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2Department of Structural Mechanics, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest, H-1111, Hungary
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In systems exhibiting transient chaos in coexistence with periodic attractors, the inclusion of weak noise
might give rise to noise-induced chaotic attractors. When the noise amplitude exceeds a critical value, an
extended attractor appears along the fractal unstable manifold of the underlying nonattracting chaotic set. A
further increase of noise leads to a fuzzy nonfractal pattern. By means of the concept of snapshot attractors and
random maps, we point out that the fuzzy pattern can be decomposed into well-defined fractal components, the
snapshot attractors belonging to a given realization of the noise and generated by following an ensemble of noisy
trajectories. The pattern of the snapshot attractor and its characteristic numbers, such as the finite time Lyapunov
exponents and numerically evaluated fractal dimensions, change continuously in time. We find that this temporal
fluctuation is a robust property of the system which hardly changes with increasing ensemble size. The validity
of the Kaplan-Yorke formula is also investigated. A superposition of about 100 snapshot attractors provides a
good approximant to the fuzzy noise-induced attractor at the same noise strength.
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I. INTRODUCTION

An observed trajectory of a dynamical system is always
subject to external perturbations. If the time scale of the per-
turbations is much shorter than that of the original signal, their
effect can be modeled as noise. If a dissipative deterministic
system exhibits periodic attractors and a nonattracting chaotic
set, the inclusion of weak noise can give rise to an extended
noisy chaotic attractor. The noise-induced chaotic attractor
extends to the original attractors and the unstable manifold of
the nonattracting chaotic set. A typical trajectory then visits
both the original periodic attractors and the nonattracting
chaotic set. This phenomenon is known as noise-induced
chaos [1–3], which is fundamental in nonlinear and statistical
physics and has received prolonged attention [4–7]. The field
of potential applications is broad, ranging from electronic
circuits [8] to epidemics [9] or population dyanmics [10].

Instead of following a long noisy trajectory, one can
consider the snapshot pattern formed by many iterations of
a cloud of initial conditions subject to the same sequence of
random perturbations. As pointed out by Romeiras, Grebogi,
and Ott [11], this pattern exhibits a clear fractal character.
The idea of such snapshot attractors [11] is particularly well
suited for understanding the advection of passive particles and
the pattern they make in nonperiodic fluid flows [12–17].
If the flow is not exactly periodic in time, e.g., chaotic,
the deviation from periodicity can be modeled as a random
influence, and this perturbation flow is the same for all
particles at a given instant of time. A particularly appealing
example of this approach leads to a correct interpretation of
the experimentally observed patterns of floaters on the surface
of fluids [13]. Snapshot attractors have also been utilized
to study the transition to chaos in quasiperiodically driven
dynamical systems [18,19]. Recently, the effect of noise on
chaotic scattering was studied also in the form of random
maps [20,21]. The concept of random attractors or pullback
attractors of continuous-time dynamical systems [22,23] that
has appeared in recent publications on climate dynamics
[24] is practically the same as that of snapshot attractors.

A slight difference is that in continuous-time systems the
random process is often an additive white noise. Our aim is to
connect the seemingly unrelated fields of noise-induced chaos
and snapshot attractors. In particular, we show that snapshot
attractors can be considered as building blocks of the fuzzy
noise-induced chaotic attractor for strong noise.

It is known that the details of the fractal structure of
snapshot attractors vary with time, but the Kaplan-Yorke
relation has been shown [11,25] to be valid in the random
case under generic conditions, e.g., if none of the average
Lyapunov exponents is zero [25]. Noise-induced attractors,
however, exhibit strongly intermittent dynamics; it is therefore
an open question how the Kaplan-Yorke value relates to
the numerically accessible values of information dimension,
which will be investigated here.

It is also meaningful to formulate a Kaplan-Yorke type
relation involving the time-dependent finite time Lyapunov
exponents. In systems whose parameters change adiabatically
in time, Ref. [26] provides evidence for such a relation to
be appropriate to use. Here we explore the use of such a
time-dependent relation for random maps. The characteristic
numbers of the snapshot attractors change with time and
are found to exhibit large fluctuations. We show that the
fluctuations of both the finite time Lyapunov exponents and
the information dimension are non-normal. The variance of
the former is found to stagnate with increasing ensemble
size N , while that of the latter decreases very slowly with
N . Furthermore, the Kaplan-Yorke type dimensions evaluated
by means of finite time Lyapunov exponents have been found
to correlate well with the numerically determined information
dimension.

