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When is high-dimensional scattering chaos essentially two dimensional?
Measuring the product structure of singularities
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We demonstrate how the area of the enveloping surface of the scattering singularities in a three-degrees-of-
freedom (3-dof) system depends on a perturbation parameter controlling the distance from a reducible case. This
dependence is monotonic and approximately linear. Therefore it serves as a measure for this distance, which can
be extracted from an investigation of the fractal structure. These features are a consequence of the dynamics being
governed by normally hyperbolic invariant manifolds. We conclude that typical n-dof chaotic scattering exhibits
either structures developing out of a stack of chaotic structures of 2-dof type or hardly any chaotic effects.
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I. INTRODUCTION

Chaotic scattering plays an important role in several fields
of physics ranging from atomic and molecular processes
[1], via optics and fluid dynamics [2,3], to astronomy and
cosmology [4,5]. While the mechanisms of scattering chaos in
two-degrees-of-freedom (2-dof) Hamiltonian systems are well
explored by now, relatively little is known of 3-dof systems
or systems with even more degrees of freedom. Therefore it
is a natural idea to try to use this knowledge of 2-dof systems
as a point of entry into the investigation of the chaos of 3-dof
systems and check whether 3-dof systems can be understood
as a “stack” of 2-dof systems.

The basic idea is then to start with a 3-dof system having an
additional conserved quantity besides the total energy due to
some corresponding symmetry. This conserved quantity leads
to a foliation of the phase space and also of the domain of
the Poincaré map into leaves belonging to fixed values of the
conserved quantity. If so, the value of the conserved quantity
enters the dynamics as a parameter only and we have a reduc-
tion of the 3-dof system into a stack of 2-dof systems where the
value of the conserved quantity is the stack parameter. Finally,
we break the symmetry and destroy the conserved quantity
to arrive at a true 3-dof system. At this point the interesting
question is how all the structures in phase space or in the
domain of the Poincaré map change under this breaking of the
symmetry. The experience with a few examples has shown that
amazingly small changes occur up to moderate perturbations
and that we must come to rather large perturbations to see a
substantial change of the structures. Examples from celestial
mechanics and from magnetic dipole scattering were treated
in Refs. [6,7], respectively, leading to the formulation of a
prototypical model [8] for scattering chaos in 3-dof systems.
A common feature of these cases is the presence of so-called
normally hyperbolic invariant manifolds (NHIMs) in the phase
space. The relevance of such objects to scattering chaos was
realized by Wiggins and coworkers [9–11] since the stable and
unstable manifolds of NHIMs are dividing surfaces that are
able to separate regions in phase space. They are thus proper
analogs of stable and unstable manifolds of hyperbolic orbits
in two-dimensional phase spaces.

The important structures of chaos in scattering systems
are the fractals of singularities in scattering functions which
reflect the fractal structure of the chaotic invariant set in the
Poincaré map. If the dynamics has a conserved quantity, the
stack structure of the phase space and of the Poincaré map
implies a product structure of the fractals of the singularities
of the scattering functions. When we perturb the system
and the symmetry, and the conserved quantity becomes
approximate only, this product property of the fractal structure
becomes approximate, correspondingly. Then the deviation
from the product form of the fractal of singularities should
serve as a measure of the deviation of the system from
symmetry. The purpose of the present article is to follow
this idea and to look for quantitative properties of the
fractal which can serve as a measure of the deviation from
symmetry.

In this paper we show that the area of the surface covering
the scattering singularities in the space of initial conditions is
an appropriate quantity for this purpose. We find a monotonic
increase of this area with the perturbation parameter. Parameter
regions where the increase of the surface area is comparable
to the surface of the unperturbed case signify strong deviation
from the product structure. It is remarkable that no sudden
jump occurs in this function.

For small perturbations we also show that the set of
singularities at a fixed value of the previously conserved
parameter is topologically similar to that of the unper-
turbed case when sampling it on an appropriate smooth
curved surface, instead of using the constant value of the
conserved quantity. This provides clear evidence of the
structural stability of the set of singularities. In other words,
a 3-dof problem that contains NHIMs and is characterized
by a small value of the perturbation parameter is essentially
equivalent to the unperturbed problem treated in the sense of
a stack.

