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Coarse-grained entropy and information dimension of dynamical systems: The driven Lorentz gas
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We study the resolution dependence of the steady-state saturation values of coarse-grained entropies char-
acterizing general dynamical systems. For dissipative maps they are proportional to the information codimen-
sion of the chaotic attractor. Thus, they provide a highly accurate method for determining the information
dimension and related characteristics of the dynamical system. This general result is demonstrated for the
field-driven Lorentz gas. In the discussion, we take the results on the resolution dependence of the entropy as
the starting point to revisit different approaches to define thermodynamic entropy production for transport
processes in dynamical systems, and discuss the role of local equilibrium in this enterprise.
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I. INTRODUCTION IIl. COARSE-GRAINED ENTROPIES FOR DYNAMICAL
. . . . SYSTEMS
The heart of irreversible thermodynamidl is to setup
an entropy balance for the thermodynamic entr&y?2]. We treatinvertible dissipative dynamical systeni$,6]
This balance is commonly written in the form with a closedd-dimensional phase space. The long-time dy-
dsi) namics is then associated with a chaotic attrafp8], i.e.,
—d(t)+30m)(t), 1) with a fractal phase-space structure which has no volume

dt with respect to the Liouville measure. The set of average

) _ Lyapunov exponents characterizing the associated invariant
The temporal change of the entropy is written here as the

sum of an external change(t) and an internalor irrevers- Sgt ;Vrzltljgr?t i?ng;?/ilgg\slif)\ %hze. iiﬁia)l\r(ijz'egng tr?gnl?ccsat;g ac-
ible) change of entrop¥.(")(t). The former accounts for an pe 9 . °d dy .
: . cordinglyhN{=\,=---=\4. Akey ingredient of dynamical-
entropy flux® out of the considered volume. The latter is : . -
. . CS (i) | . system models for irreversible processes are ever refining
due to irreversible entropy productio®!'""’ is nonnegative, h lated h d
while ® can have any sign. Earlier resul&4] show that a phase-space structures related to the convergence towards a
relation in the form of E (1).can also be found in determin- fractal measure. It is impossible to describe the asymptotic
o . =4 . . states by smooth stationary densities in phase space. Instead,
istic systems if a suitably chosemarse-grained entropis g : I A
) . ) . we consider aoarse-graineddescription that approximates
considered. In this paper we study properties of this coars

rained entrooy and show that its steadv-state saturafi ‘?r'r]we ever refining structures in phase space with a finite reso-
8alue scales v€i¥h the linear size of the a ﬁed coarse rai?}lytion. Comparing the time evolution in this coarse-grained
bp g description with the exact one gives insight in the dynamics.

ing. In _d|55|pat|ve maps the_ saturation va_llue is found to .bq:or illustrational purposes, we confine ourselves to discuss
proportional to the information codimension of the chaot|cOnly the simplest possible coarse graining. It consists in di-

attractor. o , : ; 2 :
In Sec. Il we define the coarse-grained entropy of a gen\_/|d|_ng the _ad|menS|0naI|zed phase space into identical boxes
) . . of linear sizee much smaller than unitys<1). The phase-
eral dynamical system and present its most important prop- . i
erties: the tendency to converge to a saturation value and tha'ace volume of the boxes is thef
relation of this value to the information dimension of the
chaotic invariant set. In Sec. Il the field-driven Lorentz gas
is presented as well as the numerical results obtained for the We use two different phase-space densitéscharacter-
time evolution of the coarse-grained entropy. The saturatioiizing the evolution of the same smooth initial conditigf)
value provides a highly accurate method of determining the (x,t), the exact phase-space dens#y phase-space loca-
information dimension, even in systems where the invariantion x and timet, (2) ¢.(i,t), the coarse-grained densityf
measures only minutely deviate from a smooth distributionboxi at timet, specifying the average value @fx,t) in box
Section IV concludes the paper by taking up recent discus.. The densityo(x,t) is normalized to unityfdxg(x,t)
sions on analogies of local equilibrium in dynamical-system=1, on the phase space accessible to the system, and accord-
models for transport. ingly 2;0.£%=1 for the coarse-grained density. The averag-
ing on the set of boxes defines the coarse graining.
After a long time there is a qualitative difference between

