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When a dynamical system exhibits transient chaos and a nonchaotic attractor, as in a periodic window, noise
can induce a chaotic attractor. In particular, when the noise amplitude exceeds a critical value, the largest
Lyapunov exponent of the attractor of the system starts to increase from zero. While a scaling law for the
variation of the Lyapunov exponent with noise was uncovered previously, it is mostly based on numerical
evidence and a heuristic analysis. This paper presents a more general approach to the scaling law, one based on
the concept of quasipotentials. Besides providing deeper insights into the problem of noise-induced chaos, the
quasipotential approach enables previously unresolved issues to be addressed. The fractal properties of noise-
induced chaotic attractors and applications to biological systems are also discussed.
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I. INTRODUCTION

In experimental situations, an observed trajectory is al-
ways subject to some external perturbations, e.g., of thermal
or of technical origin. In the lack of any specific information
about their own dynamics, other than their time scale being
much shorter than that of the original signal, we can assume
that the external perturbations are random. Their inclusion
into the dynamics can be modeled via an additive noise term,
which converts the purely deterministic equations of motion
into a set of stochastic equations �1–6�. Suppose a determin-
istic system exhibits a nonchaotic attractor, e.g., a periodic
attractor. The coupling of a weak noise into the system can
cause the attractor to become chaotic. This is the phenom-
enon of noise-induced chaos �7–9�, which is fundamental in
nonlinear and statistical physics and has received continuous
attention �10–13�.

A typical situation where noise-induced chaos can arise is
periodic windows. In such a window, there is a periodic at-
tractor and a nonattracting chaotic set that leads to transient
chaos. Noise can cause a trajectory to visit both the original
attractor and the nonattracting chaotic set, giving rise to an
extended noisy chaotic attractor. In a smooth dynamical sys-
tem that exhibits chaos, in the absence of noise a chaotic
attractor is structurally unstable because, periodic windows
are dense and occupy open sets in the parameter space. As a
result, an arbitrarily small perturbation can place the system
in such a window, destroying the chaotic attractor. When
noise is present, chaos is enhanced in the sense that noise-
induced chaos can even occur in periodic windows and,
hence, chaotic attractor can now occur in open sets in the
parameter space. Noise-induced chaos thus provides the rea-
son for observing chaotic attractors in realistic systems. This
phenomenon is, of course, not restricted to periodic win-
dows. Insofar as a nonchaotic attractor coexists with a non-
attracting chaotic set in the phase space, a chaotic attractor
can arise due to noise.

A number of previous works have explored the critical
behavior associated with noise-induced chaos �13�. A basic
issue concerns the scaling of the Lyapunov exponent. In par-
ticular, consider a continuous-time dynamical system. When

the system is in a periodic window and exhibits a periodic
attractor, in the deterministic case the largest Lyapunov ex-
ponent �1 is zero. As the noise amplitude � is increased from
zero and passes through a critical point �c, �1 becomes posi-
tive. It has been argued and supported by numerical evidence
�13� that �1 obeys the following scaling law with the varia-
tion in the noise amplitude beyond the critical value:

�1 � �� − �c��, �1�

for ���c, where �=1. In previous works, the arguments
leading to Eq. �1� are heuristic as they are based on analyzing
the overlaps between the natural measure of the noise-
enlarged periodic attractor and that of the stable manifold of
the nonattracting chaotic set. To give more credence to the
validity of Eq. �1�, it is desirable to derive a more solid
theoretical approach. The main purpose of this paper is to
present such an approach based on the concept of quasipo-
tentials �14–21�. We will show that, by utilizing this concept,
the equivalent noise-induced escape problem can be treated
analytically, leading to the scaling law Eq. �1�. It will also be
demonstrated that, for maps, the critical noise strength at
which points become observable on the noise-induced attrac-
tor is not the same as the one above which the largest
Lyapunov exponent is positive. To better understand the ge-
ometry of the noise-induced chaotic attractors, we will also
discuss their fractal properties.