For illustrative purposes we use a prototypical four-
dimensional map introduced in Ref. [8] with a simple form
of perturbation whose strength is measured by a parameter
A (0 � A < 1) (Sec. II). This approach takes advantage of the
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fact that it is a lot simpler to handle maps than systems given
by a flow in phase space. Section III exemplifies the stack
structure of the unperturbed case and its stability. Strongly
perturbed cases are investigated in the next section, where
we illustrate that the area of the surface covering the set
of singularities can be used as a distance from a product
structure of singularities. General final remarks are given in
Sec. V.

II. PROTOTYPICAL MAP

For a 3-dof autonomous Hamiltonian system the Poincaré
map acts on a four-dimensional domain. Now we use as our
example of demonstration the prototypical map of Ref. [8],
constructed as an analytical approximation to particle scatter-
ing in a channel with an obstacle. This map thus corresponds
to a system with one open and two closed degrees of freedom.
In such systems we often have the same basic situation: One of
the closed degrees of freedom can be chosen to play the role of
a clock for the Poincaré map (in the channel problem this is the
cylindrical radial degree of freedom which triggers the clock
whenever the cylinder radial coordinate goes through a relative
maximum). The coupling to the other closed degree of freedom
can be changed and can be made arbitrarily weak (in the
channel this is the cylindrical angular degree of freedom). For
zero coupling, the action of this degree of freedom becomes a
conserved quantity.

Our map is thus generic for any system of the following
class: There is an open degree of freedom and the divergence to
infinity of its configurational coordinate defines the asymptotic
region. The second degree of freedom is closed and is strongly
coupled to the first degree of freedom. The combination of
them provides a chaotic scattering system with two degrees
of freedom. The intersection condition of the Poincaré map is
given by a particular value of the canonical angle coordinate
of the second degree of freedom. There is then another closed
degree of freedom which might be weakly coupled (this
organizes the stack structure through the conserved action of
this degree of freedom; see Sec. III). The physical meaning of
any of the three degrees of freedom is absolutely irrelevant.
The dynamics of a system with two open and one closed degree
of freedom is similar and has almost the same properties. Our
model is thus prototypical for scattering systems with one open
and two closed degrees of freedom, and essentially different
properties can be present for three open degrees of freedom
only.

The model map has coordinates (q,p,θ,L), where (q,p) and
(θ,L) are canonically conjugate pairs representing the open
degree of freedom and the second closed degree of freedom,
respectively. In the map enters a potential function V (q),
which must fulfill the asymptotic condition that it falls to zero
rapidly for q → ±∞. The corresponding force function F (q)
is given as F (q) = −dV/dq. For the numerical example we
use V (q) = − exp(−q2). The map contains the parameter Lmax

which can be interpreted as the maximal value of L allowed en-
ergetically. The step from preimage coordinates (qn,pn,θn,Ln)
to image coordinates (qn+1,pn+1,θn+1,Ln+1) is defined as a
three-step process where the first step is a pure twist: q ′ =
qn + pn/2, p′ = pn, θ ′ = θn + Ln/2, L′ = Ln. The second

step is a kick:

q ′′ = q ′, (1)

p′′ = p′ + (Lmax − L)[1 + A cos(θ ′)]F (q ′)
/[1 + AV (q ′) sin(θ ′)], (2)

θ ′′ = θ ′ − [1 + A cos(θ ′)]V (q ′), (3)

L′′ = [L′ + LmaxAV (q ′) sin(θ ′)]/[1 + AV (q ′) sin(θ ′)]. (4)

The last step is again a twist: qn+1 = q ′′ + p′′/2, pn+1 = p′′,
θn+1 = θ ′′ + L′′/2, Ln+1 = L′′. As has been shown in Ref. [8],
there exists a generating function for this map and the pure
existence of the generating function guarantees that the map
is symplectic.

In the asymptotic region the functions V and F both
approach zero rapidly and asymptotically the map simplifies
to the free motion

qn+1 = qn + pn, (5)
pn+1 = pn, (6)

θn+1 = θn + Ln, (7)
Ln+1 = Ln. (8)

Note that asymptotically p and L both become conserved
quantities for any value of the perturbation parameter A.

