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Chaotic saddles in a gravitational field: The case of inertial particles in finite domains
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The motion of inertial particles is investigated numerically in a time-periodic flow in the presence of gravity.
The flow is restricted to a finite (or semi-infinite) vertical column, and the dynamics is therefore transiently
chaotic. The long-term motion of the center of mass is a uniform settling. The settling velocity is found to differ
from the one that would characterize a still fluid, and the distribution of an ensemble of settling particles spreads
with a well-defined diffusion coefficient. The underlying chaotic saddle appears to have a height-dependent
fractal dimension. The coarse-grained density of both the natural measure and the conditionally invariant measure
(defined along the unstable manifold) of the saddle is smooth, and exhibits a local maximum as a function of the
height. The latter density corresponds to the eigenfunction of the first eigenvalue of an effective Fokker–Planck
equation subject to an absorbing boundary condition at the bottom. The transport coefficients can be determined
as averages taken with respect to the conditionally invariant measure.
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I. INTRODUCTION

The dynamics of inertial particles [1–6] in fluid flows have
been studied intensively in the last decade (for a review see
[7,8]), and it has been shown to have important effects in
many situations of practical interest ranging from atmospheric
sciences [9–12] to oceanography [13–15].

As a particular case, the dynamics of particles that are
heavier than the surrounding fluid came more and more
into focus in the last years. This increasing recent interest
stems from the fact that droplets and heavy particles play an
important role in some environmental problems and industrial
applications. For instance, droplet dynamics form an essential
part of the complex phenomena taking place in clouds [16,17].
The sedimentation of volcanic ash is a basic component of the
hazard due to volcanic eruptions [18]. On the other hand,
droplets are responsible for interesting phenomena observed
recently in a probably less known industrial application, for
example, in demixing experiments of binary fluids [19–21].

Our aim is to investigate numerically the dynamics of
sedimenting particles in a flow model that extends over
a finite region, below and above which another type of
hydrodynamical behavior follows. This particular choice can
mimic the fact that the motion of water droplets is different
within and outside the cloud, and that of volcanic ash particles
is different in the free atmosphere and in the planetary
boundary layer. In demixing experiments the two phases of
the binary fluid are separated by a horizontal meniscus, and
droplets nucleated in the upper phase will sediment and escape
to the lower phase.

In such situations two important factors influence the
particles’ motion, namely the gravitational force and the
viscous drag exerted by the background flow on the particle.
The dimensionless parameter characterizing the dynamics of
inertial, small, spherical particles of radius a subject to Stokes
drag in a fluid of kinematic viscosity ν, of typical velocity U

and of linear size L is

A = 9ρf νL

2a2ρpU
, (1)

the relaxation rate to the fluid velocity (the reciprocal of the
so-called Stokes number, multiplied by the density ratio).
Considering a cloud, for a rain droplet of radius 1 mm, in a
range of L ∼ 100 m of a large-scale flow with typical velocity
of the order of U ∼ 1 m/s, and with the density ratio of
water to air ρp/ρf ≈ 103, the numerical value of parameter A

turns out to be of order unity, indicating that the effect of the
viscous drag is important for the particle dynamics. Similar
A values are obtained for larger volcanic ash particles. For
cloud droplets of radius 10−3 mm (and for small ash particles)
we obtain A ∼ 106. Similarly, in the demixing experiments
(a ∼ 10−2 mm, L ∼ 10−4 m, U ∼ 10−5 m/s, ρp ≈ ρf ≈ 1
g/cm3, and ν ∼ 10−6 m2/s) A is of the order of 106. In these
latter cases the limit A → ∞ can be taken, which simplifies
the equations of motion. Throughout the paper we investigate
the richer dynamics described by a parameter A of order unity.

Apart from these two main factors, we keep our model as
simple as possible. We assume that the velocity field u of the
flow is two dimensional and is defined in the vertical plane.
Particles are considered to be heavy with a density ρp much
larger than that of the fluid ρf � ρp. The particle ensemble
is assumed to be dilute so that the probability of collisions is
negligible.