In Sec. II, we review the concept of quasipotentials. In
Sec. III, we present a series of arguments based on quasipo-
tentials for the scaling law Eq. �1�. In Sec. IV, we discuss the
fractal properties of noise-induced chaotic attractors and jus-
tify applications to biology. Conclusions are presented in
Sec. V.

II. QUASIPOTENTIALS

A. Setting

We consider noisy versions of continuous- and discrete-
time dynamical systems which, in dimensionless forms, are
written as
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dx

dt
= F�x,p� + ���t� , �2�

and

xn+1 = f�xn,p� + ��n, �3�

respectively, where p is a parameter, ��0 represents the
noise amplitude, and the � terms are independent, identically
distributed random processes of zero mean and unit variance.
The distribution P��� is assumed to be known and to be
independent of time so that the stochastic process generating
the noise is stationary. An example of P��� is a Gaussian
distribution,

P��� � exp�− �2/2� . �4�

This form implies that, even for small noise strength �, the
random perturbation can be arbitrarily large, but the prob-
abilities for large perturbations are exponentially small.

B. Basic notions of quasipotentials

For a nonlinear dynamical system under noise, it is often
desirable to know the probability distribution over the entire
phase space. A normalizable distribution exists only if there
are attractors in the system. Based on a well established
theory in the weak-noise limit �14–16�, we summarize the
results for maps of the type of Eq. �3�. The steady-state prob-
ability distribution W�x� can be written for Gaussian noise
with ��1 as

W�x� � Z�x�e−��x�/�2
. �5�

The exponential factor is of special importance since it is
similar to the form describing fluctuations in thermal equi-
librium. The function � plays a central role in the theory: it
is analogous to the free energy. The noise intensity �2 plays
the role of thermal energy kBT. A difference from equilib-
rium thermodynamics is that, here an explicit form of �
cannot be obtained from the first principles; � is therefore
called the quasipotential �or nonequilibrium potential� of the
map. An example of the quasipotential is shown in Fig. 1.
Note that neither � nor the prefactor Z depends on the noise
strength; they depend solely on the underlying deterministic
dynamics.

The quasipotential satisfies an extremum principle and it
can be constructed based on methods from Hamiltonian me-
chanics �17–23�. The basic observation is that the system can
come to a phase-space point x via a large number of noise
realizations. Since, however, noise is weak, there are rare
realizations that are sharply peaked about a single optimal
realization, namely, the most probable path that leads to x. In
N iterations, the optimal path for noise should maximize the
probability

P��0�P��1� ¯ P��N� � exp�− �
n=0

N
���n�2

2�2 � . �6�

Equivalently, the path corresponds to the minimum of the
“noise energy” �n=0

N ���n�2. The iteration process Eq. �3�
plays the role of a constraint that can be taken into account

by means of Lagrangian multipliers �n that are effectively
control variables. The task of finding the optimal path, thus,
boils down to minimizing the following Lagrangian:

L = �
n=0

N �1

2
���n�2 + �n�xn+1 − f�xn� − ��n�� . �7�

In the presence of the multipliers, the variables �n and xn can
be regarded as independent. Setting the partial derivatives of
L zero yields the following coupled map between �n and xn
for the optimal path

xn+1 = f�xn,p� + �n, �n+1 = J�xn+1,p�−1�n, �8�

where J denotes the derivative �Jacobian� matrix of map f. A
comparison with Eq. �3� indicates that �n /� is nothing but
the optimizing noise process. Another feature is that the map
Eq. �8� is area preserving as it is independent of the dissipa-
tive character of f. It can therefore be regarded as a kind of
Hamiltonian extension of the deterministic dynamics xn+1
= f�xn , p� through the control variable �n. The optimal escape
path from an attractor was numerically determined in a num-
ber of cases �22–24�. This path passes through a saddle point
�or a saddle periodic orbit� lying away from the attractor. The
saddle is often part of a nonattracting chaotic set of the
noise-free system, which might also be a subset of a fractal
basin boundary �22,23�.