A. Exact and coarse-grained densities

*Electronic address: tel@general.elte.hu the exact and the coarse-grained densities: the exact density
TElectronic address: juergen.vollmer@physik.uni-marburg.de;  keeps developing finer and finer structures and has no time-
URL:http://www.physik.uni-marburg.de/kosy/jv independent limit. It becomes undefined as a density such
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that the asymptotic distribution can only be described by aheoretic entropy taken with respect to a phase-space density
natural invariant measurg [5]. On the other hand, the at that time. Since we consider the time evolution of the
coarse-grained density converges t@péecewise constant exact and the coarse-grained densities, two entropies are de-
stationary distributiono, (i), such that the measugg(s) of ~ fined: (1) The entropyS‘®) evaluated with respect to the

box i equalsg,(i)e®. For pointsx on the attractor of the €Xact density

dynamical system the asymptotic temporal dependence of 0
e(x,t) can be written, in the spirit of large deviation theo- S(G)(t)E—J d%o(x,t)In e, ) (5a)
rems, as (o

e (x,t)~e ™, (28 wherep* is a constant reference densi&®) is commonly

hil referred to as th&ibbs entropy(2) The coarse-grained en-
while tropy S, is defined in an analogous way as a sum over boxes
. — . of sizee

0.(i,t)~e.(i). (2b)
Here o(x) is the local phase-space contraction fate9] at S.(t)=— i el .Y 5b
point x. Equation(2a) follows from the fact that the phase- (1) EI e.(1.t)eIn L (5b)

space volume arourxis behaving like exjp—a(X)t] and the
measure of a given volume is not changing in time due to th&he notationS, expresses that the coarse-grained entropy
conservation of probability. The phase-space contraction ratexplicitly depends on the box size
is the negative sum of all local eigenvalUég In the choice of the normalizatiop* of the density under
the logarithms we follow Greefll], even though other
d . :
choices have also been adopted recefitly for instance,
o(x)= _121 Aj(X). 3) Ref. [8]). The expressions for differences of teameen-
tropy evaluated at different times agree, however, for all
The emergence of differences between the coarse-grainddese choices. For convenience we identify the reference
and the exact density depends on the type of initial condidensity ¢* with the average density in the system. This
tions. In what follows we always consider smooth initial @mounts to a choice of the entropy scale where the entropies
conditions. The difference between the densities is then inivanish for a uniform density distribution in phase space, i.e.,
tially on the order of the box size, and therefore negligible for o(x,t)=e.(i,t)=0".
for sufficiently smalle. Strong deviations develop after a  The entropieg5) are defined irrespective of the notion of
crossover timet,, after which the contraction due to the local thermodynamic equilibrium. In E¢12) even the split-
negative Lyapunov exponents makes the support of the defing (1) of the entropy changes into a “flux” and an “irre-
sity in the stable direction of the same order as the box size/ersible” part is done without referring to that notion. The

An upper limit to this time scale is relation of the formal splitting of the entropy to concepts of
irreversible thermodynamics will be addressed in the discus-
1 sion.
to~— ﬁln g, (4) The time evolution of the entropies immediately follows

from that of the densities. For smooth initial conditios§>)

— , andS, nearly coincide until the crossover tinhgis reached.
where _ is the largest negative average Lyapunov exponenyypically, they both decrease since the distributions start ap-
(the smallest one in modulug=or typical dynamical systems hroaching the one on the invariant set and hence the infor-
this Lyapunov exponent is of the order unity in a dimension-mation content is increasing. This tendency does not change
less description. Thus, the crossover time is on the order ¢f, 5(®) \which keeps decreasing after. Based on Eqg5a)
the characteristic timéteration uni} of the dynamical sys- .4 (28 one immediately verifies thaS(®=— o ()t
tem. It depends only logarithmically on the box size. +const, wherer(t) is the average of the phase-space con-

