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Aerosols under chaotic advection often approach a strange attractor. They move chaotically on this fractal
set but, in the presence of gravity, they have a net vertical motion downwards. In practical situations, obser-
vational data may be available only at a given level, for example, at the ground level. We uncover two fractal
signatures of chaotic advection of aerosols under the action of gravity. Each one enables the computation of the
fractal dimension D0 of the strange attractor governing the advection dynamics from data obtained solely at a
given level. We illustrate our theoretical findings with a numerical experiment and discuss their possible
relevance to meteorology.
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The transport of finite-size particles plays an important
role in several fields, from cloud physics �1� to plankton
dynamics �2�. The recent interest �3,4� in this problem comes
in part from the fact that the dynamics of these particles is
dissipative due to the drag force. This makes dynamical sys-
tems tools and concepts, such as attractors and dimensions,
applicable. In the presence of gravity, a net vertical motion
occurs due to the density difference between fluid and par-
ticle. For heavy particles �aerosols�, this leads to raindrop
falling in the atmosphere �5� and to the sedimentation of
plankton �2� and marine snow �6� in the ocean.

In such situations, knowledge of the advection dynamics
of the aerosols is of fundamental importance, whereas usu-
ally only data obtained at a given level �height� are available.
This occurs often, for instance, in meteorology, in the case
where the aerosols are raindrops. In fact, it is much easier to
obtain direct measurements of the raindrops when they reach
the ground level than before, i.e., when they are being ad-
vected in the air flow. The derivation of approaches to obtain
information on the advection dynamics of aerosols solely
from data observed at a given level is therefore an instrumen-
tal and relevant task. In particular, here we are interested in
approaches to obtain the fractal dimension of the set where
the aerosols cluster while they are advected.

We report the uncovering of two independent fractal sig-
natures of chaotic advection under gravity. Both make the
computation of the fractal dimension D0 of the strange at-
tractor in the N-dimensional configuration space possible
without prior knowledge of the advection dynamics. First,
we show that the time series of the instants of arrival of
advected aerosols in a small detector placed at a given level
has a fractal dimension which is equal to

d0 = 1 + D0 − N . �1�

We assume that D0�N, which implies that the attractor in
the full 2N-dimensional phase space is D0-dimensional since
a set of dimension D0, when projected into a space of dimen-
sion N, typically remains D0-dimensional if D0�N �7�. Sec-
ond, we show that the spatial distribution of the aerosols
reaching a line at a given level contains discontinuities

�jumps� at points that form a fractal set whose dimension is
again equal to d0 �8�. We illustrate our findings with a nu-
merical experiment.

The dimensionless form of the governing equation for the
path r�t� of aerosols much denser than the fluid, subjected to
Stokes drag and gravity, reads as �9�

r̈ = A�u − ṙ − Wn� , �2�

where ṙ is the velocity of the aerosol, u=u(r�t� , t) is the fluid
velocity field evaluated at the position r�t� of the aerosol, and
n is a unit vector pointing upward in the vertical direction.
Throughout this paper we consider the vertical direction
along the axis y. The inertia parameter A �larger values for
smaller inertia� can be written in terms of the densities �p
and � f of the aerosol and of the fluid, respectively, the radius
a of the aerosols, the fluid’s kinematic viscosity �, and the
characteristic length L and velocity U of the flow. It is A
=R /St, where R=� f /�p�1 and St= �2a2U� / �9�L� is the
Stokes’s number of the aerosol. As seen from Eq. �2�, the
gravitational parameter W provides the dimensionless set-
tling velocity in a medium at rest. The actual settling velocity
is the result of two effects: the gravitational attraction �buoy-
ancy� and an updraft, if present. We consider the settling
velocity to be comparable with U, implying a W of the order
of unity.