From Eq. �6�, the probability for a trajectory to be at point
x=xN+1 after the Nth iteration is

ΔΦ

Φ(x)

f(x)

x

x

FIG. 1. Schematic diagram of quasipotential � for a one-
dimensional map f that has two coexisting fixed-point attractors
�denoted by dots� and a chaotic repeller. The value of the quasipo-
tential is constant over the interval containing the repeller. The ac-
tivation energy �� in the valley of the left fixed point is marked.
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P��0�P��1� ¯ P��N� � exp�−
1

�2 �
n=0

N
1

2
�xn+1 − f�xn,p��2� .

�9�

In order to find a time-independent distribution of x, we take
the limit N→	. The quasipotential defined by Eq. �5� be-
comes

��x� = min�
n=0

	 	1

2
�xn+1 − f�xn,p��2	


x	�x
+ const, �10�

where the minimum is taken with respect to the value of the
control variable at the initial and end points. The quasipoten-
tial must be independent of the initial condition �x0 ,�0�
within the basin of attraction of an attractor A. This can be
realized by letting Eq. �8� evolve according to the determin-
istic dynamics ��n=0, n=0,1 ,¯� until the attractor is
reached. This initial evolution does not contribute to � and,
hence, for all practical purposes the initial condition can be
taken to be x0�A, and �n→0 for n→0. A more detailed
formulation of the initial value problem was given in �23�
where the invariant manifold on which the optimal escape
path should start is determined, along with the local form of
the quasipotential.

Since, the probabilities of visiting different regions of an
attractor cannot differ exponentially, the quasipotential is
constant on the attractor. For a chaotic attractor, the quasipo-
tential is constant on the entire fractal set. The differences in
the probabilities of visiting different regions of the attractor
are characterized by the prefactor Z�x� of Eq. �5�. Since it is
� independent, the prefactor evaluated on the attractor must
coincide with the density � associated with the natural mea-
sure. The role of noise becomes thus important outside the
attractor where the essential contribution to the dynamics is
characterized by exp�−� /�2�. In particular, the quasipoten-
tial increases with the distance from the attractor, and the
“Boltzmann factor” exp�−� /�2� yields the probability that
noise pushes a trajectory point to x, away from the attractor.
In the case of a fractal chaotic attractor, the factor is the
probability for a trajectory to fall in-between two branches of
the fractal manifolds as result of noise.

C. Quasipotential plateaus associated with nonattracting sets

Analogous to the situation with attractors, quasipotentials
are constant on nonattracting chaotic sets. Such sets are ei-
ther repellers �that repel in all directions of the phase space�
or saddles �that possess, besides the repelling directions, at
least one attracting direction� �25�. For example, in a one-
dimensional map, the potential is constant on the interval
containing the repeller, as shown in Fig. 1.

For chaotic saddles arising from invertible two-
dimensional maps, noise is more likely to push trajectories
along than across the unstable manifold. In this case, a qua-
sipotential plateau extends along the unstable manifold of the
saddle only. In between branches of the unstable manifold,
the potential assumes larger values. As a result, � changes in
the stable direction outside the saddle but remains constant
along the unstable direction in a region containing the entire

chaotic saddle �18–21�. The constant value of the quasipo-
tential taken along the unstable manifold branches is the qua-
sipotential plateau.