Thus our simplified model is not aimed to describe these
complex phenomena in full complexity, rather to concentrate
on dynamical systems aspects. For merely illustrative purposes
we shall formulate the model as a “model cloud” but emphasize
its applicability to other phenomena as well. From the point
of view of dynamical systems, our main interest is on how the
finite vertical extension of the flow leads to transient chaos
[22] in the advection dynamics. The problem of large spatial
extension has already been treated in the context of chaotic
transport [23–25] with a constant prescribed drift. Here, in a
hydrodynamical context, we shall also be able to investigate
how a constant drift sets in due to gravity and viscous drag,
and why the constant settling velocity in the presence of a flow
differs from that in a medium at rest.

The paper is organized as follows. The model is introduced
in the next section. Then Sec. III is devoted to the presentation
and interpretation of the numerical results. We show that the
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FIG. 1. Schematic diagram of the “cloud” model. In the dimen-
sionless version of the model L is formally unity.

long term average is a uniform settling, but the settling velocity
differs from the one that would characterize a still fluid, and the
distribution of an ensemble of settling particles spreads with
a well-defined diffusion coefficient. The underlying chaotic
saddle appears to have a height-dependent fractal dimension.
The coarse-grained density of both the natural measure and
the conditionally invariant measure of the saddle is smooth,
and exhibits a local maximum as a function of the height.
In Sec. IV we show that in a semi-infinite column the latter
density can be well approximated by the eigenfunction of the
first eigenvalue of an effective Fokker–Planck equation subject
to an absorbing boundary condition at the bottom. The results
imply that a difference in the settling velocity in the moving
and in the resting media is due to the conditionally invariant
measure. In the concluding Sec. V we discuss our findings.

II. THE MODEL

The equations of motion for small, inertial, spherical
particles in a viscous fluid are given by the Maxey-Riley
equations [26,27]. For heavy particles the dimensionless
Maxey-Riley equations simplify to

r̈ = A[u(r,t) − ṙ − Wn], (2)

where u(r,t) is the flow field, W is the dimensionless terminal
fall velocity, also called the settling velocity, in still fluid, and
n is a unit vector pointing upward. Throughout the paper we
fix the dimensionless relaxation rate to be A = 5, and the
dimensionless settling velocity W to be of the order of 0.1.

We consider z to be the vertical coordinate and the flow is
assumed to be translation invariant in direction y. The model
flow consists of elementary cells of linear size L which are
repeated periodically in the horizontal x direction. Vertically,
however, the flow contains a finite number M of cells only. The
model cloud can thus be represented by a vertical column of M

cells subject to a periodic boundary condition in the horizontal
direction (as illustrated by Fig. 1). Advection dynamics (2) is
followed within this column only, after leaving the lower or
the upper edge (at z = 0 or z = M), particles are considered
as escaped.

The flow within a cell is taken to be a paradigmatic mixing
model, the double shear flow [28,29]. The flow is periodic
with temporal period L/U (i.e., with unit period in the
dimensionless version) and consists of sinusoidal shears. We
consider a temporally smoothened version [3,6] of the model
where the change in the flow direction is continuous in time
as described by the velocity components

ux(r,t) = B{1 + tanh [γ sin (2πt)]} sin (2πz),
(3)

uz(r,t) = B{1 − tanh [γ sin (2πt)]} sin (2πx).

Here γ is a switching parameter whose value is taken to be
γ = 20/π , and the dimensionless flow amplitude is chosen as
B = 0.5.

III. RESULTS

A. Long-term settling

First, we are interested in the long-term behavior of an
ensemble of particles in a long column. We consider a
column of height M = 100 and uniformly fill a single cell
(79 < z < 80) with particles at rest, of number N � 1, as
initial condition. By numerically monitoring the dynamics
(2) of this ensemble of particles, we create for each time
step the histogram of the z coordinates and also determine
their average Z(t) (the center of mass) and variance σ (t). The
settling velocity W is chosen to be W = 0.2.