The qualitative differe_nce betw_e_en t_he behavior of they,ction rate{defined by Eq(2a)] taken witho(x,t) at time
exact and the coarse-grained densitsFig. (2a) and(2b)] t. The asymptotic behavior is a linear decay
is a hallmark of irreversibility Every macroscopic descrip-

tion of transport is based on coarse-grained densities, i.e., S©_, ot ©6)
(coarse-graingdaverages of smoothly varying functions in

phase-spacelike particle numbers or tkieetio e”ergy[m]- with o as the long-time average of the phase-space contrac-

Sfion rate taken with respect to the natural invariant measure.
The coarse-grained entropy, on the other hand, levels off
aroundt,, since with the given resolution the invariant set
does not change any longer after this time. Asymptotically,
the coarse-grained entropy tends to the constant v8lue
A natural choice for the entropy characterizing the state ofsee Fig. 1, which depends on the box size butiigslepen-
a general dynamical system at tinteis the information-  dentof the initial condition

tems, cannot resolval information on the fine details of the
system’s phase-space dynamics.

B. Gibbs and coarse-grained entropies
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S A S,=(d—D))Ine. (10)

Refining the box size frona to &' <e the saturation value is
shifted downward by d—D,)In(e/e’) (Fig. 1). This shift is
uD' -d) In& proportional to the codimensiord{-D,). At the same time
the initial value of the entropy characterizing the uniform
initial condition is unchangedit remains zerqh Conse-
> quently, for a higher resolutiotsmallere) the steady-state
\~ -ot t distribution will be reached at later times, as already stated
_ _ . o by Eq. (4). _ _

FIG. 1. Time evolution of the Gibbs entrop§® and the Finally, we point out that even for general dynamical sys-
coarse-grained entroff§, in d-dimensional dissipative systems re- tams there is an analog of the thermodynamical relation
laxing towards a steady state described by a chaotic attractor. gjn o the differenceSs(t)—S(G)(t) between the coarse-
denotes the coarse-graining grid size &)dstands for the steady- grained and the Gibbs entropy measures the loss of informa-

state coarse-grained entropy. The arrow represents the shift of thiy, on the exact state. one can identi#y; 15,16 the time
coarse-grained entropy curve when changing the resolution from derivative ' "

to &' <e, andD, stands for the information dimension of the attrac-
tor.

[

©

G
S()

zg‘f”(t)E%[ss(t)—s<G><t>] (1)
S.(H)—S,. (7
with the rate of irreversible entropy production of the dy-
The saturation expresses the convergence of the coarseamical system due to a coarse graining with resolution
grained density to a stationary value. The dependence cﬁig”) on ¢ is weak, and it disappears
It is worth briefly discussing the dependence of the endatest upon reaching the steady state of the coarse-grained
tropy on the resolutior. To this end, we rewrite the coarse- entropy. By writing S,=S®+(S,—S®) and taking the

grained entropy5b) in the form time derivative, we obtain in view of Eq11)
; dS,(t) .
(1Lt - (irr)
Ss(t):_z Qs(i,t)sdlnL*) T O()+2"(L), (12
' e
1) where the entropy flux isb(t)=dS®)/dt. By this an en-
=—> ol ’t)sdmgs('—’)sl (8)  tropy balancdcf. Eq.(1)] has been established for dynami-
T o* el cal systems. It is based on a simultaneous knowledge of both

