
Coagulation and fragmentation dynamics of inertial particles

Jens C. Zahnow,1 Rafael D. Vilela,2,3 Ulrike Feudel,1 and Tamás Tél4
1Theoretical Physics/Complex Systems, ICBM, University of Oldenburg, 26129 Oldenburg, Germany

2Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
3CMCC, Universidade Federal do ABC, Santo André 09210-170, SP, Brazil

4Institute for Theoretical Physics, Eötvös University, H-1518 Budapest, Hungary
�Received 14 November 2008; revised manuscript received 11 June 2009; published 19 August 2009�

Inertial particles suspended in many natural and industrial flows undergo coagulation upon collisions and
fragmentation if their size becomes too large or if they experience large shear. Here we study this coagulation-
fragmentation process in time-periodic incompressible flows. We find that this process approaches an
asymptotic dynamical steady state where the average number of particles of each size is roughly constant. We
compare the steady-state size distributions corresponding to two fragmentation mechanisms and for different
flows and find that the steady state is mostly independent of the coagulation process. While collision rates
determine the transient behavior, fragmentation determines the steady state. For example, for fragmentation
due to shear, flows that have very different local particle concentrations can result in similar particle size
distributions if the temporal or spatial variation in shear forces is similar.
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I. INTRODUCTION

The dynamics of inertial particles in fluid flows plays an
important role in many natural and industrial contexts and
has received an increasing interest in recent years. Questions
where inertial particles play an important role are ubiquitous
in biology, chemistry, oceanography, astrophysics, and geo-
physics. Recent works from dynamical systems �1–8� to at-
mospheric science �9–11� and turbulence �12–14� have added
greatly to the understanding of these phenomena. Almost all
these works have been devoted to the dynamics of noninter-
acting inertial particles. A major reason for this is that this
problem is already very rich, displaying features yet to be
understood in their full complexity, as inhomogeneous spa-
tial distributions �15,16� and multivalued velocity fields
�12,17,18�. Interestingly, these very same features yield an
increased rate of collisions �13�, the consequences of which
are in most cases not explicitly taken into account. Typically
one assumes a dilute regime and fully neglects the collisions.
In some other works, one keeps track of the collisions nu-
merically without actually addressing the outcome of such
events �ghost collisions� �13,19�. To our knowledge, only
very recent works have addressed effects of collisions on the
dynamics of inertial particles �20–22�. In Ref. �21�, we have
reported our first results on the dynamics of inertial particles
coagulating �23� upon collisions and fragmenting under cer-
tain conditions. In Ref. �22�, the authors considered elastic
collisions in a monodisperse system and pointed out the ex-
istence of bursts in the spread of the particles out of the
attractors of the purely advective dynamics. In Ref. �20� the
authors treated coagulation and shear fragmentation of dust
particles in an astrophysical context. There small dust par-
ticles can grow into larger fractal clusters due to turbulent
collisions.

In this paper we extend the work of Ref. �21� to different
flows and to a broadened parameter set. Our motivation lies
primarily on natural phenomena such as the collisional
growth of cloud droplets �24�, sediments in lakes and rivers,

and marine snow in the ocean �25�. Here we focus on the
description of spherical droplets, i.e., we do not take into
account any fractal structures that often appear in sediments
or marine snow.

Our main result is that coagulation and fragmentation
dominate the behavior of different time spans of the process
and fragmentation rather than coagulation is the dominating
process for the steady-state size distribution. For different
flows, the collision rates between inertial particles can be
very different, leading to great changes in the coagulation of
particles. While this might be an important effect for tran-
sient processes, such as the initiation of rain in clouds, it will
turn out that for the steady state fragmentation plays a much
greater role. In fact, the steady-state size distributions are
mainly determined by the fragmentation process. The spe-
cific flow structure is only relevant for the steady-state size
distribution when it directly affects the fragmentation pro-
cess. This can for example be the case for fragmentation due
to shear when the spatial and temporal variations in the shear
are very different for the two flows.

We consider fragmentation to be of two possible origins.
First, particles break up if their size exceeds a certain maxi-
mum allowed size. This is motivated by the hydrodynamical
instability of large water drops �e.g., cloud drops� settling
due to gravity �26�. Second, particles fragment if the shear
forces due to the fluid flow are sufficiently large. This
mechanism has been reported to be the dominant one in the
case of marine aggregates �27�.