In Sec. II, we review a simple model that exhibits noise-
induced chaos. In Sec. III, we show a series of numerically
simulated snapshot attractors represented by N � 1 parti-
cles with strong noise. The finite time Lyapunov exponents
averaged over ensembles are studied, and the nature of their
fluctuations is investigated. Section IV is devoted to the fractal
properties of snapshot attractors. Conclusions are presented in
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Sec. V. Details on snapshot chaotic saddles related to snapshot
chaotic attractors are relegated to the appendix.

II. MODEL

We consider the noisy version of discrete-time dynamical
systems which, in dimensionless form, are written as:

xn+1 = f(xn) + σ ξn, (1)

where σ > 0 represents the noise amplitude and the ξ terms are
independent, identically distributed random processes of zero
mean and fixed variance. The distribution P (ξ ) is assumed to
be known and to be independent of time so the stochastic
process generating the noise is stationary. We shall use a
distribution P (ξ ) that is constant over the finite domain [−1,1].
Note that form (1) is somewhat exceptional in the context of
snapshot attractors, where noise most typically appears as a
modulation of some of the parameters.

To illustrate noise-induced chaos, we consider the invertible
map [27]:

θn+1 = θn + 1.32 sin 2θn − 0.9 sin 4θn − xn sin θn + σξ (1)
n ,

(2)
xn+1 = − 0.9 cos θn + σξ (2)

n ,

where ξ (i)
n are random variables. Angle θ is taken mod 2π .

The deterministic system (σ = 0) has two coexisting attracting
fixed points at (0,−0.9) and (π,0.9), respectively. The fixed
points are separated by a chaotic saddle whose unstable mani-
fold consists of S-shaped curves, foliations which are approx-
imately orthogonal to those of the basin boundary, as shown in
Fig. 1. Noise-induced chaotic attractors obtained at different
noise strengths are shown in Fig. 2. At weak noise, the attractor,
shown in Fig. 2(a), extends along the fractal unstable manifold
of the deterministic chaotic saddle. As the noise strength
increases beyond σc = 0.02, the fractal pattern becomes
washed out and a fuzzy pattern appears. It has been shown in
Refs. [6,7] that noise makes the dynamics space filling on
small phase-space scales, less than εc = 0.018 for σ = 0.01.
For weak noise, there is always a scaling region, although short,
with a slope given by the noise-free fractal dimension of the
unstable manifold, which is D0 = 1.5 in this case. When this
scaling region disappears, it is no longer possible to identify

FIG. 1. (a) Two fixed-point attractors and their basins of attraction
in the deterministic version (σ = 0) of map (2) (white/black points are
attracted to the large black/blank dot) and (b) the unstable manifold
of the chaotic saddle responsible for transient chaos. For plotting,
throughout the article, angle θ is taken mod 2π .

FIG. 2. Noise-induced chaotic attractors in map (2) for various
noise strengths: (a) σ = 0.01, (b) σ = 0.03, and (c) σ = 0.1. Single
trajectories of lengths (a) about 109 (displayed phase-space region
partitioned into 1000 × 1000 boxes, with a maximum of 10 points
plotted in each box) and (b) and (c) 106 are used to represent the
attractors.

the fractality of the noise-induced chaotic attractor. In fact,
noise smears out the dynamics into large finite bands of the
phase-space. This indicates that noise begins to dominate the
dynamics and, when this happens, noise can be considered
as strong. Figures 2(b) and 2(c) illustrate such cases. We will
consider the latter for our case study. Our aim is to analyze
such fuzzy noise-induced chaotic attractors using the concept
of snapshot attractors.

III. SNAPSHOT ATTRACTORS

In this section, instead of single long trajectories (as used in
Fig. 2) we consider ensembles of particles. The random system
differs form the deterministic one in that it is not autonomous.
If an ensemble is used, the solution for a particular realization
of noise can be well represented in the phase-space of the
original deterministic system at chosen time instants. Given
that the same random perturbation acts on all particles of the
ensemble, such a snapshot view of the ensemble is not fuzzy
but exhibits fractal patterns [11]. For map (2), Fig. 3 shows a
series of subsequent snapshot attractors. The applied noise is
strong (σ = 0.1), the same as in Fig. 2(c). The initial condition
for the simulation was an ensemble of N = 105 randomly
scattered particles uniformly distributed in the phase-space
region of Fig. 3. After about 20 iterations the particles attain
and spread over a phase-space object. The instantaneous form
of this object is a snapshot attractor. Each snapshot is a fractal
and is similar to the unstable manifold of the chaotic saddle of
the deterministic case [Fig. 1(b)]. Here, however, this S-shaped
foliation is “randomly” displaced and deformed in time due to
the strong noise.