By about t = 10 a “steady” behavior is developed. The
motion of the center of mass is a uniform settling: Z(t) =
−wt + Z0, with w = 0.28 and Z0 = 79.7. It is remarkable
that velocity w strongly differs from W = 0.2, the settling
velocity in still fluid. The variance clearly exhibits a diffusional
behavior of the form of σ (t)2 = 2Dt + σ 2

0 , with diffusion
coefficient D = 0.03 and with σ 2

0 = 0.3. In Fig. 2 we can see
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FIG. 2. Dynamics of an ensemble of particles in a long column along the z direction as represented by the histogram of their z coordinates.
The initial uniform distribution concentrated in a single cell (cell 80) is smeared out in the Gaussian form (4) (continuous line). W = 0.2,
N ≈ 1.7 × 104, the bin size of the histogram is �z = 0.5, the data points are located at the centers of the bins.
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FIG. 3. (a)–(c) Evolution of an ensemble of N = 62 500 particles initially localized in the square 0.2 < x < 0.25 and 7.75 < z < 7.8 in
the (x,z) plane. Fractal filamentation becomes evident. (d) The pattern of the fourth cell. W = 0.2.

that the time evolution of the histogram of the z coordinates
precisely follows the Gaussian form

n(z,t) = N�z√
2πσ (t)2

exp

{
− [z − Z(t)]2

2σ (t)2

}
, (4)

where �z is the bin size of the histogram.
The diffusional spreading implies a kind of apparently

stochastic behavior due to the chaotic dynamics of the in-
dividual particles. The existence of the nontrivial terminal fall
velocity w can be qualitatively understood by the investigation
of the spatial structure of an initially strongly localized
ensemble of particles (Fig. 3). Deterministic chaos produces
fractal filaments, a nonuniform pattern in space, and this
inhomogeneity is the qualitative reason for w to differ from
the still fluid settling velocity W . The actual pattern within
a single cell is similar to that of the chaotic attractor of the
doubly periodic problem (see [3]).

The dependence of the observed settling velocity w on
the still fluid settling velocity W and the flow strength B is
summarized in Table I. For flow strengths B = 0.3 or less, the
long-term motion is quasiperiodic. Similarly, a torus can be
found for some other parameter values as well, denoted by t
in Table I. As we are only interested in chaotic motion, we do
not investigate these cases. From Table I one can see that the
difference w − W (including its sign) changes irregularly as a

function of B.1 The diffusion coefficient D is found to exhibit
a trend of monotonic growth with B.

B. Transient chaos in finite columns

In the case of a finite column and a long-time observation,
chaos will be transient since particles leave the column
eventually. Transiently chaotic systems have a characteristic
escape rate κ which can be determined as follows. We fill the
column with uniformly distributed particles of number N0 at
rest. For each particle (at position x) the escape time T (x)
(time needed to leave the column from x) can be determined.
The distribution n(T ) of the escape times has an exponential
tail with exponent κ . This quantity is the escape rate since
the integral of n(T ) from T = t to infinity gives the number
N (t) of the particles still present in the column at time t .
Results are shown in Fig. 4 for M = 8, and yield an escape
rate κ = 0.35.

Transient chaos is characterized by a chaotic saddle. The
saddle and its stable and unstable manifolds can be obtained
by means of the sprinkler method (see e.g., [30,31]) that we
slightly modified in order to take into account the nonchaotic

1We have also investigated the limit A → ∞ implying the solution
of the equation ṙ = u(r,t) − Wn. The average settling velocity is
found to practically coincide with the one describing a resting
medium.

TABLE I. The dependence of the difference between the measured settling velocity w and the still fluid settling velocity W on the parameters
W and B. t denotes the appearance of a torus. N ≈ 104 for each simulation, A = 5.

W \ B 0.4 0.5 0.6 0.7 0.8 0.9 1 1.5 2 2.5 5

0.051 0.18 0.08 0.02 −0.05 −0.01 0 −0.02 −0.01 0.03 −0.02 0.02
0.2 0.12 0.08 t −0.04 −0.03 −0.05 t −0.07 −0.02 −0.06 0.04
0.5 0.09 0.04 0.05 0.06 −0.01 −0.04 −0.08 t −0.09 −0.09 0.01
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FIG. 4. Histogram of the escape times T of N0 ≈ 3.2 × 105

particles, initially distributed homogeneously at rest in a column of
height M = 8. The escape rate is obtained as κ = 0.35 from a fit to
the interval T ∈ [36,48]. W = 0.2. The grid size of the histogram is
�T = 3.