At a first glance, one might be tempted to pursue a field-
theoretical approach, in the framework of which one treats
the problem of particle motion as a multiphase flow and then
applies the Smoluchowski equation �28� to model coagula-
tion and fragmentation for the particle distribution. However,
the inertial particle dynamics is dissipative and contracts to
an attractor in a 2d-dimensional phase space, where d is the
spatial dimension of the flow. This attractor can be folded in
phase space, meaning that the particle velocity may take on
several values even at the same location. Due to the presence
of such “caustics” �12,18,29�, a field-theoretical approach
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cannot be well founded. Therefore a study based on an indi-
vidual tracking of the particles, as the one presented here,
becomes necessary.

Here we consider the fluid flow to be spatially smooth and
to have a single macroscopic time scale. We are motivated by
flows having coherent �e.g., convective� structures on length
scales much larger than the ones at which turbulence plays a
major role. The effect of turbulence can then be taken into
account as a stochastic perturbation described by an eddy
diffusivity �30� at small scales. For simplicity, we neglect
this small scale noise in the present work and focus only on
the large scale motion of the fluid.

We study the dynamics of the system formed by the trans-
ported inertial particles undergoing coagulation and fragmen-
tation in three different fluid flows, as described in Sec. II.
We find that the system tends to approach a steady state
where several size classes coexist �Sec. III�. The average
number of particles in each size class is roughly constant
with a mild periodic time dependence—with a period iden-
tical to the one of the advecting fluid flow. The distribution
of particles as well as the mean average size in the steady
state depends on the type of fragmentation mechanism taking
place. First, when fragmentation occurs solely due to par-
ticles exceeding a maximum allowed size, the distribution is
in general quite broad. Second, for fragmentation occurring
also under sufficiently large shear, the distributions typically
decay exponentially beyond a certain size class. The distri-
butions depend on the fluid flow for both types of fragmen-
tation. However, for shear fragmentation the differences are
very small as long as the variation in the fluid shear over
time is qualitatively similar.

In the case of shear fragmentation, we derive a scaling
relation for the average size class in the steady state as a
function of the coagulate strength parameter �. Finally, we
show that our results are robust with respect to the total mass
of particles, the number of allowed size classes and the initial
particle size distribution. Also, in the case of shear fragmen-
tation the size distribution in the steady state has a scaled
functional form which does not depend on the coagulate
strength �.

II. COAGULATION AND FRAGMENTATION MODEL

A. Dynamics of inertial particles

First, we present the equations of motion for the motion
of finite-size particles that will be used here. For simplicity
we consider heavy spherical aerosols, i.e., particles much
denser than the ambient fluid and assume that the difference
between their velocity ẋ and the fluid velocity u=u(x�t� , t) at
the same position is sufficiently small so that the drag force
is proportional to this difference �Stokes drag�. The dimen-
sionless form of the governing equation for the path
x�t�= (x1�t� ,x2�t�) of the center of mass for such heavy
aerosols subjected to drag and gravity reads in this case as
�31–33�

ẍ =
1

�
�u„x�t�,t… − ẋ − Wn� , �1�

where n is a unit vector pointing upwards in the vertical
direction. Throughout this paper we consider the vertical di-

rection along the axis x2. Under the assumption that the den-
sity ratio � f /�p�1, the particle response time � can be writ-
ten in terms of the density �p of the particle, the radius r of
the aerosols, the fluids dynamic viscosity �, and the charac-
teristic length L and characteristic velocity U of the flow as
�= �2r2�pU� / �9�L�. We note that the response time � is noth-
ing but the Stokes number, which can be written in our case
as �=�p /T, where �p is the particle’s dimensional Stokesian
relaxation time and T is the characteristic time of the flow.
The dimensionless settling velocity in a medium at rest is
given by W= �2r2�pg� / �9�U�. Note that W /� is independent
of the particle radius r.

Every particle produces perturbations in the flow that de-
cay at least inversely proportional to the distance from the
particle �34,35�. Here we assume a dilute regime, where the
local concentration of particles is low enough, so that
particle-particle interaction can be neglected �36� unless par-
ticles come into direct contact.