For A = 0 the second step of the map reduces to

q ′′ = q ′, (9)
p′′ = p′ + (Lmax − L′)F (q ′), (10)

θ ′′ = θ ′ − V (q ′), (11)
L′′ = L′. (12)

We see that in this limit the “angular momentum” L becomes
a conserved quantity and therefore the domain of the map
acquires an invariant foliation into leaves of constant L. The
variable L organizes thus the stack structure. The (q,p) map
of the unperturbed case shall be called the reduced map.

Since we are interested in a scattering problem, we start
with trajectories in the incoming asymptotic region, that
is, with large values of the modulus of q and the motion
directed toward the interaction region. We are interested in the
corresponding final asymptotes along which these trajectories
eventually leave again the interaction region. The relations
between incoming and outgoing asymptotes are the scattering
functions. In order to investigate the scattering functions we
first need a convenient scheme to label asymptotes. Since the
map acts on a four-dimensional domain, we need four labels
to specify any asymptote uniquely. It is certainly convenient to
use as two of them the asymptotically conserved coordinates p

and L. Note that each asymptotic trajectory steps exactly once
into the wedge W1 defined as q ∈ [Q − p,Q) and once into
the wedge W2 defined as q ∈ [−Q − p, −Q), where Q is a
large positive number.1 For an incoming asymptote with a pos-

1The choice of Q is arbitrary, and, as L is asymptotically conserved,
one can make it depend on L. We found that structures can best
be visualized with a choice of Q = Q0 − C exp [α(L − Lmax)] with
α = 0.523056, C = 0.953584, and Q0 = 5.75, parameters that are
used throughout the paper.
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itive (negative) value of p we use the q coordinate of its unique
point in W2 (W1) as the third asymptotic label. Since this third
label plays logically the role of a phase shift between the q mo-
tion and the trigger of the clock for the Poincaré map we can de-
fine a true angle χ = −2π (q − Q)/p in W1 or χ = −2π (q +
Q)/p in W2. Similarly, as the label for outgoing asymptotes
with a positive (negative) value of p we use the q coordinate
of its unique point in W1 (W2) or the angle χ = 2π (q − Q)/p
in W1 and χ = 2π (q + Q)/p in W2. As the fourth label we
use the relative phase shift between the q and θ motion given
by the reduced angle ψ = θ − qL/p. Note that this quantity
is constant under the asymptotic motion. The scattering map
S gives χout,pout,ψout,Lout as functions of χin,pin,ψin, Lin.

The map S is singular whenever the initial asymptote lies on
the stable manifold of a localized trajectory or, more generally,
of a set of all localized unstable trajectories of a chaotic saddle.
In the case of topological chaos, these singularities form a
fractal in the set of initial asymptotes and this fractal contains
all the information on the chaotic saddle, and therefore this
information can be extracted from asymptotic observations; for
more details see Ref. [8]. Singular initial conditions correspond
to trajectories with infinite lifetimes. Since they lie on the
stable manifold of the chaotic saddle, in any neighborhood
of such points one finds trajectories leading to reflection
and transmission. This provides a straightforward numerical
method to find these points.

III. THE STACK AND ITS STABILITY

The stack property of scattering singularities is clear in the
unperturbed case (A = 0). The variable L is then a constant
of the motion, and the θ dynamics decouples from that of
p and q [see Eqs. (9)–(12)]. This defines a two-dimensional
scattering map for any fixed L, independent of θ , which we
call the reduced map.

For any fixed value of pin that is sufficiently small, we
find a Cantor set of singularities in χin (or q) in some finite
interval of Lin. Considering the full map, there is a compact
region of the (χin, ψin, Lin) space within which the singularities
are localized. Since there is no dependence on ψ in the
unperturbed case, the set of singularities can be faithfully
represented in the plane (χin,Lin). The result shown in Fig. 1
exhibits the stack property: The full problem is built up from
layers (corresponding to constant values of L) within which

 0

 3

 6

0 π 2π

L i
n

χin

FIG. 1. The stack: singularities of the scattering function in the
(χin,Lin) plane for A = 0. Different layers in Lin are dynamically
independent. pin = −0.5, Lmax = 6.

the dynamics is independent from that of the neighboring
layers.