effect of the uniform settling velocity W in Eq. (2).2 The results
are shown in Fig. 5. The unstable manifold [Fig. 5(c)] of the
saddle exhibits the structure of Cantor filaments, the product of
a Cantor set and a line. Though the distribution on it strongly
depends on height (which is an important feature discussed
later), the fractal pattern itself seems to be mostly independent
of z. The stable manifold of the chaotic saddle [Fig. 5(a)] is
also of Cantor filament type at the bottom, but this structure

2The entire column is homogeneously filled with N0 � 1 particles
at rest, and trajectories spending a time at least t0(z) within the column
are kept. This time is chosen to increase with the initial height z of the
particles as t0(z) = t0 + z/W . The locations of the survived particles
at time 0 and t0(z) provide, for large t0, a good approximation to the
stable and the unstable manifold, respectively, and those at time about
t0(z)/2 approximate the saddle.

changes when going upward: a uniformly distributed, space-
filling random pattern becomes more and more dominant. A
characteristic height dependence can be seen in the chaotic
saddle as well. It exhibits the structure of a double Cantor set
at the bottom of the column. When going upward, the saddle’s
shape converges to that of the unstable manifold [as can be
seen in Fig. 5(b)]. This is consistent with the fact that any
saddle is the intersection of its stable and unstable manifolds
[31]. It is worth emphasizing that the dynamics described by
Eq. (2) has a four-dimensional phase space. What we see in the
fluid is a projection of the phase space objects onto the (x,z)
plane. As for the stable manifold of the saddle, the method
provides its intersection with the (x,z) plane. Correspondingly,
if the particles are initiated with the fluid velocity, the stable
manifold appears with a different pattern, while the saddle and
its unstable manifold remain unchanged.

The stagger-and-step method [32] provides a way to
generate high resolution plots of chaotic saddles. The basic
idea is as follows. Let us consider a trajectory composed of
discrete (numerical) steps, with xn designating the position
corresponding to the nth step. For each step, the escape
time T (xn) (time needed to leave the column from xn) can
be determined. Following the particle along this trajectory
(increasing n), T (xn) decreases. When it drops below a
prescribed value T ∗, we look for a nearby point xn + rn with
T (xn + rn) > T ∗ [32]. Then we change the position to xn + rn,
and continue with a new trajectory. Repeating this algorithm
for every occurrence of T (xn) < T ∗ we can assure that the
particle never leaves the column. The trajectory obtained this
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FIG. 5. Spatial structure of the chaotic saddle (b) and its stable (a) and unstable (c) manifold obtained by means of the sprinkler method.
W = 0.2, M = 8, t0 = 6, N0 ≈ 2 × 106.
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FIG. 6. Spatial structure of the chaotic saddle projected onto the (x,z) plane obtained by means of the stagger-and-step method (T ∗ = 30,
max(|rn|) = 10−7). W = 0.051, M = 8.

way can be regarded as a “numerical” trajectory on the saddle
with a precision of max(|rn|).

In a gravitational field this method has to be modified for
long columns. We define an effective escape time T̃ from
which the linear trend of the nonchaotic settling is deduced:

T̃ (x) := T (x) − z/W, (5)

and replace the escape time T (x) by the effective escape time
T̃ (x).

Using the modified stagger-and-step method, we find that
a large portion of the long trajectory on the saddle is restricted
to the lower part of the column. For the investigation of this
property, it is worth considering lower values W of the still
fluid settling velocity.

High-resolution results are presented in Fig. 6 for W =
0.051. We notice that the double Cantor form is “filled up”
again when going upward from the bottom, but it reappears
at the top. To quantitatively formulate our observation on the
height dependence of the fractal structure, we calculated the
box-counting dimension D0 of a given area in each cell of
the saddle. Figure 7 shows that the dimension D0 of the
chaotic saddle is significantly smaller in the lowest and in
the uppermost cells than in the middle of the column where
it appears to be constant over several cells, in accordance
with Fig. 6. Since the dimension for a union of fractals is
the maximum of that of the components, the overall fractal
dimension of the saddle is given by the dimension far from the
boundaries. We mention that location-dependent fractality has
also been observed in growing microbial colonies [33].