The assumption that the particle radii a are small also
means that the feedback from the particle motion on the flow
will be small as well �33� and is therefore neglected in the
following.

B. Coagulation

Second, we present a model for the coagulation of finite-
size particles.

The smallest particles considered will be called primary
particles. These primary particles can combine to form larger
particles, called coagulates. Coagulation takes place upon
collision. All particles are assumed to consist of an integer
number of these primary particles, i.e., the primary particles
can never be broken up. The number � of primary particles
in a coagulate is called the size class index. We consider n
different size classes, i.e., coagulates can consist of a maxi-
mum of n primary particles. A coagulate of size class � has
a radius r�=�1/3r1, where r1 is the radius of the primary
particles. The response time is ��= �r� /r1�2�1=�2/3�1 and the
settling velocity in still fluid is W�=�2/3W1. Here �1 and W1
are the response time and the settling velocity for the pri-
mary particles, respectively. The largest coagulates therefore
have a radius rn=n1/3r1. We note that particles of different
sizes have different parameters �� and W� and therefore fol-
low the flow with different parameters in the equation of
motion �Eq. �1��.

We define a collision of two particles if the centers of the
particles, say, of radius ri and rj, come closer than a distance
d=ri+rj. In that case the particles coagulate and form a
larger particle. Mass conservation requires the radius of the
new particle to be rnew

3 =ri
3+rj

3. For the size class index this
implies a linear rule, �new=�i+� j, which determines the new
response time and settling velocity via ��new

=�new
2/3 �1 and

W�new
=�new

2/3 W1, respectively.
The velocity of the new particle follows from momentum

conservation. The position of the new coagulate is the center
of gravity of the two old particles.

C. Fragmentation

Third, we present a model for the fragmentation of par-
ticles. Primary particles cannot be broken up. In the follow-
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ing, we will compare two different fragmentation rules.
�i� Size-limiting fragmentation. If a particle becomes

larger than the maximum radius an, it is broken up into two
smaller fragments �binary fragmentation� whose radii are
chosen randomly, from a uniform distribution between a1
and half the original radius. If any fragment is larger than an
this process is repeated, until no fragment exceeds an.

�ii� Shear fragmentation takes place when the hydrody-
namical force Fhyd acting on the particle exceeds the forces
Fcoag holding the coagulate together by a certain factor. The
criterion for breakup can therefore be expressed as

Fhyd/Fcoag 	 �̃ , �2�

where �̃ is a constant.
The hydrodynamical force in this case is proportional to

the local velocity gradients in the flow. It is expected that
larger particles are more likely to break up, therefore, the
critical force required for fragmentation should decrease with
the coagulate size. For liquid spherical particles �drops� in
the size range where viscous forces dominate, Taylor �37�
and later Delichatsios �38� derived an expression for the
critical velocity difference 
u across the drop required for
breakup. Under the condition that the characteristic time of
drop deformations is small compared to the time where this
velocity gradient occurs, we rewrite this condition with a
single parameter as


u

a�

= �� r1

r�
� = ��−1/3, �3�

where � is a constant, the coagulate strength parameter �the
same quantity is called stickiness in �21��. The radius has
been normalized with the radius of a primary particle. If the
maximum velocity difference across the radius of the drop
exceeds the threshold value given by Eq. �3�, the particle is
broken up into two smaller fragments �binary fragmentation�
in the same way as for size-limiting fragmentation.

At the instant of both coagulation and fragmentation there
is a sudden change in the dynamics: the number of particles
changes in 2 or 3 among the n available dynamical systems
defined by the size classes.

D. Fluid flows

For convenience, we treat the case where the fluid flow
depends only on two coordinates, i.e., we study a three-
dimensional flow where the velocity in the third direction is
negligible compared to the other two velocities. This can
then be represented by a two-dimensional flow. Therefore,
the phase space of the particles dynamics is four dimen-
sional. We choose three simple paradigmatic flow situations
with different characteristics to indicate the generality of our
results.

All flow domains are spatially periodic, with a character-
istic length L. More specifically, the flows are �a� a convec-
tion cell flow with moving vortex centers �in the following
referred to as the moving convection flow�, �b� a convection
cell flow with fixed vortices �referred to as the fixed convec-
tion flow�, and �c� a sinusoidal shear flow.

