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Coarse-grained entropy and information dimension of dynamical systems: The driven Lorentz gas
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We study the resolution dependence of the steady-state saturation values of coarse-grained entropies char-
acterizing general dynamical systems. For dissipative maps they are proportional to the information codimen-
sion of the chaotic attractor. Thus, they provide a highly accurate method for determining the information
dimension and related characteristics of the dynamical system. This general result is demonstrated for the
field-driven Lorentz gas. In the discussion, we take the results on the resolution dependence of the entropy as
the starting point to revisit different approaches to define thermodynamic entropy production for transport
processes in dynamical systems, and discuss the role of local equilibrium in this enterprise.
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I. INTRODUCTION

The heart of irreversible thermodynamics@1# is to setup
an entropy balance for the thermodynamic entropyS @2#.
This balance is commonly written in the form

dS~ t !

d t
5F~ t !1S ( irr )~ t !. ~1!

The temporal change of the entropy is written here as
sum of an external changeF(t) and an internal~or irrevers-
ible! change of entropyS ( irr )(t). The former accounts for an
entropy fluxF out of the considered volume. The latter
due to irreversible entropy production.S ( irr ) is nonnegative,
while F can have any sign. Earlier results@3,4# show that a
relation in the form of Eq.~1! can also be found in determin
istic systems if a suitably chosencoarse-grained entropyis
considered. In this paper we study properties of this coa
grained entropy and show that its steady-state satura
value scales with the linear size of the applied coarse gr
ing. In dissipative maps the saturation value is found to
proportional to the information codimension of the chao
attractor.

In Sec. II we define the coarse-grained entropy of a g
eral dynamical system and present its most important p
erties: the tendency to converge to a saturation value and
relation of this value to the information dimension of th
chaotic invariant set. In Sec. III the field-driven Lorentz g
is presented as well as the numerical results obtained for
time evolution of the coarse-grained entropy. The satura
value provides a highly accurate method of determining
information dimension, even in systems where the invari
measures only minutely deviate from a smooth distributi
Section IV concludes the paper by taking up recent disc
sions on analogies of local equilibrium in dynamical-syst
models for transport.
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II. COARSE-GRAINED ENTROPIES FOR DYNAMICAL
SYSTEMS

We treat invertible dissipative dynamical systems@5,6#
with a closedd-dimensional phase space. The long-time d
namics is then associated with a chaotic attractor@5,6#, i.e.,
with a fractal phase-space structure which has no volu
with respect to the Liouville measure. The set of avera
Lyapunov exponents characterizing the associated invar
set will be denoted byl̄1>l̄2>•••>l̄d , and the location
dependent eigenvalues of the linearized dynamics are
cordinglyl1>l2>•••>ld . A key ingredient of dynamical-
system models for irreversible processes are ever refin
phase-space structures related to the convergence towa
fractal measure. It is impossible to describe the asympt
states by smooth stationary densities in phase space. Ins
we consider acoarse-graineddescription that approximate
the ever refining structures in phase space with a finite re
lution. Comparing the time evolution in this coarse-grain
description with the exact one gives insight in the dynami
For illustrational purposes, we confine ourselves to disc
only the simplest possible coarse graining. It consists in
viding the adimensionalized phase space into identical bo
of linear size« much smaller than unity~«!1!. The phase-
space volume of the boxes is then«d.

A. Exact and coarse-grained densities

We use two different phase-space densities@4# character-
izing the evolution of the same smooth initial condition:~1!
%(x,t), the exact phase-space densityat phase-space loca
tion x and timet, ~2! %«( i ,t), the coarse-grained densityof
box i at timet, specifying the average value of%(x,t) in box
i. The density%(x,t) is normalized to unity*dx%(x,t)
51, on the phase space accessible to the system, and ac
ingly ( i%««d51 for the coarse-grained density. The avera
ing on the set of boxes defines the coarse graining.