There is no need to consider different values of pin. As long
as |pin| is small enough, any value of it leads to essentially the
same fractal (even if for increasing, but still small, values of
|pin| some parts of the fractal are dropping out and the optical
appearance changes).

The reduced map has its outer fixed points at
q = ±∞,p = 0. The invariant manifolds of these fixed points
trace out a ternary symmetric horseshoe. The value Lmax = 6
is chosen such that for L = 0 the horseshoe is complete, and
this value of Lmax is used for all numerical examples. With
increasing value of L the horseshoe becomes incomplete and
runs through the standard development scenario for ternary
symmetric horseshoes as described, for example, in Ref. [12].
When L reaches the value Lmax, the horseshoe reaches
development stage 0 and collapses to a parabolic line at p = 0.
A sequence of plots of this horseshoe for various values of L is
shown in Fig. 1 of Ref. [8]. In addition, for increasing values
of L the outer tendrils of these horseshoes become shorter and
the image of the line of scattering trajectories with pin = −0.5
in the domain of the map intersects increasingly smaller parts
of these tendrils. Note that fractals are self-similar. Therefore
any part of them contains the same information as the complete
fractal and also these partial intersections characterize the
corresponding horseshoe construction faithfully as long as
there is any intersection at all. For approximately L = 5.33,
the last intersections between the horseshoe and the line of
scattering trajectories with pin = −0.5 disappear even though
the horseshoe itself exists up to L = Lmax = 6. In Fig. 1 these
intersection patterns in χin at a fixed Lin have been piled up
to give a fractal in the two-dimensional (χin,Lin) plane. This
fractal thus encodes the horseshoe development scenario.
Note that this fractal consists of an infinite number of smooth
curves, including a well-defined outermost (envelope) curve.

Since the chaotic saddle of the reduced two-dimensional
map lies in a plane within which the stable and unstable
manifolds of the saddle are plane dividing surfaces, and the
corresponding manifolds of the full problem are obtained
as just a pile of these manifolds, belonging to different
L values, the corresponding manifolds of the full problem
provide examples of stable and unstable manifolds of nor-
mally hyperbolic invariant manifolds (NHIMs) [9]. Stable
and unstable manifolds of NHIMs play an important role
in high-dimensional scattering chaos, being codimension-
1 objects, able to separate regions of the full phase
space [10,11].

In the unperturbed case, the fractal of singularities in the
three-dimensional (χin,ψin,Lin) space is a Cartesian product
of the fractal in the (χin,Lin) plane shown in Fig. 1 with a
circle representing the angle ψin (since the fractal is completely
independent of ψin). Accordingly we need to give only the
description of the fractal in the (χin,Lin) plane. It has a natural
foliation into a stack of fractals defined along one-dimensional
χin lines for fixed values of Lin, where the coordinate Lin serves
as stack parameter. Moreover, the fractal along the χin line is
just the fractal characterizing the horseshoe of the reduced map
for the corresponding value of Lin. This construction defines
and describes the natural product and stack structure of the
fractal in the unperturbed case.
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FIG. 2. (Color online) Singularities of the scattering function (a) in the (χin,ψin) section defined by Lin = 3.5 for A = 0.02 and (b) as a
function of χin, ψin along the cut defined by Eq. (13) in the unperturbed case. pin = −0.5, Lmax = 6. Labeled points (red, light gray) have
topologically similar surroundings.