A qualitative explanation for the height dependence can be
given as follows. Points of the chaotic saddle within a single
cell of the column can be classified in a hierarchical manner:
(i) trajectories never leaving the cell itself and (ii) trajectories
never leaving the cell and one of its neighboring cells, etc. In a
cell far from the boundaries many levels of this hierarchy are
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FIG. 7. Box-counting dimension D0 (with error bars) of the
chaotic saddle in Fig. 6 for each cell determined from the region
0.35 < x < 0.7 and m + 0.4 < z < m + 0.75, m = 0,1, . . . ,7.

present. Higher levels are however absent in cells that lie closer
to a boundary. This causes the saddle to be more sparse near
the boundaries. The vertical asymmetry is due to the presence
of the gravitational field.

As previously mentioned, the points of a long trajectory on
the chaotic saddle are distributed unevenly along the vertical
direction on large scales. This property appears in Fig. 6
as a height dependence in the density of the points of the
saddle. We now turn to a more detailed investigation of this
global distribution. Numerically we create a histogram of the
z coordinates of the points of an ensemble of stagger-and-step
trajectories initiated at different points. For the histogram we
integrate over all velocity components as well as over the
horizontal coordinate x. We choose the bin size to be one half
of the cell size �z = 0.5. The density of points in each bin is
denoted by ρ(z), where z is the center of the bin. The density is
normalized by assuring its integral over the entire column to be
1. This coarse-grained density on the chaotic saddle is shown in
Fig. 8. As expected from Fig. 6 there is a dominant maximum
and there are local minima at the boundaries of the column.
The results practically do not depend on the parameters
T ∗ and max(|rn|) in the ranges [30,45] and [10−10,10−7],
respectively.

In the terminology of dynamical systems, the stationary
distribution on the saddle is the natural measure. The one
along the unstable manifold, called the conditionally invariant
measure, is also of special importance [22,34]. The previous
one characterizes the dynamics of particles that never leave
the saddle. The conditionally invariant measure, however,
describes how particles deviate from the chaotic saddle and can
be regarded as one maintained by supplying new points into
the region of interest according to the rate at which trajectories
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FIG. 8. (Color online) Coarse-grained density ρ(z) (“ + ” marks)
of the z coordinates of seven stagger-and-step trajectories of total
length of ≈2 × 106 time units on the chaotic saddle [T ∗ = 30,
max(|rn|) = 10−7], and coarse-grained density ρc(z) (“x” marks) of
N ≈ 60 000 particles along the unstable manifold, approximating the
conditionally invariant measure. W = 0.051, M = 8. The grid size
of the histograms is �z = 0.5.
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FIG. 9. Escape rate κ as a function of column height M . The
number of particles initiated in each column is N0 ≈ 40 000M for
M � 15 (N0 ≈ 65 000 for M = 16). The horizontal line indicates the
value of κ found for the semi-infinite column, based on a simulation
initiated with N ≈ 1.6 × 105 particles of the conditionally invariant
measure. W = 0.051.

escape from the region asymptotically. This latter measure thus
reflects the properties of the transport away from the chaotic
saddle, and has been demonstrated to be relevant in several
transient-chaos-related phenomena [35,36].

We determine the conditionally invariant measure as fol-
lows. Initially we homogeneously fill some part of the column
with N � 1 particles at rest. We let them evolve in time
and whenever a particle leaves the column we randomly
choose another particle and insert a new particle into a small
neighborhood of the chosen particle. If a stationary distribution
is obtained this way, it will be the conditionally invariant
measure by definition.

For the coarse-grained conditionally invariant distribution
we generated the normalized histogram [denoted by ρc(z)] of
the z coordinates of the ensemble of N particles described
above. The result is shown in Fig. 8. This coarse-grained
density also has a maximum, but it is shifted toward the lower
part of the column compared to the natural distribution. Local
minima at the boundaries of the column are also found.

These observations indicate that fine fractal distributions
in the phase space lead to smooth, differentiable densities in
the vertical direction z when observed on sufficiently coarse
scales.

C. Semi-infinite column

Here we turn to the investigation of a semi-infinite column,
that is, we change the boundary conditions: particles going
upward are never lost. First of all we are interested in the value
of the escape rate κ . The most reliable way of determining it is
to let the particles of the conditionally invariant measure leave
the column. The number of the particles in the column then
exhibits an exponential decay with exponent κ . Our numerical
result is κ = 0.026.3 In Fig. 9 we can see that the series of the
escape rates of finite columns of increasing height M tends to
this value.