After a long time there is a qualitative difference betwe
the exact and the coarse-grained densities: the exact de
keeps developing finer and finer structures and has no ti
independent limit. It becomes undefined as a density s
©2004 The American Physical Society05-1



y

e
o-

-

th
ra

in
d
al
in

a
e
de
iz

e
s
n
r

th

-
i.

in

y
e

o

nsity
he

de-
e

-
xes

py

all
nce
is
pies
.e.,

f

-
e
of
us-

s

ap-
for-
nge

n-

rac-
ure.
off

et
lly,
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that the asymptotic distribution can only be described b
natural invariant measurem @5#. On the other hand, the
coarse-grained density converges to a~piecewise constant!

stationary distribution%̄«( i ), such that the measurem i(«) of
box i equals%̄«( i )«d. For pointsx on the attractor of the
dynamical system the asymptotic temporal dependenc
%(x,t) can be written, in the spirit of large deviation the
rems, as

%~x,t !;es(x)t, ~2a!

while

%«~ i ,t !;%̄«~ i !. ~2b!

Heres(x) is the local phase-space contraction rate@7–9# at
point x. Equation~2a! follows from the fact that the phase
space volume aroundx is behaving like exp@2s(x)t# and the
measure of a given volume is not changing in time due to
conservation of probability. The phase-space contraction
is the negative sum of all local eigenvalues@7#

s~x!52(
j 51

d

l j~x!. ~3!

The emergence of differences between the coarse-gra
and the exact density depends on the type of initial con
tions. In what follows we always consider smooth initi
conditions. The difference between the densities is then
tially on the order of the box size«, and therefore negligible
for sufficiently small«. Strong deviations develop after
crossover timet« , after which the contraction due to th
negative Lyapunov exponents makes the support of the
sity in the stable direction of the same order as the box s
An upper limit to this time scale is

t«'2
1

ul̄2u
ln «, ~4!

wherel̄2 is the largest negative average Lyapunov expon
~the smallest one in modulus!. For typical dynamical system
this Lyapunov exponent is of the order unity in a dimensio
less description. Thus, the crossover time is on the orde
the characteristic time~iteration unit! of the dynamical sys-
tem. It depends only logarithmically on the box size.

The qualitative difference between the behavior of
exact and the coarse-grained densities@cf. Fig. ~2a! and~2b!#
is a hallmark of irreversibility. Every macroscopic descrip
tion of transport is based on coarse-grained densities,
~coarse-grained! averages of smoothly varying functions
phase-spacelike particle numbers or the~kinetic! energy@10#.
Hence, such a description, even if applied to dynamical s
tems, cannot resolveall information on the fine details of th
system’s phase-space dynamics.

B. Gibbs and coarse-grained entropies

A natural choice for the entropy characterizing the state
a general dynamical system at timet is the information-
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theoretic entropy taken with respect to a phase-space de
at that time. Since we consider the time evolution of t
exact and the coarse-grained densities, two entropies are
fined: ~1! The entropyS(G) evaluated with respect to th
exact density

S(G)~ t ![2E ddx%~x,t !lnS %~x,t !

%*
D , ~5a!

where%* is a constant reference density.S(G) is commonly
referred to as theGibbs entropy. ~2! The coarse-grained en
tropy S« is defined in an analogous way as a sum over bo
of size«

S«~ t ![2(
i

%«~ i ,t !«dlnS %«~ i ,t !

%*
D . ~5b!

The notationS« expresses that the coarse-grained entro
explicitly depends on the box size«.

In the choice of the normalization%* of the density under
the logarithms we follow Green@11#, even though other
choices have also been adopted recently~cf. for instance,
Ref. @8#!. The expressions for differences of thesameen-
tropy evaluated at different times agree, however, for
these choices. For convenience we identify the refere
density %* with the average density in the system. Th
amounts to a choice of the entropy scale where the entro
vanish for a uniform density distribution in phase space, i
for %(x,t)[%«( i ,t)[%* .