Now the question arises of how this stack structure
is modified when the perturbation is switched on.2 The
observation is that for small values of A the qualitative
structure remains the same to a high level of the hierarchy;
the fractal is only deformed continuously. We may imagine
that the three-dimensional (χin,ψin,Lin) space with the fractal
contained in it is a rubber block and this block is deformed
by the perturbation of the system. When we cut the perturbed
block along a plane on which Lin is constant, then the resulting
picture looks different from the corresponding picture without
perturbation. As a numerical example, see in Fig. 2(a) the
cut Lin = 3.5 with perturbation parameter A = 0.02. If the
robustness of the stack is true, then it should be possible to
obtain a qualitatively similar plot by cutting the block for
A = 0 along an appropriate curved surface, which undoes the
continuous deformation. By trial and error we found that the
particular example shown in Fig. 2(a) can be approximated

2Note that the statement on the arbitrary choice of pin is independent
of the value of Lin for the reduced map; therefore, it holds for the
piling of the stack and remains valid also in the presence of a small
perturbation.

quite well [see Fig. 2(b)] by a cut on the surface given as

Lin(χin,ψin) = 3.185 − 0.04 cos(ψin − 1.0)

+ 0.55(χin − 3.68). (13)

This equation is applied in a strip containing the fractal (outside
it should be continued in some form, making it periodic in χin

with period 2π ). In the two plots we see a 1:1 correspondence
between equivalent structures. To make the comparison easier
for the reader, we have marked some points with topologically
similar surroundings in the two plots. By choosing a more
complicated curved surface we could make the similarity
between the two plots even stronger. It is important that one of
the fractals can be considered a continuous deformation of the
other one. A similar equivalence can be found for any other
cut along any plane Lin = constant of the perturbed system for
small values of the perturbation parameter. This observation
is the numerical confirmation of the robustness of the stack
property of the system.

When the perturbation parameter is increased, the fractal
is deformed more strongly, and in addition, beginning on high
levels of the hierarchy, essential changes of the structure come
in and the stack property fades out with increasing value of
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FIG. 3. (Color online) The envelope of the structure of singularities (colored [or gray-scale] surface, where coloring [or brightness]
corresponds to the Lin values) in the three-dimensional domain (defined by pin = constant) of the scattering function. The detailed structure of
singularities is shown on the front section, ψin = 0 (black). The arrow at χin = 3.8 corresponds to the χin value defining the section taken in
Fig. 4. The value of A is indicated in the panels. pin = −0.5 and Lmax = 6.
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FIG. 4. (Color online) Singularities (red, light gray) of the scattering function in the (ψin,Lin) section defined by χin = 3.8. The envelope
of the structure of singularities is marked by a blue (dark-gray) thick curve. The value of A is indicated in the panels. pin = −0.5,
Lmax = 6.

A. In the next section we quantify the overall changes of the
fractal with increasing A.

IV. STRONG PERTURBATIONS

We investigate how increasing perturbation results in
increasing deviation of the set of singularities from the direct
product structure in the three-dimensional space spanned by
the initial asymptotic variables χin, ψin, and Lin. Figure 3
gives an impression on the ψin dependence of the structure of
singularities for moderate and larger values of A by plotting
the envelope surface of the structure. The difference is striking.
In the unperturbed case (A = 0), the envelope surface is the
product of the outermost curve shown in Fig. 1 with a circle in
the variable ψin and is therefore trivially smooth. Figure 3(a)
shows a case when the original direct product structure can
still be recognized, while in Fig. 3(b) one can observe a totally
deformed surface.

It is difficult, however, to get a detailed impression of
such structures in three dimensions, and we thus start with
investigating sections of the three-dimensional space. In Fig. 4
the singularities of the scattering function are shown in a
(ψin,Lin) plane, in which one directly can see an increasing
dependence on ψin, related to an increasing mixing between

different “levels” of L. We also marked the envelope curve
of the structure of singularities in the particular section.
The length of this curve exhibits considerable growth with
increasing A. This leads to the idea of applying a measure of the
envelope to quantitatively characterize the distance from the
unperturbed case. The sequence of Fig. 4 illustrates that there
is a gradual change in the foliation structure with increasing
A, without any jump. Similar behavior is expected therefore
in the envelope as well.

There are two main possibilities for characterizing the
envelope: On the one hand, we can directly calculate the area a

of the envelope surface of the structure embedded in the three-
dimensional space of the initial asymptotic variables or, on the
other hand, we can approximate it by calculating the lengths
l of envelope lines in planar sections of the three-dimensional
space. It is practically useful to choose the (χin,Lin) or the
(ψin,Lin) planes. For any choice of the plane, averaging is
needed over different values of the variable defining the
particular section. Multiplying the resulting average length
(denoted by l̄) by 2π , we obtain an approximation of the area
a of the envelope surface.