In general, the form of the natural distribution of snapshot
attractors also depends on the time instant. In case of the
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FIG. 3. A series of subsequent snapshot attractors for strong
noise (σ = 0.1), corresponding to Fig. 2(c). In the respective panels
the snapshots were taken at the indicated iteration numbers i. An
ensemble of N = 105 trajectories were used with randomly assigned
initial conditions in the phase-space domain: θ ∈ [0,π ], x ∈ [−1,1].

considered map, however, one feature of this natural measure
is invariant: high peaks near the attracting fixed points of
the deterministic system. This is highlighted in Fig. 4. The
stable fixed points and their neighborhood become part of the
snapshot attractor; from here the particles occasionally visit
the regions where the chaotic saddle used to be, but soon after
they return. The dynamics is thus strongly intermittent. The
distribution, nevertheless, does have a fractal nature all over
the support.

FIG. 4. Typical natural (normalized) distribution P over a snap-
shot attractor. The applied noise is strong (σ = 0.1). The present
resolution was achieved by using a number of N = 106 points and a
number of 5000 bins in both directions.

FIG. 5. A series of 100 subsequent snapshot attractors plotted
in one diagram. The series starts from iteration number i = 50, and
the noise is strong (σ = 0.1). Every snapshot is constituted by 104

points; thus the collective plot consists of 106 points. The pattern is
practically identical to that of Fig. 2(c).

If snapshot attractors are overlayed in one diagram, the
pattern that appears is similar to the noise-induced chaotic
attractor obtained from a single very long trajectory of the
random map (2). Such a collective plot of M = 100 subsequent
snapshots can be seen in Fig. 5. Indeed, this is practically the
same as Fig. 2(c): the fractality is completely destroyed, the
points being area filling. To realize a similar density with 106

points in the two figures, every snapshot attractor is constituted
by N = 104 points. It is noted that the resulting picture is
qualitatively the same when overlaying 10 times more, that
is, M = 1000 snapshots (with N = 103 points all), or when
taking only every 50th snapshot attractors, that is, taking i =
50m + 1, m = 1,2, . . . ,M , M = 100 (with N = 104 points
all).

The coincidence of Figs. 2(c) and 5 is easy to interpret in the
latter case. The overlay contains the union of N trajectories of
total length 50M + 1. For large M , every individual trajectory
is very long and provides a faithful representation of the
noisy system’s attractor. Due to ergodicity, the union of
N such trajectories only repeats the pattern, and therefore
we expect for M � 1 the overlaid pattern to coincide with
the noise-induced chaotic attractor. Our numerical finding
illustrates that M = 100 is already a sufficiently large number
for this purpose.

The natural distribution of the noise-induced chaotic at-
tractor, represented by a single long trajectory, is displayed
in Fig. 6. In view of the argument above, it is expected to
be obtained as the superposition of several snapshot natural
distributions, like the one in Fig. 4. All these observations
prove that the snapshot attractors can be considered to be
the fractal building blocks of fuzzy noise-induced chaotic
attractors.

To reveal the time-dependent character of the snapshot
attractors, next we turn our attention to the dynamical
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FIG. 6. The natural (normalized) distribution P of the fuzzy
noise-induced chaotic attractor of Fig. 2(c). The present resolution
was achieved by using a number of N = 106 points and a number of
1000 bins in both directions.

instability on the attractor, which is characterized by the local
or finite time Lyapunov exponents (FTLE) [28]. The largest
FTLE was numerically approximated by following the major
axis of the error ellipsoid as it grows for each trajectory. If the
growth factor [29] of this axis in the j th step is denoted by yj ,
then the largest FTLE [λ(n)] at time i is calculated as:

λ(n) = 1

n

i+n∑

j=i

ln yj ; (3)

that is, the finite time mean of growth over n steps, where
the superscript (n) indicates the length of time over which the
Lyapunov exponent is evaluated. The yj ’s are determined from
the Jacobian matrix of map (2). In two-dimensional maps the
determinant of the Jacobian matrix, J (n), of the n-fold-iterated
map can be used to exactly relate the smaller negative FTLE
λ′(n) to the larger one via the relation [30,31]:

λ(n) + λ′(n) = 1

n
ln[J (n)] = 1

n

i+n∑

j=i

ln(Jj ). (4)

Here Jj denotes the Jacobian in the j th step: Jj = J (xj ),
where J is the Jacobian determinant of map (2) evaluated at
xj = (θj ,xj ).