The entropies~5! are defined irrespective of the notion o
local thermodynamic equilibrium. In Eq.~12! even the split-
ting ~1! of the entropy changes into a ‘‘flux’’ and an ‘‘irre
versible’’ part is done without referring to that notion. Th
relation of the formal splitting of the entropy to concepts
irreversible thermodynamics will be addressed in the disc
sion.

The time evolution of the entropies immediately follow
from that of the densities. For smooth initial conditions,S(G)

andS« nearly coincide until the crossover timet« is reached.
Typically, they both decrease since the distributions start
proaching the one on the invariant set and hence the in
mation content is increasing. This tendency does not cha
for S(G), which keeps decreasing aftert« . Based on Eqs.~5a!
and ~2a! one immediately verifies thatS(G)52s(t) t
1const, wheres(t) is the average of the phase-space co
traction rate@defined by Eq.~2a!# taken with%(x,t) at time
t. The asymptotic behavior is a linear decay

S(G)→2s̄t ~6!

with s̄ as the long-time average of the phase-space cont
tion rate taken with respect to the natural invariant meas

The coarse-grained entropy, on the other hand, levels
aroundt« , since with the given resolution the invariant s
does not change any longer after this time. Asymptotica
the coarse-grained entropy tends to the constant valueS̄«

~see Fig. 1!, which depends on the box size but isindepen-
dentof the initial condition
5-2
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S«~ t !→S̄« . ~7!

The saturation expresses the convergence of the co
grained density to a stationary value.

It is worth briefly discussing the dependence of the
tropy on the resolution«. To this end, we rewrite the coarse
grained entropy~5b! in the form

S«~ t !52(
i

%«~ i ,t !«dln
%«~ i ,t !

%*

52(
i

%«~ i ,t !«dln
%«~ i ,t !«d

%* «d
. ~8!

The measure of the full phase space is, by definition, un
For a partitioning of this domain in cells of linear size« the
product%* «d is the average measure of the boxes. It is
increasing function of the linear size« ~%* does not depend
on «!. The measure of a given boxi at the time instantt is
denoted bym«( i ,t)5%«( i ,t)«d. The corresponding averag
measure of the boxes ism̄«[%* «d. Using these notations
one obtains for the coarse-grained entropy

S«~ t !52(
i

m«~ i ,t !ln
m«~ i ,t !

m̄«

. ~9!

The « dependence of the asymptotic (t→`) coarse-
grained entropy can be expressed by a number: the infor
tion dimensionDI of the coarse-grained steady-state dis
bution, i.e., the dimension of the natural invariant measurm̄
on the attractor. This quantity has been introduced in
context of the multifractal characterization of chaotic attra
tors, and of other fractal distributions@12–14#. For every
stationary measure characterized by boxes of very sm
~but finite! linear size«, which carry probabilitiesm«( i ),
the information dimension is defined by the relati
2( im«( i )lnm«(i);2DIln« for «!1. In view of this, the de-
pendence ofS̄« on « for fine enough resolutions is

FIG. 1. Time evolution of the Gibbs entropyS(G) and the
coarse-grained entropyS« in d-dimensional dissipative systems r
laxing towards a steady state described by a chaotic attracto«

denotes the coarse-graining grid size andS̄« stands for the steady
state coarse-grained entropy. The arrow represents the shift o
coarse-grained entropy curve when changing the resolution fro«
to «8,«, andDI stands for the information dimension of the attra
tor.
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S̄«5~d2DI !ln«. ~10!

Refining the box size from« to «8,« the saturation value is
shifted downward by (d2DI)ln(«/«8) ~Fig. 1!. This shift is
proportional to the codimension (d2DI). At the same time
the initial value of the entropy characterizing the unifor
initial condition is unchanged~it remains zero!. Conse-
quently, for a higher resolution~smaller«! the steady-state
distribution will be reached at later times, as already sta
by Eq. ~4!.