For convenience, we treat the case where the fluid flow is
two dimensional, N=2. In this situation, the phase space of
the advection dynamics of the aerosols is four dimensional,
since the aerosols are not constrained to move with the same
velocity as their corresponding fluid elements. For the sake
of concreteness, let us consider the time-smoothened version
of the alternating sinusoidal shear flow of Ref. �10�. In di-
mensionless form it is given as

ux�r,t� = 0.5�1 + tanh�� sin�2�t���sin�2�y� ,

uy�r,t� = 0.5�1 − tanh�� sin�2�t���sin�2�x� . �3�

This flow is defined on the unit square with periodic bound-
ary conditions, and is periodic in time with a unit period. The
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vertical direction corresponds to the y axis. Apart from the
spatial �sinusoidal� factor, each velocity component consists
of two plateaus in time with a rapid but smooth crossover if
�=20/�. This is a simple analytically given model which,
nevertheless, possesses a paradigmatic property of both cha-
otic and turbulent flows �11�: the intense stretching of mate-
rial elements.

Substituting Eq. �3� into Eq. �2� and fixing R=10−3 and
W=0.8, there are regions of the parameter St for which the
dynamics of the aerosols is ruled by a strange attractor. We
note that the time independence of the attractor’s dimension
D0, which will be essential in what follows, is valid for a
broad class of randomly time-dependent flows as well �see
the conclusion�. A bifurcation diagram and our analysis sug-
gest the existence of strange attractors of dimension between
1 and 2 in an interval around St=2	10−4 �apart, as usual,
from some small periodic windows�. Here we illustrate our
general ideas by analyzing the strange attractor correspond-
ing to St=2	10−4, which is prototypical. Figure 1 shows
four snapshots of the projection 
 of the strange attractor
into the configuration space. Because of gravity, there is a net
vertical motion of the fractal set of curves of 
 downwards
in Fig. 1. We compute the dimension of 
 to be D0=1.79.

Arrival times. The first fractal signature can be inferred
from the following argument: Let us fix a point P=r0 in the
configuration space. Consider the product space of the con-
figuration space and the time axis. In this space-time repre-
sentation, the point P corresponds to a one-dimensional
straight line �r0 , t�, t�R. The time coordinates of the set
formed by the intersection of this line with the
�D0+1�-dimensional time extension of 
 correspond to the
time instants of arrivals of aerosols at P. This intersection
has a dimension �7� given by d0=1+ �D0+1�− �N+1�, since
the time-extended configuration space is �N+1� dimensional.
Therefore the time series of the instants of arrival of ad-
vected aerosols at the point P has a fractal dimension d0
given by Eq. �1�.

For practical purposes, we substitute the point P by a
small codimension 1 object, placed horizontally, which is our
detector. In the two-dimensional fluid flow that we analyze
here, such object is a segment of length ��L. Seen at the
scale of the detector, the dynamics of the advected aerosols
under gravity roughly corresponds to a Cantor set of curves
moving with some �both time and space dependent� horizon-
tal velocity component vh. The fractality of the time series of
the instants of arrival of aerosols at the detector is measur-
able at scales �� /vh.

To validate numerically this fractal signature, we let 106

aerosols, distributed on the attractor within the unit square at
time zero, evolve until they reach the level y=y0=0. Their
instants of arrival as well as their x coordinates are then
recorded. We then choose a point x0 and analyze the time
series of instants of arrival at the segment x� �x0 ,x0+��, y
=0. The dimension dts of this time series should, in face of
our theoretical findings, be equal to d0=0.79. We find excel-
lent agreement with this value. For instance, taking �=10−3,
for x0=0.2, x0=0.5, and x0=0.8, we find, respectively, dts
=0.80, dts=0.77, and dts=0.80. The numbers of points in
each of these choices of x0 are, respectively, 185, 663, and
562. To calculate these dimensions, we have used the method
described in �12�. This method is much more efficient than
the usual box counting and is specially suited for computing
the dimension of subsets of the real line. We explain it briefly
here: Let us say that we want to measure the dimension d of
the set M. For each point bi�M, let ni�l� be the number of
points in M that lie within a distance l of bi. The following
scaling can be shown to hold: �1/n�l��	 l−d, where d is the
fractal dimension, and the bracket denotes a uniform averag-
ing over all elements of the set. The dimensions for the dif-
ferent choices of x0 were measured with l
� in the range
0.002���0.05, equally spaced on the logarithmic scale.