We evaluated FTLE’s, λ(n) and λ′(n), for various n’s. In
Fig. 7, FTLE’s, averaged over ensembles that represent the
attractor, for n = 20 and n = 100 are displayed as functions
of time. [Note that Eqs. (3) and (4) are formulated for
single trajectories, but all other occurrences of λ(n) and
λ′(n) shall denote ensemble averages throughout the article.]
Results are presented for two ensemble sizes: N1 = 105 and
N2 = 106. Corresponding pairs of time series overlap in the
diagrams, hence they are undistinguishable. The following
conditions were imposed to this and all simulations discussed
in this article: the same noise realization is retained and
different random initial ensembles are used, representing a
uniform distribution over the phase-space domain: θ ∈ [0,π ],
x ∈ [−1,1].
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FIG. 7. Time dependence of the FTLE’s, (a) λ(n) and (b) λ′(n), with
n = 20 (black) and n = 100 (gray). Time series obtained using N1 =
105 and N2 = 106 overlap in the diagrams. The same noise realization
was used for all time series, and it is retained throughout the
article. Horizontal lines represent the long-time-averaged Lyapunov
exponents: λ̄ = 0.502 and λ̄′ = −4.29.

The respective time series of the positive [Fig. 7(a)] and
negative average FTLE’s [Fig. 7(b)] take similar shapes;
although the fluctuations of the λ(n)’s are smaller than those of
the λ′(n)’s. Also, fluctuations decrease with increasing n.1

As a result of assessing the effect of increasing ensemble
size it is observed that (i) the shapes of the time series of λ(n)

and λ′(n) are practically preserved and (ii) the magnitude of
fluctuation hardly changes. In particular, for the FTLE’s the
fluctuation appears to stagnate with increasing N (see Table I
and related discussions). These results are surprising because
in the deterministic case the variance of the FTLE’s decrease
markedly with increasing ensemble size N .

Points (i) and (ii) are indicators of non-normal fluctuations.
For normal fluctuations the following law should apply [32]:

σ 2
1

σ 2
2

= N2

N1
. (5)

Here, indices refer to two arbitrarily chosen particle numbers
N1 and N2; and the σ ’s are the standard deviation of
the distribution under consideration. Law (5) holds more
accurately when larger and more distinct N ’s are chosen.

The temporal averages of the FTLE’s are found to stabilize
at a value of λ̄ = 0.502 and λ̄′ = −4.29 after about 106 iter-
ations. To obtain these figures five different long trajectories
were used, and (3) was evaluated with i = 0, n = 106. The
long time needed is presumably due to the strongly intermittent
dynamics.

Statistics for time series longer than those displayed in
Fig. 7 are presented in Table I. The FTLE’s are measured for
1000 iterations, which, as a long time series, is broken down
into five blocks of 200 iterations each (b1,. . .,b5, where b1

1Results for λ′(20) obtained by means of the Gram-Schmidt orthog-
onalization technique (not shown) are in good agreement with that of
Fig. 7.
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TABLE I. Statistics for the temporal means of λ̄(20), λ̄(100).
Figures in the columns labeled b1,. . .,b5 correspond with subsequent
trajectory sections of over 200 iterations. The figures are given up to
four digits for the purpose of comparison. By increasing N1 = 105 to
N2 = 106, the corresponding figures of standard deviation [σλ(n) and
σλ′(n) ], blockwise and overall, are found to match very closely.

N b1 b2 b3 b4 b5 Overall

λ̄(20)

105 0.5180 0.4838 0.5151 0.5360 0.4996 0.5105
106 0.5181 0.4841 0.5150 0.5355 0.4999 0.5105

σλ(20)

105 0.0634 0.0989 0.0778 0.0757 0.0712 0.0801
106 0.0631 0.0990 0.0778 0.0763 0.0720 0.0803

λ̄(100)

105 0.5142 0.4776 0.5233 0.5329 0.4831 0.5062
106 0.5137 0.4777 0.5233 0.5328 0.4833 0.5062

σλ(100)