The results obtained for the coarse-grained natural and
conditionally invariant measures of the semi-infinite column
are shown in Fig. 10 based on the same methods as for finite

3We must mention that the method generating the conditionally
invariant measure is a little bit noisy. Therefore the results presented
in this paper are calculated as an average over different realizations.
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FIG. 10. (Color online) Semi-infinite column. Coarse-grained
density ρ(z) (“ + ” marks) of the z coordinates of 19 stagger-and-step
trajectories of total length of ≈7.5 × 105 time units on the chaotic
saddle [T ∗ = 45, max(|rn|) = 10−10], and coarse-grained density
ρc(z) (“x” marks) of N ≈ 1.6 × 105 particles approximating the
conditionally invariant measure. W = 0.051. The grid size of the
histograms is �z = 0.5.

columns. The main shape of the distributions which appear to
be smooth remains the same, while their tails are longer. The
results on the natural measure are now parameter independent
in the ranges T ∗ ∈ [30,45] and max(|rn|) ∈ [10−10,10−9].

Having seen the very smooth, regular structure of the
coarse-grained density in spatial coordinate z, it is worth inves-
tigating the distribution of its conjugated velocity component
vz. Since the velocities are small, any coarse features in space
can only be related to the time average of vz over one period
of the driving shear flow, that is over �t = 1. In what follows
we shall present results for this average velocity, and for the
sake of simple notation, we denote this average by vz as well.
Numerically we generated bivariate histograms of the number
n(z,vz) of particles in each bin with variables z and vz. In
Fig. 11(a) we can see the slices taken at fixed values of vz of
the histogram on the saddle. The shape in variable z is nearly
independent of the slice taken, that is, the density is close to
the product form n(z,vz) = f (z)λ(vz). As for variable vz, it is
enough then to investigate the histogram n(vz) integrated over
all values of z [shown in Fig. 11(b)]. The density seems to
have no regular structure. The strong dependence on the bin
size suggests that n(vz) is not smooth at all.

Turning to the unstable manifold of the saddle, Fig. 12(a)
suggests that the product form of the density is not valid,
especially at the bottom of the column. The bivariate density
in Fig. 12(b) exhibits irregular, nonsmooth behavior in the
direction vz again.

So far we have investigated the system by means of a
stroboscopic map, that is, we have taken sections of the phase
space at integer time instants. In order to obtain results on the
escaping particles, we now take the section of the unstable
manifold of the saddle with the plane z = 0, but we do
not specify the time instant to provide sufficient amount of
data. The resulting manifold is shown in three dimensions
in Fig. 13. It is remarkable that particles escape only in
the interval x ∈ [0.7,1.1] and only with horizontal velocities
0 < vx < 0.2 as a consequence of the particular form (3) of
the flow. The structure seen in Fig. 13 is similar to that of the
stroboscopic unstable manifold [for a projection on the (x,z)
plane see Fig. 5(c) for W = 0.2]. The box counting dimension
of the mentioned two-dimensional projection for W = 0.051
is found (as described in the caption of Fig. 7) to be D0 = 1.75,
which shows a reasonable agreement with D0 = 1.73 of the
continuous-time variant of Fig. 13 projected onto the (vx,vz)
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FIG. 11. (Color online) (a) Slices along variable z at fixed intervals of vz of the bivariate histogram n(z,vz) of the natural measure based on
19 stagger-and-step trajectories of total length of ≈7.5 × 105 time units on the chaotic saddle [T ∗ = 45, max(|rn|) = 10−10]. The grid size of
the histogram is �z = 1. (b) One-dimensional histograms of vz for two bin sizes. W = 0.051.

plane. This is in accordance with the fact that we investigate
different projections of the same five-dimensional manifold.