Finally, we point out that even for general dynamical sy
tems there is an analog of the thermodynamical relation~1!.
Since the differenceS«(t)2S(G)(t) between the coarse
grained and the Gibbs entropy measures the loss of infor
tion on the exact state, one can identify@4,15,16# the time
derivative

S«
( irr )~ t ![

d

d t
@S«~ t !2S(G)~ t !# ~11!

with the rate of irreversible entropy production of the d
namical system due to a coarse graining with resolution«.
The dependence ofS«

( irr ) on « is weak, and it disappear
latest upon reaching the steady state of the coarse-gra
entropy. By writing S«5S(G)1(S«2S(G)) and taking the
time derivative, we obtain in view of Eq.~11!

dS«~ t !

d t
5F~ t !1S«

( irr )~ t !, ~12!

where the entropy flux isF(t)[dS(G)/dt. By this an en-
tropy balance@cf. Eq. ~1!# has been established for dynam
cal systems. It is based on a simultaneous knowledge of b
the coarse-grained and the Gibbs entropies. By conside
only one of them, no balance equation can be derived wi
meaningful distinction of flux and entropy production.

In a general investigation of the entropy of nonequili
rium steady states, Evans and Rondoni@17# came to similar
conclusions based on a different form of coarse graini
They considered the Gibbs entropy for a many particle s
tem. For noninteracting particles it diverges in a nonequil
rium steady state, while otherwise the lower-order termsn
51,2,3) of a perturbation series involvingn body terms con-
verge in time towards a finite value, which according to the
authors might be related to the thermodynamic entropy.
terpreting the truncated expansion as a coarse-grained
tropy, one observed then that also in this setting the entro
for systems subjected to an electric field are very close to
one characterizing the field-free case.

III. THE FIELD-DRIVEN LORENTZ GAS

A. The Lorentz gas dynamics

In this section the above considerations are explic
worked out for the field-driven Lorentz gas, i.e., for a b
liard, where particles are scattered elastically from a perio
array of circular scatterers~Fig. 2!. To avoid technical diffi-
culties arising from trajectories which travel infinitely fa
between collisions~i.e., moving in an array of scatters wit

he
5-3
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MÁTYÁS, TÉL, AND VOLLMER PHYSICAL REVIEW E 69, 016205 ~2004!
an infinite horizon! we choose a triangular arrangement
scatterers and fix the lattice constanta to be twice the radius
of the scatterersR5a/2. In other words we fixa to the
largest value where the horizon is finite. Moreover, we
the mass of the particle to be one and useR[1 as length.

The motion of particles in response to an applied exter
field E has extensively been discussed for the Lorentz gas
order to avoid an unbounded growth of the energy, the s
tem is typically subjected to a thermostat fixing the ener
which can for instance be achieved by means of a Lagra
multiplier. The dimensionless equations of motion are in t
case

ẋ5px , ~13a!

ẏ5py , ~13b!

ṗx5E2zpx , ~13c!

ṗy52zpy , ~13d!

where z5Epx assures conservation of kinetic energy] tp
2

50. Since the momentump of the particles does not chang
its modulus during the motion its value can also taken to
unity.

The equations~13! describe the trajectory segments
between collisions. Since they can be solved in closed a
lytic form @18#, it is sufficient to follow the time evolution
only by specifying the new initial conditions after each co
lision @19#. The coordinates of the mapping are a positi
and a conjugate quantity, and it is convenient to specify
latter in terms of the the angular momentumb of the trajec-
tory with respect to the scatterer hit at the last collision~since
the momentum is set to one,b is the impact parameter at th
collision! and the angleu of the trajectory with they axis~cf.
Fig. 2b!. We specify the scatterer hit in collisionn11 by
sn50, . . . ,11@cf. Fig. 2~a!#.