Density jumps. The second fractal signature is associated
with the spatial distribution P of the advected aerosols reach-
ing a line s at a certain level y=y0 of the configuration space.
Let r0�RN−1 be the spatial coordinate of a point along a line
s at the �N−1�-dimensional plane y=y0. We define P�r0�dr
as the probability that an aerosol reaches this plane in a dr
neighborhood of the point r0 over a finite time interval �t.
P�r0� is proportional to the frequency of particles falling near
r0, and can in principle be determined experimentally. The
idea of the second signature is that the downward motion
with local velocity v caused by gravity is equivalent to a
projection of the whole fractal pattern shown in Figs. 1, 3�a�,
and 4 onto a horizontal line. As illustrated in Fig. 2, the
direction of the projection is tangent to the distribution at a
fractal set of points, which causes discontinuous jumps in the
projected measure if �t is sufficiently large. This means that
there is a fractal set of points where the density of detected
particles has discontinuities. This is explained more rigor-
ously in what follows, and we show that the fractal dimen-
sion of 
 can be obtained from the dimension of the set of
points where P changes discontinuously.

The attractor has an SRB �Sinai-Ruelle-Bowen� measure
�13�, which is absolutely continuous �discontinuous� along

FIG. 1. Snapshots, taken at t= �a� 0.65, �b� 0.75, �c� 0.85, and
�d� 0.95, of the projection 
 of the strange attractor into the con-
figuration space.

n−W

Λξ

FIG. 2. �Color online� Illustration justifying the fractal signature
on the density jumps. The black curves represent the slice z
=const of 
 at a certain time instant t. The vector field v defined on

 is represented by the �blue� arrows. Its tangencies with 
 are the
extremal points �red dots�. The line � �green� is a one-dimensional
line which joins all the extremal points of the �x ,y� plane.
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the unstable �stable� foliation, and the distribution of points
on 
 inherits this property. The distribution P is proportional
to the projected natural measure in the box of size dr around
r0 on the level y=y0 integrated over time. The measure is not
continuous in the configuration space, but rather concen-
trated on the filaments of 
. As a result, the distribution P
can have a discontinuous jump where the local velocity v at
a point of 
 happens to be tangent to the corresponding
filament. We call the points where this happens extremal
points �14�. In order to determine the dimension of such
points, let us first consider a plane �x ,y� of the projected
attractor �see Fig. 2�. The extremal points of the main fila-
ments can be joined by a smooth line � �Fig. 2�. The attrac-
tor’s dimension on this plane is D0+2−N �it is D0 and D0
−1 for N=2 and N=3, respectively�. Thus the dimension of
the extremal points on this plane is that of the intersection of
a one- and a D0+2−N-dimensional object, which is 1+ �D0

+2−N�−2=D0+1−N. Next, observe that in the product
space of the x, y plane and the time axis this is a
D0+2−N-dimensional set. The points of line s �y=y0, z
=const� on which the distribution P is defined form a plane
in this product space. Thus the set of points where the den-
sity jumps occur in the line s at the fixed level y=y0 has a
dimension 2+ �D0+2−N�−3=D0+1−N=d0.

The second fractal signature refers to a local property in
the sense that it is related to discontinuities of a distribution.
It is therefore intrinsically more difficult to detect in an ex-
periment, due to the fluctuations induced by the finite num-
ber of observed aerosols. Such fluctuations tend to obscure
the true discontinuities and lead to the consideration of
points which do not correspond to true discontinuities. In
principle, it can, however, be detected for a sufficiently large
number of aerosols. To show this, consider the part of the
attractor which is shown in black in Fig. 3�a�. We let 1.7
	106 aerosols, forming that part of the attractor, evolve until
they reach the line y=y0=0. We measure the spatial distribu-
tion of the aerosols here using a sliding-window method, to
be described now. We consider the segment �0.88,0.98�	0,

which is divided into 105 equal boxes si. We count the num-
ber ni of aerosols arriving in each si. We then define ri