IV. A STOCHASTIC APPROACH

In order to find an explanation for the coarse-grained
version of the conditionally invariant measure of the semi-
infinite column, we consider the effect of the velocity field u as
a kind of random influence, and investigate the Fokker–Planck
equation [37] for a drifting Brownian particle in the vertical
direction. In a hydrodynamical context this approach has
recently been applied to obtain a stationary probability density
for swimming microorganisms in turbulent velocity fields [38].
Here we extend it to an open case. We have seen that the coarse-
grained distribution is nonsmooth in variable vz. Because of
this, and since the dimensionless relaxation rate is large, it
appears to be reasonable to take the strong friction limit. The
dimensionless Fokker–Planck equation then takes the form

∂P (z,t)

∂t
= w∗ ∂P (z,t)

∂z
+ D∗ ∂2P (z,t)

∂z2
, (6)

where P (z,t) is the probability density of the particle to be at
height z at time t . The values of the drift −w∗ and the diffusion
coefficient D∗ characterizing the conditionally invariant mea-
sure of the semi-infinite column are yet unknown. Equation
(6) can also be interpreted as an advection-diffusion equation.

The time-dependent distribution of particles along the
unstable manifold exhibits a long-term exponential decay
with the escape rate κ . This leads to the conclusion that
the coarse-grained conditionally invariant density can be
identified with the first eigenfunction of the Fokker–Planck
equation, with eigenvalue exp (−κ). Substituting P (z,t) ∼
e−κtP (z) and prescribing boundary conditions P (z = 0) = 0
(as particles are lost there) and limz→∞ P (z) = 0, we find the
first eigenfunction to be

P (z) = 1

1/α− − 1/α+
(e−α−z − e−α+z), (7)

where

α± = w∗

2D∗ ±
√(

w∗

2D∗

)2

− κ

D∗ . (8)

The value of κ is known from our simulations (see
Sec. III C). In Sec. III A we have seen that the chaotic effect
of the velocity field u can modify the settling velocity from
W (the drift in still fluid) to a nontrivial one and can lead to
the appearance of a well-defined diffusion coefficient. For the
conditionally invariant measure of the semi-infinite column, a
self-consistent method can be worked out for the determination
of w∗ and D∗.

With probability density (7) we can calculate the mean
values of z-dependent quantities. The vertical velocity vz is,
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FIG. 12. (Color online) (a) Same as Fig. 11(a) for N ≈ 1.6 × 105 points approximating the conditionally invariant measure. (b) Bivariate
histogram n(z,vz) in the same simulation. The coloring corresponds to the values on the third axis. The grid sizes of the histogram are �z = 1
and �vz = 0.15. W = 0.051.
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FIG. 13. (Color online) Section of the continuous-time unstable
manifold of the saddle with the plane z = 0. The coloring corresponds
to the x coordinate. The number of the particles applied in the
simulation is N ≈ 5 × 104. W = 0.051.

however, not a variable of the strong friction limit Fokker–
Planck equation. It can be read off from the relation J (z,t) =
vzP (z,t), where J (z,t) = −w∗P (z,t) − D∗∂P (z,t)/∂z is the
probability current determined by Eq. (6). Since P (z,t) is the
first eigenfunction, we can also write J (z,t) = e−κtJ (z). For
the probability density (7) the probability current turns out to
be

J (z) = w∗

2(1/α− − 1/α+)

{
−

[
1 +

√
1 − 4D∗κ

(w∗)2

]
e−α−z

+
[

1 −
√

1 − 4D∗κ
(w∗)2

]
e−α+z

}
, (9)

from which vz = J (z)/P (z).
Evaluating averages with the steady state probability

density P (z) (maintained by repumping particles) we obtain
analytically that

〈vz〉 ≡
∫ ∞

0
vzP (z) dz = −w∗, (10)

and similarly, one can check that

D∗ = 〈zvz〉 − 〈z〉〈vz〉. (11)

We can now calculate these quantities over our numerical
approximation to the conditionally invariant measure. We use
again the time averaged version of the particle coordinate vz

with �t = 1, and for consistency we also use a similar time
averaged version of the particle coordinate z as well. The
numerical results for the drift and the diffusion coefficient
are w∗ = 0.106 and D∗ = 0.08. Note that these values differ
from w = 0.130 and D = 0.17 of an infinite column (see
Sec III A) since they characterize a situation where the particle
distribution strongly overlaps with the bottom of the column.