When a nonattracting chaotic set is present within the
basin of attraction of an attractor, its existence can increase
the exit rate �24�. To understand this, consider an invertible
system with smooth basin boundaries, where the most prob-
able exit path passes through an unstable periodic point xe on
the boundary. Before reaching the boundary, the path also
extends through the chaotic saddle since, from the point of
view of energy, motion along the unstable manifold of the
saddle does not contribute to the quasipotential. From the
quasipotential plateau of the chaotic saddle, a trajectory can
reach xe on the boundary with a relatively low increase in the
quasipotential. Numerical simulations reveal �24� that, al-
though the activation energy ��xe�−�attractor is smaller than
that in the absence of the saddle by about 50 percent only,
the exit rate can be enhanced by several orders of magnitude.
The origin of the reduction in the activation energy can be
understood by noting that the exit process actually consists
of three stages: reaching the quasipotential plateau of the
saddle, moving on the plateau, and leaving the plateau to
reach the boundary. The chaotic saddle thus acts as a “short-
cut” for minimizing the quasipotential in the exit process.

The role of chaotic saddle in enhancing the exit rate sug-
gests that, when a dynamical system undergoes a basin
boundary metamorphosis �26� by which a smooth boundary
becomes fractal so that a nonattracting chaotic set arises on
the boundary, the rate of exiting the basin due to noise can be
enhanced significantly. This has indeed been observed �27�.

The average lifetime 
P of particles in the potential well
of the periodic attractor around which a non-attracting cha-
otic set exists on the basin boundary is determined, in the
weak noise limit, by the Arrhenius factor �28� exp��� /�2�,
where �� is the activation energy, i.e., the difference be-
tween the quasipotential value of the plateau and of the pe-
riodic attractor �see Fig. 1�. We can thus write 
P as


P = 
0e��/�2
, �11�

where 
0 is a constant.

III. SCALING LAW FOR NOISE-INDUCED CHAOS

A heuristic analysis and extensive numerical support for
the scaling law Eq. �1� has been provided in Ref. �13�. Here,
we provide a more rigorous analysis based on quasipoten-
tials, valid both for maps and for time-continuous flows.

A noise-induced chaotic attractor is an extended attracting
invariant set of a noisy system, the deterministic counterpart
of which contains regular attractors only, coexisting with a
non-attracting chaotic set. As described in Sec. I �Introduc-
tion�, a noise-induced chaotic attractor contains the union of
the deterministic regular attractor and the non-attracting cha-
otic set. Since noise-induced chaotic attractors typically ap-
pear in the weak-noise case, the theory of quasipotentials is
applicable. We emphasize, however, that a noise-induced at-
tractor is not a substitute for “long-lasting transient.” It is a
permanently attracting set appearing in the presence of noise.
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A. Critical noise strength for noise-induced chaos

The concept of quasipotential provides a convenient way
for estimating the critical noise strength required for noise-
induced chaos �21�. The first observation is that the periodic
attractor appears to be fuzzy in the presence of noise. We can
define a noisy attractor as the region in which the probability
distribution takes on large values. Note that any practical
observation of the stationary distribution relies on the exis-
tence of a finite threshold resolution, � �say 10−5 of the maxi-
mum of the probability density W�. In leading order, we can
define, depending on the threshold, a noisy attractor as the
set of phase-space points that satisfy Z exp�−���x�
−�attractor� /�2��� where Z is a constant. For small �, the
distribution is strongly localized and the extension of the
noisy attractor beyond the deterministic attractor is small but
increases with the noise strength. A noise-induced chaotic
attractor becomes observable at a critical noise strength �c
where the noisy attractor touches the edge of the quasipoten-
tial plateau. Then, the difference ��x�−�attractor takes on the
value of the activation energy ��, and the condition for the
critical noise-strength is Z exp�−�� /�c

2�=�. We thus obtain

�c = ���/ln�Z/�� � ��1/2. �12�

A sudden spreading of the support of distribution W has in-
deed been observed �21�.

For noise strength slightly above �c, the probability dis-
tribution observed with resolution � extends over the
unstable-manifold branches of the quasipotential plateau.
The noise-induced chaotic attractor contains these branches
of the unstable manifold of the nonattracting chaotic set, but
the probability about the original periodic attractor is much
larger than that of being further away. The mean first-exit
time from the corresponding potential well is equal to the
average lifetime in the noisy system about the original attrac-
tor.