The impact parameter, and hence also the angular
mentum measured with respect to the center of the respe
disk, is preserved in a collision. Moreover, observing th

FIG. 2. Dynamics of the Lorentz gas.~a! Arrangement of the
scatters on a triangular lattice;a denotes the lattice spacing,R the
radius of scatterers, andE an external field parallel to thex axis.
The numbers 0, . . . ,11inside the scatterers denote the values of
symbolss of those disks which can be hit immediately after leavi
the one in the center. ForE5” 0, in addition to these also the ligh
shaded disks can be reached.~b! The dependence ofbn11 on un .
The center of the scatterer is indicated by gray bullets; all ot
symbols are explained in the text.
01620
f

t

al
In
s-
,

ge
t

e

a-

e

o-
ive
t

sina5bn11 andb5p22a, as well as elementary trigonom
etry ~cf. Fig. 2!, one immediately finds for the angleun11,

un115un1p12 arcsinbn11 . ~14!

By definition bP@21,1# andu can be taken in@0,2p# such
that the resulting mappingM defining the time evolution is
defined on thefundamental domain@21,1#3@0,2p#. It is pe-
riodic in its coordinateu and remains one-to-one on its do
main ~cf. Fig. 3! as long as the field is not very strong (E
,2.2) @20#.

e

r

FIG. 3. Chaotic sets of the Lorentz gas for~a! E50, ~b! E
50.1, and~c! E50.2 (p51, R51). The dots in the figures give a
impression on the respective invariant densities by showing ab
50 000 iterations of the initial condition (b,u)5(0,0.1457p).
5-4
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FIG. 4. The time dependence of the coars
grained entropy for different electric fields:E
50.00~1!, 0.05~3!, 0.08~* !, and 0.10~h!. The
horizontal time axis marks the number of coll
sions n. The nonvanishing asymptotic value o
the coarse-grained entropy forE50 is caused by
fluctuations due to the finite number of poin
used in simulations.
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B. Numerical integration of evolution equations

For numerical studies Eqs.~13! are solved by a fourth
order Runge-Kutta method@21# ~RK4!, with periodic bound-
ary conditions based on a unit cell containing~in the notation
of Fig. 2! the area between the central disk C and the di
labeled by 6, 8, and 10.

At a field E50.1 the average momentum in the directi
of the external field is found to bep̄x50.02560.001. Since
s̄5 z̄5E p̄x ~rememberp251), the average phase-spa
contraction is

s̄~E50.1!5 z̄~E50.1!5~2.560.1!31023. ~15!

Comparing the divergence of closeby trajectories one fi
for the largest Lyapunov exponent of the Lorentz gas aE

50.1 thatl 1̄51.7360.02. Combining this result with Eq
~15! allows us to calculate the fractal dimension of the
tractor in phase space. To this end we write the Kapl
Yorke formulaDI512l̄1 /l̄2 for the information dimension
DI as

DI522
l̄11l̄2

l̄2

522
s̄

l̄2

, ~16!

where the average phase-space contraction rate iss̄52l̄1

2l̄2. For an external fieldE50.1 we thus obtain for the
codimension

22DI~E50.1!5
s̄

s̄1l̄1

5~1.4460.07!31023. ~17!

This value is of the same order of magnitude as the
obtained by Dellagoet al. @22# by means of a completely
different method, for a slightly different geometry and fie
strength.
01620
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C. Information codimensions

According to Eq. 10 the information codimension ca
also be calculated based on the resolution~i.e., «! depen-
dence of the levels of saturation of the coarse-grained
tropy S« . Using Eq.~9!, this entropy is calculated by parti
tioning the fundamental domain (@2R,R#3@0,2p#) into
boxes of size«3« and estimating the respective measures
the boxes as the ratio of the number of points found in boi
~at timet), and the total number of points@23#. Choosing for
instance a partitioning of 26 parts in both the vertical and th
horizontal direction, one considers 2113211 uniformly
spread initial conditions in such a way that in every box th
is a number of 25325 starting points. These points mimic
uniform initial density, where the average measure of e
cell is m«51/(number of boxes)51/(26326). The initial
measurem«( i ,t50) coincides withm̄« such thatS«(t50)
50 since the number of points in each box isexactly the
same.