the coarse-grained and the Gibbs entropies. By considering
The measure of the full phase space is, by definition, unitypnly one of them, no balance equation can be derived with a
For a partitioning of this domain in cells of linear sizehe =~ meaningful distinction of flux and entropy production.
producto* e¢ is the average measure of the boxes. It is an In a general investigation of the entropy of nonequilib-
increasing function of the linear size(o* does not depend rium steady states, Evans and Ronddr] came to similar
on g). The measure of a given baxat the time instant is  conclusions based on a different form of coarse graining.
denoted by, (i,t)=@,(i,t)e". The corresponding average They considered the Gibbs entropy for a many particle sys-
measure of the boxes j§,=p* &Y. Using these notations, tem. For noninteracting particles it diverges in a nonequilib-
one obtains for the coarse-grained entropy rium steady state, while otherwise the lower-order terms (
=1,2,3) of a perturbation series involvimghody terms con-
o (ist) verge in time towards a finite value, which according to these
S.(H)=—> u.(i,t)in——=. (9)  authors might be related to the thermodynamic entropy. In-
i Mg terpreting the truncated expansion as a coarse-grained en-
tropy, one observed then that also in this setting the entropies
The ¢ dependence of the asymptotit—=) coarse- for systems subjected to an electric field are very close to the
grained entropy can be expressed by a number: the informane characterizing the field-free case.
tion dimensionD, of the coarse-grained steady-state distri-

bution, i.e., the dimension of the natural invariant meagure IIl. THE EIELD-DRIVEN LORENTZ GAS

on the attractor. This quantity has been introduced in the

context of the multifractal characterization of chaotic attrac- A. The Lorentz gas dynamics

tors, and of other fractal distributior{g2-14. For every In this section the above considerations are explicitly
stationary measure characterized by boxes of very smallorked out for the field-driven Lorentz gas, i.e., for a bil-
(but finite) linear sizee, which carry probabilitiesu.(i),  liard, where particles are scattered elastically from a periodic

the information dimension is defined by the relation array of circular scatterer@ig. 2. To avoid technical diffi-
= Zipe(i)INp(i)~—Dlne for e<1. In view of this, the de-  cylties arising from trajectories which travel infinitely far
pendence o5, on ¢ for fine enough resolutions is between collisiongi.e., moving in an array of scatters with
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FIG. 2. Dynamics of the Lorentz ga&) Arrangement of the
scatters on a triangular lattica;denotes the lattice spacing,the
radius of scatterers, arld an external field parallel to the axis.
The numbers 0. . . ,1linside the scatterers denote the values of the
symbolss of those disks which can be hit immediately after leaving
the one in the center. F&+0, in addition to these also the light
shaded disks can be reachéd). The dependence df,, ., on 6, .

The center of the scatterer is indicated by gray bullets; all other
symbols are explained in the text.

an infinite horizor) we choose a triangular arrangement of
scatterers and fix the lattice constarb be twice the radius

of the scattererl=a/2. In other words we fixa to the
largest value where the horizon is finite. Moreover, we set
the mass of the particle to be one and &sel as length.

The motion of particles in response to an applied external
field E has extensively been discussed for the Lorentz gas. In
order to avoid an unbounded growth of the energy, the sys-
tem is typically subjected to a thermostat fixing the energy,
which can for instance be achieved by means of a Lagrange
multiplier. The dimensionless equations of motion are in that

=

1 -08 -06 -04 -02 8 02 04 06 08

case 6
X= Px (133

5

y=py, (13b) .

px=E—{py, (139 53

py=—{py, (130 2

where {=Ep, assures conservation of kinetic energy?
=0. Since the momentum of the particles does not change

its modulus during the motion its value can also taken to be % 0.5 8 0.5
unity.