=� j=i
i+100nj, i=1, . . . ,105−100, the total number of arrived

aerosols in 100 neighboring boxes. Next, consider �i
=ri+100−ri, i=1, . . . ,105−200, the jumps between two adja-
cent intervals, each formed by 100 boxes. Figure 3�b� shows
�i in the whole range. The local maxima are also indicated.
We define a threshold � for these jumps and consider that the
discontinuities in the spatial distribution occur at the points
corresponding to the local maxima of �i which exceed �.
The procedure is robust for � in a certain range that, at the
same time, allows the detection of a reasonably large number
of discontinuities and does not indicate false discontinuities
�due to the fluctuations�. In our numerical experiment, the
minimum value of � for which no false discontinuity is de-
tected is 204. In this case, we find 51 discontinuities. We
compute the dimension dsd of this set of discontinuities. We
obtain dsd=0.82 over the range 0.0004� l�0.01 in the inter-
val 0.88�x�0.98. The subset of 
 reaching the line y=0 at
the points where these discontinuities occur can be seen in
Fig. 4. For �=218, we find 47 discontinuities, and the cor-
responding dimension is dsd=0.81 over the same range.
These dimensions are in very good agreement with the ex-
pected value d0=0.79. For these computations, we use again
the method of Ref. �12�.

To summarize, we have shown that important information
of the advection dynamics of aerosols in fractal sets can be
obtained from data measured solely at a given level. We have
uncovered two independent fractal signatures of chaotic ad-
vection under gravity. We have illustrated our fractal signa-
tures using a flow model with periodic time dependence, but
our findings are far more general, since flows with random
time dependence �yet spatially smooth� also have the prop-
erties mentioned here. In particular, aerosols advected in
such flows often approach a random attractor characterized
by a well defined time-independent fractal dimension
�4,15,16�. Note that the weight of the particles does not play
a role in the argument. Therefore the fractal signatures de-
rived would also apply for the rising dynamics of finite-size
particles lighter than the ambient fluid �bubbles�. In fact, our
fractal signatures are applicable to fractal chaotic attractors
in general.

Our findings might be useful in meteorology, in the case
where the aerosols are raindrops. Although our chaotic ad-
vection model neglects possibly important features of rain

FIG. 3. �a� Magnification of the snapshot t=0.85 of 
 from Fig.
1. Both the black and the gray points belong to 
. The black points
correspond to the part of the attractor which is used to illustrate the
second fractal signature. �b� Density jumps �i as a function of the
box index i �in units of 105� �gray� along the line s given by y
=y0=0. The local maxima are also shown �black dots�.

FIG. 4. Branch of 
 at t=0.85 �gray and black points� from
which the spatial distribution of aerosols is computed in the level
y=y0=0. The black subset reaches the level y=0 at the points
where the density jumps ��i�� occur.
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precipitation such as the spatial roughness of turbulent flows
and the distribution of raindrop sizes, the fractal signature on
the arrival times relies only on the time invariance of the
dimension of the set where the aerosols accumulate. There-
fore if either the aforementioned mechanism based on the
convergence of aerosols in random flows to strange attractors
�17� or any other mechanism leads to the accumulation of
raindrops in fractal sets with a time-invariant dimension �18�,
then the signature on the arrival times may be used to char-
acterize the fractal clustering of the raindrops. This signature
could be measurable in precipitation data of rain, for in-
stance, with the disdrometer which was used in the experi-
ment reported in �19�. We note that a disdrometer was al-
ready used in Ref. �20� and even the correlation dimension
�D2� of a time series was measured and interpreted as a sign

of irregular distribution of drops in space. Finally, we men-
tion the experimental results of Ref. �19� showing a fractal
dimension for the time series of arrival times of raindrops at
a disdrometer �Fig. 9�a� of the cited reference�. Both results
�19,20� are compatible with the accumulation of raindrops in
fractal sets with a time-invariant dimension.
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