To illustrate the usefulness of the quasipotential concept,
we mention that close to certain bifurcations, a scaling law of
the critical noise strength can be obtained from Eq. �12� �21�.
For example, close to the saddle-node bifurcation that
initiates a period-m window, the deterministic dynamical
system can effectively be reduced to a normal form that is
one-dimensional �29�. The quasipotential about the fixed-
point attractor, the node, increases quadratically with the
distance from the attractor with a coefficient proportional to
�p− pb�1/2 �20,30�:

����x� � �p − pb�1/2�x2,

where p is a system parameter and pb denotes the bifurcation
point. For a smooth one-dimensional map, the phase-space
distance between the saddle and the node about the bifurca-
tion point is proportional to �p− pb�1/2. Since the saddle is
part of the non-attracting set, the activation energy is

�� = c�p − pb�3/2, �13�

where c is a constant. From Eq. �12�, at a fixed resolution,
the critical noise strength scales with �p− pb� as

�c � �p − pb�3/4, �14�

which has been verified numerically �30,31�.
It should be emphasized that the quasipotential approach

is applicable if the deterministic influence dominates the sto-
chastic influence. This implies that, given a fixed finite value
of �, the results presented here are valid only if p− pb ex-
ceeds some minimum value because, noise is dominant for
parameter values quite close to the bifurcation point.

B. Scaling of positive Lyapunov exponent

A standard approach to defining an attractor under noise
to be chaotic is the sensitive dependence on initial condi-
tions, as characterized by the existence of at least one posi-
tive Lyapunov exponent �5,6�. This is because the Lyapunov
exponents are the time-averaged stretching or contracting
rates of infinitesimal vectors along a typical trajectory in the
phase space, which can be defined for both deterministic and
stochastic dynamical systems. In particular, in the absence of
noise, since the attractor is not chaotic, the largest Lyapunov
exponent of the asymptotic attractor is a negative number for
maps �zero for flows�. As noise is turned on and its strength
becomes sufficiently large, there is a nonzero probability that
a trajectory originally on the attracting set escapes it and
wanders near the coexisting nonattracting chaotic set. In this
case, the largest Lyapunov exponent �1 becomes positive,
indicating that the asymptotic attractor of the system is cha-
otic for trajectories starting from random initial conditions.

Since the problem is basically a two-state problem with a
periodic and a chaotic state, the probability of being in state
i= P �periodic� or i=C �chaotic� can be expressed as a ratio
of the average lifetimes:

f i��� =

i���


P��� + 
C���
. �15�

The lifetime 
P about the periodic attractor is given by the
Arrhenius factor Eq. �11�. The lifetime about the chaotic set
depends nonexponentially on the noise strength and can be
considered to be constant. It is practically the average life-
time 
C of transient chaos in the deterministic case. This
lifetime can be approximated as the reciprocal of the escape
rate  �25� of the nonattracting chaotic set, i.e., 
C1 /.
Taking this into account in the weak noise limit �� /�2�1,
we have

fP���  1, fC��� 

C


0
e−��/�2

. �16�

If the value of fC��� falls below the threshold �, mentioned
in Sec. III A, fC��� is unmeasurable in practice. To express
this, we rewrite fC��� as

fC��� =

C


0
e−��/�2

− �

for

C


0
e−��/�2

� � . �17�

By identifying normalization constant Z in Eq. �12�� with

C /
0, we see that fC����0 for ���c. Deterministic time-
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continuous flows always have a zero Lyapunov exponent, the
case of stochastic flows and maps should therefore be con-
sidered separately.