The two convection cell flows �a� and �b� consist of a
regular pattern of vortices, or roll cells. Flow �b� was first
introduced by Chandrasekhar �39� as a solution to the
Rayleigh-Bénard problem and since then it has been used in
the context of different theoretical studies �1,40–42�. The
moving convection flow �a� is a slightly modified version,
with moving vortex centers, to yield a more realistic chaotic
regime for the particle motion. Convection flows are chosen
because they contain vortices �convection cells� and
uprising/sinking regions, which are characteristic features of
realistic flows often found in nature. The flows are defined
by the velocity field as the following:

�a� Moving convection flow

u�x1,x2,t� = �1 + k1 sin��1t��� sin�2�x̂1�cos�2�x̂2�
− cos�2�x̂1�sin�2�x̂2�

� ,

�4�

where x̂1=x1+k2 sin��2t� and x̂2=x2+k2 cos��2t�. The pa-
rameters k1=2.72 and �1=� are the amplitude and the fre-
quency of the periodic forcing of the flow, respectively.
k2=1 / �2�� and �2=� /4 determine the amplitude and the
frequency of the periodic motion of the centers of the vorti-
ces in the flow. The period of the flow is T=2 and the char-
acteristic length and characteristic velocity are L=1 and
U=1.

�b� Fixed convection flow with the same equation for the
flow as in �a�, but with k2=0.

The sinusoidal shear flow �c� consists of alternating hori-
zontal and vertical velocity components, where each velocity
component consists of two plateaus in time. It was intro-
duced in Refs. �43,44� and has been used many times in
chaotic advection studies. Here we consider a time-
continuous version �see �45�� defined by

�a� sinusoidal shear flow

u�x1,x2,t� = 0.5��1 + tanh� sin�2�t���sin�2�x2�
�1 − tanh� sin�2�t���sin�2�x1�

� , �5�

where the parameter  describes how rapidly the transition
between two values, a zero and a nonzero velocity, takes
place for each velocity component. The typically used value
=20 /� corresponds to a very rapid transition.

The period of the flow is T=1 and the characteristic
length and characteristic velocity are L=1 and U=1.

The fluid flows are laminar and time periodic, but the
dynamics of the inertial particles moving in these flows can
be chaotic.

To emphasize the difference between the flows, Fig. 1
shows the maximum of the velocity gradient vs time for the
convection flows �there is no difference between the moving
and the fixed convection flows� and the sinusoidal shear flow.
The difference in magnitude and also in the temporal evolu-
tion between these two flows is clearly visible, indicating a
possibly very different behavior with respect to shear frag-
mentation.

E. Numerical implementation

After presenting the model, we describe some details
about the implementation. In the bulk of the paper we con-
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sider n=30 size classes. The primary particles considered
here have dimensionless radius r1=5 /301/3�10−5, response
time �1=1 /55, and settling velocity W1=3.2�1. As initial
condition we take N�t=0�=105 particles of the smallest size
and no larger particles. Furthermore, particles are uniformly
distributed over the 1�1 unit cell of the configuration space.
The initial particle velocity matches that of the fluid at their
position in all cases.

The simulation is based on the following ingredients:
�a� All particles move in the flow over some time step dt

according to Eq. �1�. This integration time step dt needs to be
chosen small enough to allow for the detection of every col-
lision. After each time step dt there is an interaction between
particles in the form of coagulation if they are too close to
each other. Our experience shows that a choice dt=T /20 is
sufficiently small for the conditions considered here.

Because of the spatial periodicity of the flow, the particle
dynamics is folded back onto the 1�1 unit cell, using peri-
odic boundary conditions �see, e.g., �40,42��.

�b� Particles coagulate if their distance is smaller than the
sum of their radii. Computationally, the coagulation process
is the most costly component of the simulation. Here a link-
cell algorithm �46� is used to compute the distance between
particles, which scales as O�N� and is thus much faster than
simply summing over all particles.

�c� Coagulates can fragment either due to size-limiting
fragmentation or due to shear fragmentation.

�1� Size-limiting fragmentation. If the coagulate size �
exceeds the predefined maximum size, which is in the fol-
lowing fixed at n=30 unless mentioned otherwise, the coagu-
late is broken up.