Figure 4 shows the time evolution of the coarse-grain
entropyS« at different electric fields@24#. Starting from the
initial condition S«50, the distribution changes, and th
coarse-grained entropy becomes negative fort.0. Its satu-
ration value increases in modulus at increasing electric fi
Due to the finite number of points used to approximate
temporal evolution of the measures, however, the entr
takes a nonvanishing value even in the absence of the ele
field, which is immediately related to the variance of~ran-
domly! distributed points in the respective boxes. When b
the number of boxes and the number of points in each
(Nbox) are sufficiently large, a simple estimate of the entro
yields a proportionality ofS« to 1/Nbox, which is consistent
with the asymptotic value of the data~1! in Fig. 4 belonging
to E50. This deviation from zero~the expected value fo
E50) can be taken as an estimate for the systematic er
of the calculation ofS« based on a finite number of particle
In principle the offset can be eliminated by using increa
ingly higher number of pointsN and working out the scaling
of the entropy forN21→0. For the present study this is no
5-5
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FIG. 5. The« dependence of the time evolu
tion of the coarse-grained entropyS« for E
50.1. Time is specified in terms of the number
collisions, and the different symbols refer to«
5226 ~1!, 227 ~3!, 228 ~* !, and 229 ~h!. Note
that the difference between neighboring satu
tion levels does not depend on«.
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necessary, however, since we are interested indifferencesof
the saturation levels for increasing resolution«. The system-
atic displacement then drops out when the number of po
per cell is maintained. We choose 2n1532n15 points for a
2n32n partitioning, i.e., for instance 2123212 initial condi-
tions for the partition into 27327 boxes.

Figure 5 shows the time evolutionS« and its saturation
values at an external fieldE50.1 for different resolutions
«5226, 227, 228, and 229. For smaller« ~increasing reso-
lution!, the saturation occurs later, and its level is shift
downwards byS«2S2«5(d2DI)ln2 relative to the previous
one. The slope of the initial decay before saturation is
pected to follow the Gibbs entropy~cf. Fig. 1!, i.e., it should
amount to the phase-space contraction rate. A reasonabl
timate can be obtained after the decay of correlationsn
.2), and sufficiently far from the saturation region. The
are only few data fulfilling these conflicting constraints, b
in the highest resolution case («5229) the line that goes
through pointsn52 andn53 has a slope, 231023, a value
close to the results̄5(2.560.1)31023 reported in Sec.
III B.

The difference between different saturation values isD
5(1.0060.04)31023, from which we obtain the following
estimate of the codimension

d2DI5D/ ln 25~1.4460.05!31023 ~18!

as compared to the value 22DI5(1.4460.07)31023 ob-
tained in Eq.~17! from the Kaplan-Yorke formula.

This analysis was also done for the electric fie
E50.2. In this case the information codimension eva
ated from the saturation values of the entropies isd2DI
5(5.2660.31)31023, which agrees well with the codimen
sion (5.3060.22)31023 obtained by the Kaplan-Yorke
method@22#. Altogether the numerical results are therefo
consistent with a quadratic increase of the codimension w
electric field.
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IV. CONCLUSION

Equation~10! provides a, highly accurate method for ca
culating the information dimension of a chaotic attractor. It
based on the observation that the difference between
saturation values of the coarse-grained entropies of diffe
resolution is a numerically very robust quantity to calcula
which makes accurate predictions even for systems with
formation codimension of the invariant measures of less t
a few promille. The data were used to test the relation~17!
between the information codimension of two-dimension
maps, their phase-space contraction and the largest Lyap
exponent. Such relations and their numerical tests have
ceived considerable attention in the recent literature due
suggested relations between the thermodynamic entropy
duction and the phase-space contraction towards invar
measures characterizing the~long-time! dynamics@7,15#.