1. Flows

Consider, for example, a three-dimensional flow described
by Eq. �2�. Let �3

P��2
P��1

P=0 and �3
C��2

C=0��1
C be the

Lyapunov spectra of the periodic attractor and of the chaotic
saddle, respectively, in the absence of noise. Let �3��2
��1 be the Lyapunov spectrum of the noisy system.

In the two-state approximation, the Lyapunov spectrum
can be written as

�1��� = fP����1
P + fC����1

C = fC����1
C,

�2��� = fP����2
P + fC����2

C = fP����2
P  �2

P � 0,

�3��� = fP����3
P + fC����3

C  �3
P + fC����3

C � 0. �18�

Because of the averaging effect of noise, we expect the de-
pendence on noise of the largest Lyapunov exponent �1

C of
the original chaotic set to be weak. Thus the main depen-
dence of �1 on noise comes from fC���, the frequency of
visit to the originally non-attracting chaotic set.

For ���c, the noisy attractor is only a flattened version
of the original periodic attractor and we have �i=�i

P

�i=1,2 ,3� since fC���=0. In particular, there is still a null
Lyapunov exponent �1=0, despite the presence of noise, in-
dicating that the topology of the flow is preserved. The criti-
cal noise strength �c is set by the condition that an intermit-
tent hopping of the trajectory between regions that contain
the original periodic attractor and the chaotic saddle becomes
observable.

For ���c, we have �1��� fC����1
C�0. We see that,

immediately after the noise strength exceeds the critical
value �c, the noisy attractor is chaotic in the sense that its
largest Lyapunov exponent becomes positive. For ���c, the
periodic attractor and the chaotic saddle are dynamically
connected but, for � slightly above �c, a trajectory visits the
chaotic saddle only occasionally. Under this circumstance the
sets can be regarded as distinct but only in an approximate
sense. That is, Eq. �18� is valid only for � slightly above �c.

Since �c is defined as the critical noise amplitude for
which 
C /
0 exp�−�� /�c

2�=� �Eq. �12�� holds, we can write

�1��� = �1
CfC��� = �1

C��e−����−2−�c
−2� − 1� . �19�

For � slightly above �c the exponent is ����2−�c
2� /

��2�c
2�2����−�c��c

−3, and the exponential function can
be expanded to yield

fC��� � ��
� − �c

�c
, �20�

which leads to

� = 1, �21�

independent of any system details.

2. Maps

For map Eq. �3�, we have a negative largest Lyapunov
exponent on the periodic attractor. Let �1

P�0 and �1
C�0

denote the largest Lyapunov exponent of the periodic attrac-
tor and of the nonattracting chaotic set, respectively, in the
absence of noise. The largest Lyapunov exponent of the
noisy system is denoted by �1. We shall see that noise-
induced chaos sets in for weak noise only if 
�1

P
 /�1
C�1 is

fulfilled.
For ���c, we have �1=�1

P. For ���c, there is an inter-
mittent hopping of the trajectory between regions that con-
tain the original periodic attractor and the nonattracting cha-
otic set. In the two-state approximation, we have

�1��� = fP����1
P + fC����1

C  �1
P + fC����1

C. �22�

For ���c, fC��� is negligible and we have �1=�1
P. For �

slightly above �c, the second term in Eq. �22� has a positive
contribution but the Lyapunov exponent is still negative. It is
at a somewhat larger �=�c� where the Lyapunov exponent
changes sign. We thus have fC��c���1

C= 
�1
P
.

The critical noise strength at which the largest Lyapunov
exponent vanishes in maps thus fulfills, according to Eqs.
�17� and �22�, the following relation:

e−��/�c�
2

=

0


C
� 
�1

P

�1

C + �� . �23�

For � close to �c� we obtain

�1���  �
�1
P
 + �1

C���e−����−2−�c�
−2� − 1� . �24�

Note that if �� 
�1
P
 /�1

C�1, the role of the observational
threshold � becomes negligible. Equation �24� has the same
�-dependence as in Eq. �19� and leads to �1������−�c��,
i.e., again to the exponent �=1. We see that the critical noise
strength �c at which points become observable on the noise-
induced attractor is not the same as the one ��c�� above which
the largest Lyapunov exponent is positive. This situation is
somewhat different from flows, where the two critical noise
values are approximately the same. This is due to the fact
that in a Poincaré map, noise acts rarely on the system dy-
namics, roughly once every oscillation cycle of the flow. The
two critical values are, however, of the same order of mag-
nitude.