The equationg(13) describe the trajectory segments in kG, 3, Chaotic sets of the Lorentz gas f@ E=0, (b) E
between collisions. Since they can be solved in closed ana=0.1, and(c) E=0.2 (p=1, R=1). The dots in the figures give an
lytic form [18], it is sufficient to follow the time evolution jmpression on the respective invariant densities by showing about
only by specifying the new initial conditions after each col- 50 000 iterations of the initial conditiorb(6)=(0,0.1457%r).
lision [19]. The coordinates of the mapping are a position
and a conjugate quantity, and it is convenient to specify thgina=b,.1 and f=m—2a, as well as elementary trigonom-
latter in terms of the the angular momenttnof the trajec-  etry (cf. Fig. 2), one immediately finds for the angl, 1,
tory with respect to the scatterer hit at the last colligisince 0. . =0+ 7+ 2 arcsirb (14)
the momentum is set to onk s the impact parameter at the i s
collision) and the anglé of the trajectory with they axis (cf. By definitionb e[ —1,1] and 6 can be taken if0,27] such
Fig. 2b. We specify the scatterer hit in collisiam+1 by that the resulting mapping1 defining the time evolution is
sp=0,...,11[cf. Fig. 2a)]. defined on théundamental domaif—1,1]X[0,2#]. It is pe-

The impact parameter, and hence also the angular maiodic in its coordinate? and remains one-to-one on its do-
mentum measured with respect to the center of the respectivaain (cf. Fig. 3 as long as the field is not very stron§ (
disk, is preserved in a collision. Moreover, observing that<2.2) [20].
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z * =0.00(+), 0.05(X%), 0.08(*), and 0.10[J). The
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i . . . .
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0005 L . ) fluctuations due to the finite number of points
’ used in simulations.
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B. Numerical integration of evolution equations C. Information codimensions

For numerical studies Eq$13) are solved by a fourth According to Eq. 10 the information codimension can
order Runge-Kutta methd@1] (RK4), with periodic bound-  also be calculated based on the resolutibe., ) depen-
ary conditions based on a unit cell containiilgthe notation  dence of the levels of saturation of the coarse-grained en-
of Flg 2) the area between the central disk C and the dlSk%‘opy Ss . Using Eq(g), this entropy is calculated by parti-
labeled by 6, 8, and 10. _ ~ tioning the fundamental domain € R,R]X[0,27]) into

At a field E=Q.1 t_he average momentum in the dll_’eCtIOI’\ boxes of sizesXe and estimating the respective measures of
of the external field is found to bg,=0.025-0.001. Since e poxes as the ratio of the number of points found in ibox
7={=EP, (rememberp?’=1), the average phase-space (attimet), and the total number of poinf23]. Choosing for
contraction Is instance a partitioning of2parts in both the vertical and the
horizontal direction, one considers*x 2! uniformly
spread initial conditions in such a way that in every box there
is a number of 2x 25 starting points. These points mimic a
Comparing the divergence of closeby trajectories one findsiniform initial density, where the average measure of each
for the largest Lyapunov exponent of the Lorentz ga&at cell is u,=1/(number of boxesy 1/(26x 2°). The initial

=0.1 that\;=1.73+0.02. Combining this result with Eq. measureu,(i,t=0) coincides withu, such thatS,(t=0)
(15 allows us to calculate the fractal dimension of the at-=0 since the number of points in each boxeisactlythe
tractor in phase space. To this end we write the Kaplansagme.
Yorke formulaD,=1—\4/\, for the information dimension Figure 4 shows the time evolution of the coarse-grained
D, as entropyS, at different electric field$24]. Starting from the
initial condition S,=0, the distribution changes, and the
- - coarse-grained entropy becomes negativetfod. Its satu-
(16)  ration value increases in modulus at increasing electric field.
Due to the finite number of points used to approximate the
temporal evolution of the measures, however, the entropy
where the average phase-space contraction raEmis N takes a nlonv_an'ishing yalue even in the absenc_:e of the electric
- ) ] 1 field, which is immediately related to the variance (cdn-
—\,. For an external fiel&=0.1 we thus obtain for the gomly) distributed points in the respective boxes. When both
codimension the number of boxes and the number of points in each box
(Npoy are sufficiently large, a simple estimate of the entropy
o yields a proportionality of5, to 1/N,,, which is consistent
2—D|(E=0.1)==——=(1.44-0.07x10"3. (170  with the asymptotic value of the data) in Fig. 4 belonging
ot N to E=0. This deviation from zerdthe expected value for
E=0) can be taken as an estimate for the systematic errors
This value is of the same order of magnitude as the onef the calculation ofS, based on a finite number of particles.
obtained by Dellageet al. [22] by means of a completely In principle the offset can be eliminated by using increas-
different method, for a slightly different geometry and field ingly higher number of pointdl and working out the scaling
strength. of the entropy foN~1—0. For the present study this is not

