d¥/dy=Cy and uy(X.y.t)  notations:Z,=x, Z,=y, Zs=vy, Zs=v,, a=3R/2, the
=—gW¥/ox=GKx. Therefore, the passive tracer motion is system above becomes Y
described by dx/dt=u,(x,y,t)=Gy, dy/dt=uy(x,y,t)
=GKx. It is easy to solve for the motion of the passive Z=MZ, (17)
tracer in this flow field, provide& andK are constantg2].

WhenK>0, the fixed poinx=0 is hyperbolic. The flow where Z is the 4x1 column vector formed frony;, i
exponentially diverges to infinity along the direction of the =1,2,3,4, andM is the 4x4 matrix:
eigenvector that belongs to the positive eigenvalue and, ex-

ponentially contracts in the direction along the other eigen- 0 0 1 0
vector. WhenK <0 the flow is purely rotational. FdK=0 0 0 0 1
we have a pure shearing motion, see Fig. 17. M= (18

aG?k AG —-A O
AGK aG%K 0 -A

0.92 T T T T
09 Let
0.88
086 | A= A2 4AGVK +4aG2K
« 084 T .
0.82 1 —V(A+2G6K)?+4(a—1)G?K  (19)
0.8 [ NP
078 | %/ s .
076 F . . . . . Then the four eigenvalues ™ are
15 1.6 1.7R 1.8 1.9 2 A ) A+A(+) A B A A(+) 20
1~ 5 Tv 2~ E 2 ’ ( )

FIG. 14. The bifurcation diagram as a function Rf The pa-
rameters arew=192/w, A=30. The plot was obtained by starting A AC) A AC)
8000 particles in the randd®.5,1.1 X[ —0.9,0.9 of the wake and A= = __ (22)
plotting theirx coordinate after 520 time units. 3
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1.5 — . . : . . . .
1 |

0.5
0

0.5

-1

-1.5

55

FIG. 16. (Color) A chaotic chromatograph: segregation of particles in thg) plane after 10 time units in the periodic cylindrical flow
with R=1.4 andA=20, A=120, colored in red and blue, respectively. Ellipses mark the cylinders.

B. Time-periodic flow y:U (26)
yl
We redefine the streamfunction by replacing the constant
G by the time-periodic form 0= — Av,+ aG2Kx+ (AG+ aB)y, (27)
G(t)=1+L sinwt, (22 ) .
vy=—Avy+(AG+ aG)Kx+ aG?Ky, (29

wherelL,w>0.
whereG(t) =L w coswt. The corresponding matrix equation

1. Hamiltonian tracer motion is
The passive tracer motion is described by )
Z=M(t)Z, (29
) Ay
X:UX(X,y,t):W:G(t)y, (23) where
. oV 0 0 1 0
y=uy(x,y,t)=—W=G(t)Kx. (29 0 0 0 1

MIDZI aG  AG+aG -A O

It is easy to see from above that the Hamiltonian tracer tra-
jectories in the X,y) space remain the same as for the sta-
tionary (L=0) case. The motion along these trajectories is
changed however.

(AG+aG)K aG?’K 0 -—A
(30

This system however is strongly honautonomous which im-
plies the difficulty of finding an exact solution. Instead of an
) o exact solution, we are interested in showing that there can be
In this case, due to the explicit ime-dependence, (BH. yajyes for the parameters such that the origin becomes an

2. Inertial tracer motion

retains the time derivates ofas well. We obtain attractor for the inertial particle, in spite of the fact that for
) the Hamiltonian tracer the origin is a hyperbolic fixed point.
X=0y, (25 Numerically, it is very easy

~
\%
=]

A
W
/.
/N

FIG. 17. Flow types for the model flow. Hef@>0 was assumed.
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Vx subject to initial conditions satisfyinig{to) =7(tg) G(tp). Af-

200 " ter the transformatiory=2/z+A/2, Eq.(35) becomes

150

'8 U+ u2=h(t) (36)
-50
-]3 with b(t)=A%4+a(t), and initial conditionu(ty)=G(to)
599 +A/2. Thus, knowing a solution(t), one obtains a solution

for zas

A t
z(t)=1z, exp| — E(t_tOHJ u(s)ds]. (37

to

This means that the asymptotic stability of the origirzimill
FIG. 18. Bubble trajectory spiraling into the origin for the time- be determined by the long-time behavior of the integral
periodic model. The parameters ake=0.2, A=20, R=1.3, © Q(t)=/i u(s)ds. If u=lim___Q(t)/t>A/2 the origin is at-
=6, L=15, X,=5.2, yo=6.5. o " o
tracting, foru=A/2 it is marginally stable, and it is repelling,
to find parameter values where the origin becomes attractiver unstable foru<A/2.
for K>0, see for example, Fig. 18.

We would like to find a condition for stabilizing the iner- IX. CONCLUSIONS
tial particle to the origin wherK>0. In order to further o N .
simplify the calculations, we assume tiat 1. By introduc- Finite size and inertia effects may strongly modify the
ing the variables advect|on'dynam|cs, in particular in the bubble regime. Here
the escaping process becomes slower, attractors may appeatr,
Z(t)=x(1)+y(t), v(t)=v4(t)+vy(t), (31 and if so, fractal boundaries are created between the basins
of attractions. The attractors can be formed from both mar-
the equations of motion become ginally stable tori and purely hyperbolic, unstable trajectories
. : of the passive advection’s Hamiltonian dynamics.
z=v, v=-Av+a(t)z, (32 We have pointed out the possibility that by a proper en-

gineering of the geometry of the opehaoticflow, selective
inertial particle traps can be designed. The trapping phenom-
: enon is at the same time a warning that a simple modeling of
a()=aG()’*+AG(D) + aG(D) =A+ a+tLaw codwt) inertial particles as passive ideal tracers can lead to gross
+L(A+2a)sin(ot) +L2a sir( wt) (33)  errors in forecasting particle motion. Our example shows that
a harmful substance while modeled as a passive tracer will
is a periodic function in time. The initial conditions must clear the wake of an obstacle, but in reality it may be indefi-
satisfy nitely trapped there under the same conditions. These obser-
vations might explain the enhanced accumulation of pollut-
v(to) =G(to)z(to). (34 ants in the atmospheric or aquatic media.

where

The variablez(t) describes the projection of the motion on
the first bisector. If the motion is bounded in they) coor-
dinates, then the motion inwill be bounded, too. The con- We are grateful to useful conversations with M. Chertkov,
verse is not necessarily true, and therefore requiring the st&R. E. Ecke, G. Falkovich, M. Hastings, L. Margolin, and O.
bility of the origin in the z motion will be a necessary Piro. . J. B. thanks S. Z. Benczik for discussions and encour-
condition for the stability in the original motion. The system agement. This effort was supported by the U.S. Department
above is equivalent to the following second order differentialof Energy under Contract No. W-7405-ENG-36. The support
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