105 0.0223 0.0202 0.0222 0.0206 0.0367 0.0334
106 0.0224 0.0203 0.0221 0.0204 0.0364 0.0332

corresponds to Fig. 7). This facilitates a means to provide
a statistics of the mean and standard deviation (s.d.) of the
blockwise averages. The blockwise and overall comparison of
both the mean and s.d. values for the considered characteristic
numbers reveals that the increasing ensemble size makes a
difference only in roughly the fourth digit after the decimal
point. However, when figures are considered across the blocks,
we see fluctuations and give conservative estimates such as,
λ̄(20) = 0.51 ± 0.02, λ̄(100) = 0.51 ± 0.02, and, in a similar
way, based on data not shown, λ̄′(20) = −4.3 ± 0.15, λ̄′(100) =
−4.3 ± 0.15. These temporal averages over time intervals of
length 200 are found to be quite close to the long-time aver-
ages, λ̄(20) = 0.505 ± 0.001, λ̄(100) = 0.502 ± 0.001, λ̄′(20) =
−4.285 ± 0.005, λ̄′(100) = −4.293 ± 0.005, which are esti-
mated on the basis of a few simulations iterating a single
initial value over 106 steps and using different realizations of
noise. It is noted that the very good blockwise agreement is
due to the identical condition imposed as highlighted above,
namely retaining the same noise realization. This way the
major contributor to the fluctuation across the blocks is due to
the different noise realization.

For a reference, we carried out control simulations with
the random baker map studied as Case I in Ref. [11].
Statements (i) and (ii) above are found to apply also in this
case, indicating that these features are typical of any random
map. An explanation is the following. Snapshot attractors are
constructed from an ensemble of trajectories, and ensemble
averages can be evaluated over them. However, temporal
averages cannot be defined on any individual snapshot. Hence,
ergodicity in terms of the equivalence of ensemble and
temporal averages is not meaningful. Temporal averages,
nevertheless, can be defined over long times, i.e., over the
noise-induced chaotic attractor. The ensemble average of any
quantity taken over finite-time noise realizations might thus
be time dependent and might differ from the overall temporal
average. By considering the union of all possible noise
realizations, however, ergodicity is recovered and holds for

the noise-induced chaotic attractor. In other words, ergodicity
in terms of a unique stationary distribution implies in the
nonrandom case that finite-time ensemble averages rapidly
converge to the long-time average and that their temporal
fluctuations are vanishing with increasing ensemble size. Such
an implication does not apply in the random case when finite
sequences of noise realization are investigated.

IV. FRACTAL PROPERTIES

The Lyapunov dimension DL of deterministic chaotic
attractors can be expressed via the Kaplan-Yorke formula [30]:

DL = 1 + λ̄

|λ̄′| , (6)

where λ̄ and λ̄′ are the positive and negative time-averaged
Lyapunov exponents on the attractor. For typical snapshot
attractors the same expression has been proven [11,25] to hold,
where λ̄ and λ̄′ are the positive and negative time-averaged
Lyapunov exponents on the noisy chaotic attractor. With the
average Lyapunov exponents determined numerically in the
noisy system, the Lyapunov dimension (6) yields as DL =
1.117 for our snapshot attractors at strong noise (σ = 0.1). The
dimension of the noise-induced chaotic attractor at weak noise,
however, is provided by another expression [6,7]. The relation
and the crossover between these expressions is discussed in
the appendix.

Next, we introduce—in a similar way as in Ref. [26]—
“finite-time” Lyapunov dimensions:

D
(n)
L = 1 + λ(n)

|λ′(n)| , (7)

based on the FTLE’s λ(n) and λ′(n). We evaluated such
dimensions and compared them with a direct calculation of
the information dimension D1. Note that the n → ∞ limit of
D

(n)
L is expected to coincide with DL (which tendency is also

supported by data provided in the caption of Fig. 11).
In Fig. 8 the time dependencies of D

(20)
L and D

(100)
L are

shown. Ensemble sizes N1 = 106 and N2 = 107 are used, and
corresponding pairs of time series are again undistinguishable,
and properties (i) and (ii) hold.