3. Remarks

In fact, the argument presented above applies to any
physical quantity A which takes on values AP and AC on the
original periodic attractor and on the nonattracting chaotic
set, respectively. The noise dependence of the average value
A��� of A is then

A���  fP���AP + fC���AC. �25�

An application of this rule leads to a surprising result in a
model of Brownian motion in a symmetric periodic potential
in the presence of bias and periodic diving �32�. In particular,
the effect of driving pushes the system out of thermal equi-
librium even in the presence of temperature fluctuations. For
the noiseless system at positive bias, there is a periodic at-
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tractor leading to a negative average velocity vP�0 of par-
ticles. At the same parameters, there is a coexisting chaotic
saddle to which a positive average velocity vC�0 belongs.
This, however, is not observable with typical initial condi-
tions. The presence of noise connects the two original invari-
ant sets and leads to noise-induced chaos. In the context of
transport, the main interest is, however, in the average veloc-
ity v���, which follows from Eq. �25� with AP=vP and AC

=vC. It has the property that v��� changes sign at a critical
value �c

v. The behavior of the average velocity about the
critical point is linear: v�����−�c

v, analogous to the largest
average Lyapunov exponent.

IV. GEOMETRY OF NOISE-INDUCED CHAOTIC
ATTRACTORS AND APPLICATIONS TO BIOLOGY

A. Fractal properties of noise-induced chaotic attractors

A noise-induced chaotic attractor lies in the union of the
periodic attractor and the unstable manifold of the nonat-
tracting chaotic set. Since a periodic attractor is a zero-
dimensional object on a Poincaré plane, the box-counting
and information dimensions D0 and D1 of the noise-induced
chaotic attractor are the same as those of the unstable mani-
fold of the non-attracting chaotic set in the absence of noise.
For example, for a two-dimensional invertible map, the in-
formation dimension of the noise-induced attractor is

D1 = 1 +
�1 − 


�2

, �26�

where  is the escape rate of the nonattracting chaotic set.
Note that the dimension is independent of the noise strength
�, a valid property in the weak-noise limit. In fact, the infor-
mation dimension of the noise-induced chaotic attractor is
determined uniquely by the parameters of the nonattracting
chaotic set in the underlying deterministic system.

It is the fractal property of the attractor which can be used
as a condition to assess whether noise is weak. To illustrate
this, we consider the map �33�:

�n+1 = �n + 1.32 sin 2�n − 0.9 sin 4�n − yn sin �n + ��n
�1�,

yn+1 = − 0.9 cos �n + ��n
�2�, �27�

where x�� / �2�� and �n
�i� are random Gaussian variables.

The system has two coexisting attracting fixed points at �0,
−0.9� and �0.5, 0.9�, respectively, which are separated by a
chaotic saddle whose unstable manifold consists of S-shaped
curves, foliations of which are approximately orthogonal to
those of the basin boundary, as shown in Fig. 2. A noise-
induced chaotic attractor, which extends along the unstable
manifold of the chaotic saddle, is shown in Fig. 2�b�. As can
be seen from Fig. 3, which shows the results of the box-
counting algorithm, noise makes the dynamics space filling
on small phase-space scales, less than �ce−4=0.018 for �
=0.01. For weak noise, there is always a scaling region, al-
though short, with slope given by the noise-free fractal di-
mension, which is D0=1.5 in this case. When this scaling
region disappears, it is no longer possible to identify the
fractality of the noise-induced chaotic attractor, even on

larger phase-space scales, as is the case for �=0.03. In fact,
in this case, noise smears out the dynamics into large, finite
bands of the phase space. This indicates that noise begins to
dominate the dynamics and, when this happens, noise can be
considered as strong.