�2� Shear fragmentation. If the shear at the position of the
coagulate exceeds a critical value, determined by Eq. �3� the
coagulate breaks up. Due to the symmetry of the flows cho-
sen here, the maximum velocity difference is always in the
direction of one of the coordinate axes, therefore only these
values have to be calculated. Shear fragmentation is always
applied together with size-limiting fragmentation to keep the
maximum number of occurring size classes fixed at n.

Whatever rule is applied, the result is the reversed process
of coagulation: two new particles are formed from an old one
with the size class indices: �i,new+� j,new=�old. As indicated
earlier, �i,new can take on any value between �1 and �n/2 with
equal probability. The centers of the new particles are placed
along a line segment in a random direction so that the dis-
tance d between the particle centers equals the sum of their
radii, i.e., d=ri+rj, and the center of mass remains un-

changed. Momentum is conserved. For simplicity we assume
that the new particles have the same velocity as the old one.

III. SIMULATION RESULTS

In this section we show simulation results using the model
described above and compare the influence of the different
flows and the effect of size-limiting fragmentation and shear
fragmentation.

Before presenting any results for the complete model, it is
worth showing the attractors for the noninteracting problem
in the different flows. Figure 2 shows the stroboscopic sec-
tion �taken with the period T of the flow� of the attractors for
flows �a�–�c� for one specific size class projected onto the
plane of the coordinates. The figure illustrates the difference
in the geometric properties of the particles dynamics in the
different flows.

For the moving convection flow and the sinusoidal shear
flow the degree of clustering of the particles in the attractors,
quantified by their fractal dimension, decreases monotoni-
cally with the size class. The parameter region is chosen in
such a way that the attractors are either area filling or fractal
with dimension smaller than 2, which we consider to be
closer to a realistic situation than, for example, fixed-point
attractors. For the fixed convection flow, the particles tend to
cluster on a quasiperiodic attractor. This leads to a much
larger collision rate than in the other two cases.

In all flows we find convergence to an asymptotic steady
state. Initially, coagulation leads to a fast increase in the av-
erage particle size class, independent of the fragmentation
rules. Then fragmentation sets in and a balance between co-
agulation and fragmentation is reached, with an asymptotic
average coagulate size

�� = lim
t→�

1

T
	

t

t+T

ds
��s�� �6�

that depends on the fragmentation rule and the different
flows. The average 
��s�� is taken over the coagulate sizes at
time s and Eq. �6� corresponds to time averaging 
��s�� over
one time period of the flow to remove the periodicity. For the
transient behavior of the coagulation-fragmentation process
the geometric properties, in particular the degree of cluster-
ing of the particles, are very important since they affect the
time scales of the transients. This is not the case for the
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steady state. This becomes very clear when looking at the
size distributions of coagulates in steady state for the differ-
ent flows and fragmentation mechanisms �Fig. 3�. One might
expect that the steady state for flow �b� is very different from
the other two cases, due to the large difference in particle
clustering. Our results show however that the steady state of
the particle dynamics for flows �a� and �b� are almost iden-
tical, while flow �c� produces different results. For example
for both flows �a� and �b�, the size distribution has a long tail
toward larger size classes that decays exponentially for shear
fragmentation. Similar exponential tails for the particle size
distribution have been found in observations of aggregates in
the ocean �see, e.g., �47��.

By contrast, for the sinusoidal shear flow the size distri-
bution has two peaks and then drops off sharply toward zero
beyond the second peak. In this case the size distribution for
shear fragmentation is almost identical to that of size-
limiting fragmentation, but for a lower value of �max. This is
due to the fact that in the sinusoidal shear flow for the chosen
parameters the shear a particle experiences is almost constant
over time and space, except for a small “dip” every half
period. This very narrow distribution of the shear is very
similar to having a single maximum stable size, as is the case

for size-limiting fragmentation. In this case a value of
�=17 for shear fragmentation corresponds to a value of
�max=20.

We have also checked the size distributions in subregions
of the flows. We found, that as long as the number of par-
ticles in the subregions allowed sufficiently good statistics,
the normalized size distributions coincided with the global
distributions. This means that there is no significant spatial
dependence of the size distribution.