Figure 9 exhibits the time series of the information
dimension D1 calculated according to the standard definition
[30] after every iteration of a snapshot attractor, with the use of
N1 = 106 and N2 = 107 particles. The root-mean-square error
(rmse) of the fitting of the scaling line (not shown) is found
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FIG. 8. Time series of the finite time Lyapunov dimensions D
(20)
L

(black) and D
(100)
L (gray). Time series obtained using N1 = 106 and

N2 = 107 overlap in the diagrams. A horizontal line indicates the
long-time average DL = 1.117.
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FIG. 9. Time series of the information dimension D1 (calculated
directly) using a number of (a) N1 = 106 and (b) N2 = 107 particles
for the ensemble. The scaling lines were fitted on the longest possible
range with acceptable rmse figures (<0.04 most typically) of widths
about (a) 90 and (b) 160.

to be most typically less than 0.04. Properties (i) and (ii) hold
also for the time series of D1.

Statistics for longer time series than those displayed in
Fig. 9 are presented in Table II for the same noise realization
as in Table I, but here particle numbers N1 = 106 and N2 = 107

are considered. Based on the provided data of temporal
fluctuations a conservative estimate of D̄1 is given such as
D̄1 = 1.16 ± 0.02. A further source of inaccuracy is due to
the fitting of the scaling line, which yields an additional
error of ±0.04, i.e., D̄1 = 1.16 ± 0.06. To maintain the same
conditions in this case, nevertheless, we also used the same
range of fitting in cases of both N1 = 106 and N2 = 107,
with which, blockwise and overall, practically no difference
between the s.d. values is found, similarly to the case of
the Lyapunov exponents (cf. Table I). Concerning the s.d.
values obtained with the extended range provided by the
increase of the particle number N , a weak decrease of σD1 can
be observed.

It is worth recalling an observation of Namenson et al. [14]
according to which the fluctuations of the information dimen-

TABLE II. Statistics for the temporal means of D̄1, in a similar
way as with Table I. For N2 = 107 two sets of figures are displayed;
the upper one corresponds to a range of fitting used in the case
of N1 = 106 and the lower one was obtained by using the possible
longest range of fitting.

N b1 b2 b3 b4 b5 Overall

D̄1

106 1.15 1.13 1.15 1.16 1.15 1.15
107 1.16 1.15 1.16 1.17 1.16 1.16
107 1.16 1.14 1.16 1.17 1.16 1.16

σD1

106 0.046 0.066 0.053 0.051 0.047 0.054
107 0.046 0.066 0.054 0.051 0.047 0.054
107 0.044 0.062 0.051 0.049 0.044 0.051

sion in random maps has a variance σD1 ∼ [ln (1/ε∗)]−1/2,
where ε∗ represents the smallest box size reasonable to use
in a box counting algorithm. It is easy to convert this size
to the number of particles in the ensemble. Let N0 denote
the average number of particles needed to have a reasonable
statistics in each box, say N0 = 100. Since the number N (ε) of
boxes needed to cover the snapshot attractor is N (ε) = Hε−D0 ,
where D0 is the fractal dimension and H the Hausdorff
measure, ε∗ follows from the constraint N0Hε∗−D0 = N .
Thus, ln ε∗ ∼ ln(N/HN0), and for large N we have

σ 2
D1,1

σ 2
D1,2

≈ ln N2

ln N1
. (8)

This represents a particular form of non-normal fluctuations
and implies an extremely slow convergence to zero. Our
data for the information dimension calculations appear to be
consistent with this law.

We thus conclude that neither the Lyapunov dimensions
D

(n)
L expressed by means of finite time Lyapunov exponents

(Table I) nor the direct computation of the information
dimension (Table II) exhibit normal fluctuations. In addition,
there is a small but measurable difference, on the order of
a few percentage points, between the traditional Lyapunov
dimension DL (6) and D̄1. We attribute this to the strongly in-
termittent, nonhyperbolic dynamics on the snapshot attractors
or to the unavoidable finite number N of particles representing
the ensemble. By including a conservative estimate of the
errors, however, an agreement between DL and D̄1 cannot be
excluded.

An interesting relation can be discovered when cross
correlations are calculated between the time series of D1 and
D

(n)
L . In Fig. 10(a) we find that they are correlated as indicated
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FIG. 10. Cross correlations of the information dimension D1

with the Lyapunov dimension D
(n)
L for (a) n = 20, (b) n = 10, and

(c) n = 5. The time series were scaled by the standard deviation
before taking their normalized cross correlation so a perfect match
would lead to 1 at the maximum.
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FIG. 11. Time series of the Lyapunov dimension D
(n)
L for (a)

n = 20, (b) n = 10, and (c) n = 5. The time series of a direct
calculation of the information dimension D1 [taken from Fig. 9(b)],
with which the cross correlations were constructed for Fig. 10, is
included in the bottom for reference. The upper three sequences are
shifted in the positive direction along the abscissa by 	i = 15, 9, 7,
for n = 20, 10, and 5, respectively, where 	i’s are the locations of
the peaks in Fig. 10. This way corresponding peaks of the sequences
align. The mean values subtracted before taking the cross correlation
are D̄