We emphasize that the exact product and stack property of
the whole fractal exhibited in the unperturbed case (discussed
in detail in Sec. III) implies the exact product (in direction
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FIG. 5. (Color online) Red line with “ + ” marks: the area a of
the envelope surface of the structure of singularities embedded in the
three-dimensional domain of the scattering function (shown in Fig. 3),
plotted as a function of parameter A. For comparison, the average
envelope length l̄ is also plotted (multiplied by 2π ), with l̄ obtained
from (χin,Lin) sections (blue line with “x” marks) and from (ψin,Lin)
sections (magenta line with bumped “x” marks) by averaging over 63
values in [0,2π ) of variables ψin and χin, respectively. pin = −0.5,
Lmax = 6.

ψin) and stack (in direction Lin) properties of the envelope as
well. An increase of the area of the envelope surface without
any change in the functional form of the envelope on ψin

or Lin could only occur by a pure rescaling induced by the
perturbation. However, our Figs. 3 and 4 exclude this option.
The observed changes in the functional form of the envelope
imply a deviation from the exact applicability of the stack idea.
This justifies our expectation that the amount of change of the
envelope surface is able to provide an appropriate quantitative
measure for the deviation from the exact product and stack
properties.

Numerical results on the area of the envelope surface are
shown in Fig. 5. The area of the envelope surface is found
to be a monotonic function of the perturbation parameter
A.3 Monotonicity is exhibited by both the exact and the
approximate methods. All functions are approximately linear.
One can also see that the approximation based on the (ψin,Lin)

3The fractal dimension of the set of singularities is also a natural
candidate for being a measure of the deviation from the product
structure. Our numerical studies, however, indicate a nonmonotonic
dependence of the box-counting dimension on A.

planes gives the correct increment as a function of A, which
is not true for the (χin,Lin) planes. It is easy to understand
why the cut involving variable ψin is the more appropriate
one. The perturbation parameter A controls to which extent the
variable ψ is involved in the dynamics. Consider any cut of the
(χin,ψin,Lin) domain that is not parallel to the ψin = constant
surfaces. The length of the envelope for going around the ψin

circle is the relevant measure of deviation, after averaging or
integrating this length over the variable defining the position
of the cut (this is simply χin in our particular choice). The
value of the area a is, however, better approximated when
using the (χin,Lin) planes. [Note that the (χin,Lin) planes give
an exact result for the unperturbed case since all information
is contained in one such plane.]

It is worth mentioning that we numerically found initial
conditions lying outside the envelope to correspond to trajec-
tories that pass through the scattering region without any turn,
even in the perturbed case. This is shown in Fig. 6. This gives
the envelope a dynamical meaning and can be explained as
follows. First let us consider the reduced map. The outgoing
asymptotes χout and pout are continuous functions of the initial
conditions in regions of the two-dimensional domain (χin,pin)
that are bounded by singular initial conditions. One such region
of continuity is the one that lies outside the envelope curve
(defined as the union of envelope points corresponding to
pin = constant sections). In this region one may choose such
a large value for |pin| that the corresponding trajectory passes
through the scattering region without any turn, irrespective
of χin. Then the outgoing asymptote pout takes some finite
value. Any trajectory containing at least one turn could only
exist in the same region of continuity if there were initial
conditions leading to pout = 0 in this region. But pout = 0 is
only obtained for initial conditions lying on the stable manifold
of one of the NHIMs sitting at infinity and being of course
singular. Therefore, there is no possibility for the existence
of trajectories with any turn in the outer region of continuity.
On the contrary, we find reflected trajectories (with an odd
number of turns) arbitrarily close to the envelope on the other
side of the envelope since envelope points are singular by
definition. The set of initial conditions corresponding to a
particular pin = constant line is simply obtained by a section
of the domain (χin,pin). These considerations are valid for
an arbitrary value of Lin for the reduced map so that they