While the specific shape of the size distributions found
may not be very general, both because of the limitation to
only thirty size classes and the very simplified flows, our
approach illustrates clearly that the geometric properties of
the particle motion related to preferential concentration are
not the most relevant ones for the steady-state distributions.
Instead, the most important effect for the steady state of the
particles seems to be the fragmentation process.

Size-limiting fragmentation is the same in all flows, as it
does not depend on properties of the flow. In this case the
differences in the size distributions are small for the different
flows. This indicates that the size distributions are mainly
determined by the fragmentation process because the flow
specific differences, e.g., differences in coagulation rates, do
not affect the shape of the size distribution. However, when
fragmentation depends on shear, the different flows produce
very different size distributions. This difference is mainly
due to the different properties of the shear forces in the flow
�Fig. 1�, which lead to differences in fragmentation. To see
that it does not depend, e.g., on the detailed characteristics of
the particle motion or on the different collision rates, we can
adjust the flow parameters. Decreasing the value of the pa-
rameter  for the sinusoidal shear flow to a much smaller
one, e.g., =� /20, greatly increases the variation in the
shear forces over space and time. We obtain two sinusoidal
peaks per period for the shear forces, similar to what happens
in the convection flow �cf. Fig. 1�, except that for the sinu-
soidal shear flow both peaks have the same height. For an
appropriate choice of �, so that the average size classes
match, it can be seen that the shape of the particle size dis-
tributions for both flows have become almost identical �Fig.
4� and show the characteristic exponential tail. Again, this
indicates that the shape of the size distribution is mostly
affected by fragmentation and any flow specific differences
in the distribution result mainly from differences in the shear
distribution in the flow, which in turn change the fragmenta-
tion rates.

This strong dependence of the steady state on the frag-
mentation process can also clearly be seen by how ��
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changes with the coagulate strength � �see Fig. 5�. We note
that the shear forces in the convection flows and the sinu-
soidal shear flow have a different magnitude, as seen in Fig.
1. Therefore three different values of the coagulate strength
parameter � need to be chosen to yield a size distribution that
is not only determined by size-limiting fragmentation. For
the convection flows the coagulate strength � needs to be
approximately a factor of 3 larger than for the sinusoidal
shear flow.

It is clear that �� increases with � because particles be-
come more resistant to shear. The exact functional relation-
ship is however not trivial. A first qualitative estimate of the
shape of this ����� curve can be derived by assuming that
over one period of the flow the particles experience an “av-
erage shear”

Ḡ =
1

T
	

0

T

dt	
D

dxp�x,t�G�x,t� , �7�

where G�x , t� is the modulus of the local velocity gradient,
p�x , t� is the distribution of particles, and D is the unit square
domain. From Eq. �3� we then get for the average critical
size at this velocity gradient

�̄crit = Ḡ−3�3. �8�

Particles that exceed this size will therefore typically break
up during one period of the flow. Since particles break into
two parts due to shear, the average size would then be

����̄crit /2. The average shear Ḡ is, however, somewhat
complicated to estimate. It would have to be calculated as a
mean over the positions of all particles in the flow at a given
time. Additionally, how much larger than the critical size
particles get before they break up depends on the coagulation
probabilities, and therefore also on the local concentrations
of particles. The exact dependency of ����� is therefore not
easily calculated. What can be seen from Eq. �8� is however
that the average size is expected to scale with � as

�� � �3. �9�

This dependence is expected to hold for all values of � and
��, where shear fragmentation dominates. A fit with Eq. �9�
for the different flows is shown in Fig. 5 and for lower values
of � the fits agree very well with the simulation results. It can
be seen that for higher values of �, when size-limiting frag-
mentation becomes important, the ����� curves deviate from
this estimate and converge toward the limiting value ��

�lim�

�see Fig. 5�. This result demonstrates how the steady state
depends very strongly on the fragmentation process. How-
ever, the different proportionality constants for Eq. �9� still
depend on the flow and can also depend on the spatial dis-
tribution of the particles since different regions of the flow
might exhibit different shear.