(20)
L = 1.1242, D̄

(10)
L = 1.1265, D̄

(5)
L = 1.1288, and D̄1 = 1.16.

by a peak. For decreasing n [Figs. 10(b) and 10(c)], the cross
correlation is stronger and stronger. This effect is displayed in
Fig. 11 in terms of the time series themselves. Note that before
taking the cross correlation the mean of each sequence was
subtracted, which differs in each case. Note also that for greater
n’s the sequence tends to be smoother and the fluctuation is
smaller, which is consistent with taking averages over longer
times.

The observed correlation confirms that a time-dependent
version of the Kaplan-Yorke relation (7) has a specific meaning
for finite ensemble size N : D

(n)
L for some small value of n

provides a good approximation of the numerically determined
D1. This strong correlation is remarkable, considering that the
algorithms by which they are obtained are entirely unrelated.
A detailed analysis shows that the cross correlation is maximal
at n∗ = 6 (n∗ = 4 for the random baker map). This might be
interpreted such that, with the ensembles used, the last n∗
iterations dominate in determining the information dimension
of a snapshot attractor. The value of n∗ is thus expected to be
a (slowly varying) function of N .

Next, we consider the fractal dimension D0. Qualitative
properties of the time series obtained for D0 (not shown)

100 150 200 250 300
0.95

1

1.05

1.1

1.15

i

D
2

FIG. 12. A time series of the correlation dimension D2 calculated
directly. The rmse of fitting the scaling line is most typically smaller
than 0.02. For the ensemble a number of N = 104 particles were
used.

are similar to those of D1. The rmse values of fitting are
typically somewhat smaller than those for D1. These suggest
that properties (i) and (ii) do apply, but the s.d. values
(not shown) are much smaller. As a conservative estimate,
including fluctuations of the mean due to different noise
realizations as well as inaccuracies due to fitting the scaling
line, we give here as D̄0 = 1.53 ± 0.04, in which error the
latter contribution dominates.

We also investigated the correlation dimension D2 of the
snapshot attractors. The time series of D2 with N = 104 is
displayed in Fig. 12. The typical value is about 1, and the rmse
of fitting is most typically smaller than 0.02; that is, the scaling
line of the correlation integral is a very straight line, even if
using as few particles as N = 104. As a conservative estimate,
we find D̄2 = 1.02 ± 0.02.

The explanation for the rather distinct value of D2 from
that of D1 and D0 is that the correlation dimension can be seen
as a biased fractal dimension giving a larger weight to more
densely populated regions of the fractal. As shown by Fig. 4
such pronounced parts of the snapshot attractors are around the
fixed points. Since the support here is more a simple line than
a fractal, the local dimension is close to 1 and dominates D2.
Because these peaks of the natural distribution are very robust,
the rmse can stay small. The presence of these peaks also
explains our finding (not shown) that the standard deviation
of D1 due to different noise realizations is about one order of
magnitude larger than that of the fractal dimension D0 since
the latter is not sensitive to the irregularities of the natural
distribution.

V. CONCLUSIONS

We have pointed out that a fuzzy noise-induced chaotic
attractor at strong noise can be decomposed into an infinite
set of fractal snapshot attractors. The snapshot attractors
arise from ensembles of particles subject to the same noise
realization and produce clear fractal patterns after relatively
short random sequences. We have found that the overlay of
about 100 different snapshot attractors produces in practice a
rather good approximant to the noise-induced chaotic attractor.

The investigation of time series of ensemble
averages of physical quantities revealed that (i) for a
given realization of noise the time series of the averages
are largely independent of the size and realizations of the
ensemble of initial conditions. Furthermore, (ii) the variance
of finite time quantities, like, e.g., the Jacobian determinant
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or the finite time Lyapunov exponents, is found to remain
finite, while those of the dimensions decrease slowly when
increasing the size of the ensembles. These findings lead
to the conclusion that these characteristic numbers exhibit
non-normal fluctuations.