o(E=0.1)=7(E=0.1)=(2.5+0.1)x1073. (15

A
- Z
A,
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necessary, however, since we are interestetifferencesof IV. CONCLUSION

the saturation levels for increasing resolutriThe system-

L . Equation(10) provides a, highly accurate method for cal-
atic displacement then drops out when the number of pOInt8ulatin the information dimension of a chaotic attractor. It is
per cell is maintained. We choosé@2x 2" points for a 9 :

no on P : B 12 s : based on the observation that the difference between the
2"x 2" partitioning, i.e., for instance 2x 212 initial condi- . . . .
. 2 7 saturation values of the coarse-grained entropies of different
tions for the partition into 2x 27 boxes. o . .
Fiaure 5 shows the time evolutios. and its saturation resolution is a numerically very robust quantity to calculate,
| 'ul i vtv | f'l IE—(;llli‘ 'Oﬁé.ﬁ It llj i ' which makes accurate predictions even for systems with in-
Va_uze_sﬁ a2_a7n 2ez<8ernad ;9 I; ' or” ! ((a_ren FeSOIUONS ¢4 rmation codimension of the invariant measures of less than
Ft_ e sat ,tz_an : orl stma ersd |_?cr|ea5||ng rei(_)f:[ 42 few promille. The data were used to test the relatibh
;'On)’ ; Ea ur_a |on_0(écl1r§ Iagr, ?nt 'f S:/e 1S ShGhetween the information codimension of two-dimensional
ownwards bys, Sza_.( . 1)In2 relative to the previous maps, their phase-space contraction and the largest Lyapunov
one. The slope of the initial decay before saturation is ex

. ) R exponent. Such relations and their numerical tests have re-
pected to follow the Gibbs entropigf. Fig. 1), i.e., it should ceived considerable attention in the recent literature due to

amount to the phase-space contraction rate. A reasonable egjyqested relations between the thermodynamic entropy pro-
timate can be obtained after the decay of correlatiams ( qyction and the phase-space contraction towards invariant
>2), and sufficiently far from the saturation region. There neasures characterizing tleng-time dynamics[7,15).
are only few data fulfilling these conflicting constraints, but  |n the remaining part of this discussion we revisit this
in the highest resolution case{27°) the line that goes relation from the point of view of the present results. For a
through point;i=2 andn=3 has a slope, 210 %, avalue  general dynamical system the coarse-grained entiBpy
close to the resulir=(2.5+0.1)x10 2 reported in Sec. is—to our understanding—the closest analog of the thermo-
[l B. dynamical entropy. This does not imply, however, that the
The difference between different saturation valueg\is analogy is very close. In irreversible thermodynamics after
=(1.00+0.04)x 103, from which we obtain the following all the change of the entropy is related to the fluxes of mac-

estimate of the codimension roscopic thermodynamic variables. On the level of a global
. balance the requirements for such an agreement are not
d—D;=A/In2=(1.44+0.05 X 10 (18 known, yet. On the other hand, for certain classes of spatially