If our assumptions are correct, function (7) with these
numerically obtained parameters (and κ) will have to match
our numerical result on the coarse-grained version of the
conditionally invariant measure. Figure 14 shows a good
agreement.

In view of this, we can say that the two distributions
coincide:

P (z) = ρc(z), (12)

 0.001

 0.01

 0.1

 0  2  4  6  8  10  12  14  16

ρ c
(z

),
P

(z
)

z

ρc(z)
P(z)

FIG. 14. Normalized coarse-grained histogram ρc(z) of the par-
ticles of the numerical approximation to the conditionally invariant
measure [same as in Fig. 10 with time averaged z coordinates] and
the first eigenfunction P (z) [see (7)] of the Fokker–Planck equation
with parameters obtained from the same simulation.

the first eigenfunction of (6) is the coarse-grained density of
the conditionally invariant measure. The results above imply

w∗ = −〈vz〉c (13)

and

D∗ = 〈zvz〉c − 〈z〉c〈vz〉c, (14)

that is, the averages are taken with respect to the conditionally
invariant measure. Equation (13) suggests that whether w∗ is
larger or smaller than W (see Table I) depends on the particular
form of this measure. Note that expression (14) is a kind of
Green–Kubo formula [39].

It is worth mentioning that the Gaussian

P (z,t) = 1√
2πσ (t)2

exp

[
− (z + wt)2

2σ (t)2

]
(15)

with σ (t)2 = 2Dt is a solution of the strong friction limit
Fokker–Planck equation (6) with the initial condition of a
Dirac δ centered at z = 0, with no boundary conditions, and
using w∗ = w and D∗ = D. These choices correspond to an
infinite column. Apart from the offsets Z0 and σ 2

0 , function
(15) is the one observed in the settling dynamics (Sec. III A,
Fig. 2).

We might try to explain the coarse-grained distribution
observed on the chaotic saddle as well. On this invariant set
we should observe the stationary distribution of Fokker–Planck
equation (6), which is a single exponential in variable z. The
distribution in Fig. 10 is different. This break-down of the
Fokker–Planck method indicates that the natural measure of
the saddle, even if coarse grained, cannot be described by
an advection-diffusion equation since there is no macroscopic
transport associated with the chaotic saddle.

V. CONCLUSIONS

One of the main conclusions of this study is that chaotic
saddles in spatially extended systems might have, on the one
hand, a local fractality depending on the spatial coordinate
along which the extension is large. On the other hand, in
spite of the intricate fractal patterns in the phase space,
smooth coarse-grained densities might be found in this
spatial coordinate. Such coarse-grained densities can then be
described by macroscopic equations like the Fokker–Planck
or the advection-diffusion equation. In open systems, the
conditionally invariant density is of special importance since
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it describes the transport away from the chaotic set. Its
coarse-grained version was shown to be the first nontrivial
eigenfunction of the Fokker–Planck equation.

Another important feature of our problem is the existence
of a drift velocity due to the presence of the gravitational field.
A numerical observation is that the measured settling velocity
in the flow differs from the one appearing in a still fluid.

We have also found that the drift velocity and the dif-
fusion coefficient appearing in the Fokker–Planck equation
describing the conditionally invariant measure of a semi-
infinite column should be different from the ones observed
for long-term settling in an infinite column. This may be a
consequence of the different spatial structures characterizing
these two cases. The conditionally invariant measure, for
example, exhibits a special height dependence due to the
absorbing boundary condition at the bottom [see Fig. 5(c)].
The role of the underlying structure is well illustrated by the
fact that the average vertical velocity taken with respect to the
natural measure turns out to be zero, numerically. It indicates
again that the chaotic saddle itself cannot be associated with
any macroscopic transport.

In general, we can conclude that macroscopic transport
properties are influenced by the chaotic behavior of the
particles. The difference between the settling velocity in the
presence of a flow and that in a still fluid, the dependence of
the fractal dimension on height, the presence of a nontrivial
local maximum in the coarse grained densities, the applicabil-
ity of a Fokker–Planck model to an open chaotic system, and
the observation that transport coefficients are to be interpreted
as averages taken with respect to the conditionally invariant
measure, might be relevant in the dynamics of rain droplets,
of volcanic ash particles, in demixing experiments, and other
related phenomena.
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