One often reads in the literature on snapshot attractors
that—although they change their shape in time—they possess
a time-independent information dimension given by the
Kaplan-Yorke formula [30]. Our experience shows that the
average Lyapunov exponents and the Kaplan-Yorke formula
can be obtained from very long temporal sequences only. The
information dimension of the snapshot attractors determined
directly show considerable fluctuations, and even its temporal
average over finite time intervals might deviate (a few per-
centage points) from the Kaplan-Yorke results. We evaluated
the Kaplan-Yorke dimension based on finite time Lyapunov
exponents of length n as well. Such a Kaplan-Yorke dimension
happens to exhibit the most similar fluctuations to that of the
directly evaluated information dimension when n is as low
as about 6. This finding confirms that with any accessible
ensemble size, fluctuations of the information dimension are
non-normal and that the last few iterations appear to influence
the information dimension of a snapshot attractor the most.

Note added in proof. We thank A. Endler for calling our
attention to a paper [34] and a response to it by [35], which
describe non-normal fluctuations of ensembles in a different
context.
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APPENDIX: SNAPSHOT CHAOTIC SADDLES AS
BUILDING BLOCKS OF SNAPSHOT ATTRACTORS

In the weak-noise limit, the information dimension of
the noise-induced attractor in two-dimensional maps can be
approximated by the information dimension of the unstable
manifold of the saddle of the deterministic case [6,7] such that

DL = 1 + λ̄ − κ

|λ̄′| , (A1)

where κ is the escape rate of the deterministic chaotic saddle.
Note that this dimension is independent of the noise strength
σ in the weak-noise limit.

Equation (A1) does not apply to noise-induced attractors
at strong noise (σ > σc). In that case there is no deterministic
chaotic saddle whose unstable manifold would form a basic
element of the noise-induced or of the snapshot attractors. If,
however, the dynamics is leaked [33] by defining holes of
radius δ around the fixed points, and a given realization of the
noise is applied to an ensemble of particles, a snapshot chaotic
saddle arises.

Figure 13 shows a series of a few such snapshots for strong
noise (σ = 0.1), constructed as follows. In a box that contains

FIG. 13. A series of subsequent snapshots of chaotic saddles for
strong noise (σ = 0.1). The applied leak size is δ = 0.01.

the snapshot attractor an ensemble of randomly distributed
particles is taken at zero time. Then the map system (2)
is applied over 40 iterations. After each iteration a particle
escapes if it enters any of the leaks of size δ around the fixed
points. The fixed point is located numerically by searching
for the (local) maximum of the probability distribution. Those
particles which have not entered the leaks after 40 iterations
represent the unstable manifold of the snapshot chaotic saddle.
The same particles on the initial configuration represent the
stable manifold. These same particles approach closely the
snapshot saddle at some point in the meantime (we created
snapshots halfway: at iteration 20), and they are therefore
taken to represent the saddle [31]. For subsequent snapshots the
procedure was shifted along the predefined random sequence
of noise. It can be seen in Fig. 13 that the geometry changes
slightly over the iterations, similarly as in Fig. 3, but the double
fractal structure typical of chaotic saddles is persistent.

For such a random chaotic saddle a mean value of the
dynamical measures such as the escape rate and the Lyapunov
exponents can be taken, and they are linked by a formally
identical relation with (A1).

As the escape of the majority of particles happens over
some tens of iterations, and because the fluctuations are
characterized on comparable time scales, the escape rate could
be difficult to estimate.2 This difficulty can be overcome by
averaging the number N (i) of nonescaped particles versus the
iteration number i for a number of independent simulations
using different realizations of noise. This way we estimated the
mean escape rate (κ) for various values of the leak size (δ) and
obtained a monotonous relation. That is, there is no uniquely
defined random chaotic saddle for strong noise whose charac-
teristic numbers are to be substituted into Eq. (A1); for differ-

2This also means that a time-dependent version of relation (A1) is
difficult to support numerically.
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ent δ’s different subsets of the snapshot attractor act as snapshot
saddles. In the weak noise limit (σ < σc = 0.02 in our case)
κ does not depend on small values of δ, which indicates the
existence of a unique set of snapshot chaotic saddles, whose
mean escape rate is approximately the same as the escape rate
in the deterministic case. Therefore, while in the weak noise

limit Eq. (A1) applies because there is a unique random chaotic
saddle, it does not apply in the case of strong noise because ran-
dom chaotic saddles can be defined only via an artificial leak-
ing of the dynamics. Instead, the δ → 0, κ → 0 limit should
be considered (that is, the case of snapshot attractors) with
which Eq. (A1) transforms into the Kaplan-Yorke relation (6).
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