extended systems tHenuch more restrictiveconditions for
the agreement of &cal entropy balance with the require-
as compared to the value—D,=(1.44+0.07)x10 % ob- ments of irreversible thermodynamics were worked out
tained in Eq.(17) from the Kaplan-Yorke formula. [8,4,25. To that end,(cf. Refs.[15,26]) the system has to
This analysis was also done for the electric fieldadmit a decomposition into small spatial domains represent-
E=0.2. In this case the information codimension evalu-ing regions characterized by a local thermodynamic equilib-
ated from the saturation values of the entropieslisD, rium [27]. The unit cells of the periodic Lorentz gb. Fig.
=(5.26+0.31)x 103, which agrees well with the codimen- 2(a)] are an appropriate choice of such regions. Local equi-
sion (5.30-0.22)x10 3 obtained by the Kaplan-Yorke librium corresponds in this system to a constant velocity of
method[22]. Altogether the numerical results are thereforeparticles and uniform distribution in angl¢g8]. Its basic
consistent with a quadratic increase of the codimension witltharacteristics is the density of particles in the cell obtained
electric field. by integrating over all the momenta and the spatial coordi-
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nates of the cell. After all, in the absence of external fieldsdriving force is switched on, which will eventually force the
every initial condition will relax to a state with a uniform system into a nonequilibrium steady state. For diffusive re-
distribution of the particles in each cell. Local equilibrium laxation in a system of linear spatial extensian this
implies the assumption that for each cell the macroscopicallyill roughly happen after a timgé~L?/D; or—if exter-
relevant averages taken with respect to the true nonequilibral forces induce a drift—the somewhat shorter, but still
rium distribution are indistinguishable from those taken withmacroscopic, time scale/v. In the course of this relaxa-
respect to the unifornfequilibrium) distribution (Sec. 3 of  tion the phase-space distribution describing the associated

Ref. [29]). The unit cells may be characterized by differentchaotic dynamics contracts exponentially like exp(lt)

eqU|I!br|qm densities, Wh'Ch are _updated In time ‘?‘?‘e'y towards a fractal phase-space structure, nge is the

considering the constraints implied by conservation lawsaverage negative Lyapunov exponent. On the macro-

This approach is valid fo_r the Lorentz gadaind only if the . Fcopic time scales this contraction reaches length scales

channels between the disks are very narrow so that a particle 2D _ L/ hich hvsi

will have many collisions inside a cell before progressing to€~&XP(XoL/D) or e=~exp(=[x;|L/v), which are unphysi-
cally small because the exponents contain the ratios of a

a neighboring oné¢28,30. Since irreversible thermodynam- . d ; S hi |

ics is based on local-equilibrium densities, there cannot be afacroscopic and a microscopic time. This causes conceptua

a priori relation between the coarse-grained entrogiesf problems in the interpretation of approaches like the one of
Ref. [8,25], while it clearly supports our preferen¢&6,15

dynamical systems, which are defined in Sec. Il irrespectiv ) g X .
of local equilibrium, and the entropy functional characteriz-© relate entropy production to the mixing propertles tak|'r)g
lace on the scale of the cells used to define local equilib-

ing thermodynamic transport processes. Consequently, it S : .- :
overambitioug31—33 to identify the phase-space contrac- UM rather than concentrating on miniscule structures in
tion rate in thermostated models with the thermodynamicphase space.
entropy production.

It is also interesting to investigate the notion of a station-
ary nonequilibrium state from the present perspective. Ap- We are grateful to J. R. Dorfman, H. van Beijeren, L.
proaches based on dynamical systgm81-39 often re- Rondoni, and G. Tichy for enlightening discussions on
late these states to the natural invariant measures of thebarse graining. The research was supported by the Hungar-
underlying chaotic dynamics. It was repeatedly pointed outan Research FoundatidiGGrant No. OTKA T032423 the
that a key difference between equilibrium and typical non-Deutsche Forschungsgemeinschaft through the SFB 237, the
equilibrium steady states is the observation that the natur&SF Collaborative Research Program REACTOR, and the
measures of the former obey smooth densities while the latSchloessmann Foundation of the Max Planck Society. This
ter are only defined in the sense of fractal distributions. Letesearch was supported by the European Community under
us now consider a dynamical system where at tim® a  Contract No. HPMF-CT-2002-01511.
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