B. Applications to biology

The concept of noise-induced chaos can play an important
role in the dynamical evolution of biological systems since
random environmental influences are always present
�34–36�. Here we give a few examples:

�1� Epidemiology, the controversy between the unpredict-
ability observed in records of chickenpox data and the non-

��

0

1

� �

x

�

b)

��

0

1

�

x a)

��

FIG. 2. Noise-induced chaos in the map system Eq. �27�, �a�
deterministic case, two fixed-point attractors �denoted by large
black and blank dots� and their basins of attraction, and �b� noise-
induced chaotic attractor.

1 2 3 4 5 6
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ln ( )N �

ln(1/ )�
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FIG. 3. Results of the box-counting algorithm for the determin-
istic unstable manifold of Fig. 2�a� �dots� and for the noisy attractor:
filled squares, �=0.01, as in Fig. 2�b�, and filled diamonds, �
=0.03. The slopes of the thick solid lines represent the fractal di-
mension D0=1.5 of the unstable manifold of the chaotic saddle in
the deterministic system and the phase-space dimension D=2. The
threshold scale beyond which fractality holds is �c0.018 for �
=0.01. For �=0.03, such a threshold value does not exist, indicat-
ing that noise dominates the dynamics. Similar plot can be obtained
for the scaling of the information dimension of the unstable mani-
fold as determined by Eq. �26�.
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chaotic nature of the attractor from the mathematical models
for realistic parameter values was first resolved by Rand and
Wilson �37� who pointed out that weak intrinsic or external
noise can convert a chaotic saddle of the model into a noisy
chaotic attractor. Noise-induced chaos has proven to be an
ubiquitous source of unpredictability in epidemics since then
�12,38�.

�2� Physiology, it has been suggested that pathological
destruction of chaotic behavior may induce some types of
brain seizures �39� and heart failures �40�. In vital physi-
ological systems chaotic dynamics can in fact be considered
as “normal” �41�. Bifurcations to periodic behavior are
viewed as a physiological loss of the range of adaptive pos-
sibilities �42�. In these situations the presence of noise can be
advantageous as it can help induce or restore chaos.

�3� Ecology, population dynamical models sometimes
also predict regular long-time behavior although the obser-
vations find irregular dynamics. Here we present the model
of Ellner and Turchin �35� to describe the population dynam-
ics of fennoscandian voles. The time-continuous equations of
motions for the scaled prey �vole� density, n, and predator
�weasel� density, p, are

dn

dt
= 4.5n�1 − sin�2�t� − n� −

gn2

n2 + 0.01
−

8np

n + 0.04
,

dp

dt
= 1.25p�1 − sin�2�t� −

p

n
� , �28�

where the parameters are taken from �43�. The seasonal
variation has the period of t=1 year. A stroboscopic section
is taken with a sampling of once per year �at t=1,2 ,¯�,
generating an invertible two-dimensional map. The attractor
of the deterministic problem for g=0.12 is a 13-cycle �35�.
Figure 4 demonstrates a chaotic saddle coexisting with the
13-cycle �44�. It is the chaotic saddle which is responsible
for the appearance of noise-induced chaos described earlier
�35�.

V. CONCLUSIONS

In conclusion, we have used the tool of quasipotentials to
explore critical behaviors associated with noise-induced

chaos. While our analysis leads to the same scaling law as
obtained previously, the use of the quasipotential concept
places the law in a firmer setting. We have also explored
fractal properties of noise-induced chaotic attractors. Noise-
induced chaos is a generic phenomenon in realistic dynami-
cal systems and we have pointed out a number of applica-
tions in biological sciences.
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