Finally, we mention some further results from our model.
First, for all flows the steady state in the case of shear frag-
mentation is not static, instead due to the periodic time de-
pendence of the flows the steady state also varies periodi-
cally over time. This is very clear for example for the fixed
convection flows when looking at the average size class in-
dex 
��t��=�i=1

30 �iN�i
�t� /N�t�, where N�i

denotes the number
of particles in size class �i �Fig. 6�.

Such a time dependence of the average particle size, and
therefore of the whole particle size distribution, can have
important physical consequences. For example the settling of
coagulates in the ocean, which is an important part of the
biological carbon pump in the ocean, is greatly affected by
the size distribution of the coagulates. In coastal areas, where
the fluid may be periodically forced by the tides, such a time
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dependence of the distribution can greatly affect the settling
rates and therefore the deposition of coagulates �47�.

Second, since the range of possible parameter values for
our model is very large, we also mention the robustness of
our findings with respect to the following different param-
eters:

�i� For each flow there is a certain range of the coagulate
strength parameters � where the size distribution for shear
fragmentation is “fully developed.” By this we mean that � is
large enough so that a sufficiently large fraction of particles
has left the smallest size class, but � is small enough so that
break up due to size-limiting fragmentation does not play a
significant role. In this intermediate � range, where the par-
ticle size distribution is fully developed, a scaling form

N�

max�N��
= f� r


r�
� �10�

is found to hold �Fig. 7�, where 
r� represents the average
radius. Note that the form of the size distribution is indepen-
dent of �. All distributions in this parameter range collapse
then onto a single master curve.

While this scaling form is independent of the parameters
of the coagulation and of the coagulate strength, the differ-
ence between the different flows remains. More specifically,
the scaling form f changes when shear forces in the flow or
the fragmentation mechanism, for example the distribution
of fragments, is varied.

�ii� When investigating cases with different total mass M,
we find that for size-limiting fragmentation �� is largely
independent of M. For shear fragmentation with
M �3�106m1, ���M� increases approximately linearly with
M, while for higher values a saturation of ���M� sets in,
which is due to the fact that size-limiting fragmentation
dominates in this case.

�iii� By considering other initial particle size distributions
than that mentioned above, for example any single size class
with �	1 or a uniform distribution of sizes, and keeping the
total mass M fixed, the asymptotic state is found to be inde-
pendent of the chosen initial distribution for each flow and
for both fragmentation rules.

�iv� We also investigated the role of the number of size
classes and found that in the chosen range of � values the
size distributions for shear fragmentation are not influenced
by the number of size classes.

�v� The effect of the number of new particles formed by
fragmentation has been considered. For instance, the distri-
butions of particles for ternary fragmentation are similar to
the ones for binary splitting and only show a slight shift
toward smaller size classes �48�.

IV. SUMMARY

We discussed the formation of a steady-state size distri-
bution in a coagulation-fragmentation process of inertial par-
ticles transported by different flows. Our most important
finding is that fragmentation rather than coagulation is the
dominating process for the steady-state size distribution. For
size-limiting fragmentation we found almost no differences
in the shape of the steady-state size distribution for various
flows. Even in flows with great differences in coagulation
rates, e.g., due to differences in local particle concentrations,
particle size distributions remained very similar. For the case
of shear fragmentation differences in the shape of the size
distribution for the different flows appeared. It was found
that these were due to differences in the spatial and temporal
variation in the shear, which in turn affected the fragmenta-
tion.

We have shown that an individual particle based modeling
approach is able to reflect typical properties of coagulation
and fragmentation processes of inertial particles. The appear-
ance of a steady state is demonstrated. We outlined some of
the differences in the convergence to the steady state and the
particle size distribution that can result from different types
of fragmentation and flow. Altogether, our results suggest
that coagulation dominates different time spans of the pro-
cess than fragmentation. While coagulation is most important
for the transients in the beginning, the steady-state size dis-
tribution is mainly determined by fragmentation. As a con-
sequence the spatial distribution of particles plays only a
transient role. The underlying flow is important for the
steady state in the case of shear fragmentation, as the spatial
and temporal variation in the shear can greatly influence the
fragmentation rates.

The generalization to a fully three-dimensional system is
straightforward. The relaxation toward the steady state would
slow down, due to the decreased probability of collisions.
However, our conclusions regarding the dependence of the
steady-state size distribution on the fragmentation remain
valid.
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