In the remaining part of this discussion we revisit th
relation from the point of view of the present results. Fo
general dynamical system the coarse-grained entropyS«

is—to our understanding—the closest analog of the therm
dynamical entropy. This does not imply, however, that t
analogy is very close. In irreversible thermodynamics af
all the change of the entropy is related to the fluxes of m
roscopic thermodynamic variables. On the level of a glo
balance the requirements for such an agreement are
known, yet. On the other hand, for certain classes of spati
extended systems the~much more restrictive! conditions for
the agreement of alocal entropy balance with the require
ments of irreversible thermodynamics were worked o
@8,4,25#. To that end,~cf. Refs. @15,26#! the system has to
admit a decomposition into small spatial domains repres
ing regions characterized by a local thermodynamic equi
rium @27#. The unit cells of the periodic Lorentz gas@cf. Fig.
2~a!# are an appropriate choice of such regions. Local eq
librium corresponds in this system to a constant velocity
particles and uniform distribution in angles@28#. Its basic
characteristics is the density of particles in the cell obtain
by integrating over all the momenta and the spatial coo
5-6
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nates of the cell. After all, in the absence of external fiel
every initial condition will relax to a state with a uniform
distribution of the particles in each cell. Local equilibriu
implies the assumption that for each cell the macroscopic
relevant averages taken with respect to the true nonequ
rium distribution are indistinguishable from those taken w
respect to the uniform~equilibrium! distribution ~Sec. 3 of
Ref. @29#!. The unit cells may be characterized by differe
equilibrium densities, which are updated in time bysolely
considering the constraints implied by conservation la
This approach is valid for the Lorentz gas if~and only if! the
channels between the disks are very narrow so that a par
will have many collisions inside a cell before progressing
a neighboring one@28,30#. Since irreversible thermodynam
ics is based on local-equilibrium densities, there cannot b
a priori relation between the coarse-grained entropiesS« of
dynamical systems, which are defined in Sec. II irrespec
of local equilibrium, and the entropy functional character
ing thermodynamic transport processes. Consequently,
overambitious@31–33# to identify the phase-space contra
tion rate in thermostated models with the thermodynam
entropy production.

It is also interesting to investigate the notion of a statio
ary nonequilibrium state from the present perspective. A
proaches based on dynamical systems@7,31–35# often re-
late these states to the natural invariant measures of
underlying chaotic dynamics. It was repeatedly pointed
that a key difference between equilibrium and typical no
equilibrium steady states is the observation that the nat
measures of the former obey smooth densities while the
ter are only defined in the sense of fractal distributions.
us now consider a dynamical system where at timet50 a
s
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driving force is switched on, which will eventually force th
system into a nonequilibrium steady state. For diffusive
laxation in a system of linear spatial extensionL this
will roughly happen after a timet'L2/D; or—if exter-
nal forces induce a driftv—the somewhat shorter, but sti
macroscopic, time scaleL/v. In the course of this relaxa
tion the phase-space distribution describing the associ
chaotic dynamics contracts exponentially like exp(2ul̄2ut)
towards a fractal phase-space structure, werel̄2 is the
average negative Lyapunov exponent. On the mac
scopic time scales this contraction reaches length sc
e'exp(2ul̄2uL2/D) or e'exp(2ul̄2uL/v), which are unphysi-
cally small because the exponents contain the ratios o
macroscopic and a microscopic time. This causes concep
problems in the interpretation of approaches like the one
Ref. @8,25#, while it clearly supports our preference@16,15#
to relate entropy production to the mixing properties taki
place on the scale of the cells used to define local equ
rium, rather than concentrating on miniscule structures
phase space.
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