(a) A = 0

0 π 2π
χin

 0

 3

 6

L
in

(b) A = 0.6

0 π 2π
χin

 0

 3
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L
in

FIG. 6. Turning properties of the trajectories initiated in the (χin,Lin) plane for ψin = 0. Black color indicates that the trajectory passes
through the scattering region without any turn, gray color corresponds to transmission with at least two turns of the trajectory, and white color
denotes reflection. The value of A is indicated in the panels. pin = −0.5, Lmax = 6.
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also hold for the unperturbed pile of the stack. As long as a
perturbation leads to a smooth deformation of the envelope
surface these considerations remain valid. In our particular
model this property is enforced by the asymptotic position of
the NHIMs as discussed in the next section.

V. DISCUSSION

The Poincaré map for an n-dof autonomous Hamiltonian
system acts on a (2n − 2)-dimensional domain. In order to be
useful as dividing surface (separatrix surface) a surface must be
of codimension 1. If this dividing surface should be constructed
as a stable or unstable manifold of some invariant subset I of
the map, then this subset I must be of codimension 2. It has
one transverse stable direction and one transverse unstable
direction and the instability associated with any tangential
direction should be dominated by the instability associated
with the transverse unstable direction.4 This is the basic idea
behind any NHIM [9]. As a consequence, at least locally there
is a two-dimensional plane containing a hyperbolic structure
in which planar chaos of the same type as in 2-dof systems
with their two-dimensional Poincaré map is created. When we
now pile up all such two-dimensional hyperbolic planes in
all the remaining directions, we arrive naturally at the stack.
Compare this with the discussion on topology and dimensions
in Ref. [13].

For the case with n − 2 further conserved quantities besides
the total energy, this layering of the domain of the map is
even globally exact. It is enforced by the foliation created
by the conserved quantities and by the independence on
all the corresponding conjugate cyclic angles. The amazing
numerical evidence from examples investigated so far [6–8]
is that this global layering remains valid under perturbations
which destroy the conserved quantities, and rather strong
perturbation is needed to break down the global layering. These
numerical observations may have the following explanation: In
the examples investigated so far the NHIM itself is persistent
for all values of the perturbation and this provides stability
properties also for the stable and unstable manifolds of the
NHIMs and for their homoclinic or heteroclinic tangles. The
NHIMs themselves always have the local layering property
and this may facilitate the expansion of this layering—at least
approximately—over the whole corresponding homoclinic or
heteroclinic tangle.

In the prototypical map studied in the present paper, the
two outer NHIMs sit at q = ±∞ and consist of trajectories
which do not move in the q direction. The local segments
of their stable manifold consist of trajectories going out
to infinity monotonically while the velocity converges to
zero. The whole stable manifold is the continuation of these
local segments under the inverse map. Note that in linear
approximation the fixed points at infinity are parabolic, but
they are found to be unstable under the inclusion of the non-

4Note that in our particular model map the NHIM is located in
the asymptotic region, and we thus find neutral stability of any
point of the NHIM in directions L and θ ; see Eqs. (5)–(8). This
particular property of our model is irrelevant for the generality of the
results.

linearities and therefore possess stable and unstable manifolds.
This consideration shows that the distinction between the
linearly unstable and linearly neutral but nonlinearly unstable
cases is rather irrelevant, which provides a novel way to
interpret the meaning of the stable and unstable manifolds of
NHIMs.

As long as the potential V (q) appearing in the map goes
to zero from below for q → ±∞, the above properties hold
independently of the value of the perturbation parameter A.
Remember that the perturbation only acts in the interaction
region, and thereby the whole chaotic set is clamped between
these two NHIMs at q = ±∞ independent of A. This
guarantees the persistence of the phase space dividing surfaces
regardless of the perturbation.

Note that a condition for this rather stable layering is
having a potential with an asymptotic attractive tail so that
there is no point of no return at a finite distance. We have
such attractive tails almost always in potentials occurring in
atomic and molecular physics. However, the interpretation of
the stable manifolds as trajectories going out with velocity zero
only holds for systems with closed degrees of freedom which
swallow all energy of the system. In this respect, systems with
only open degrees of freedom are essentially different. Our
model is thus prototypical for systems with at least one closed
degree of freedom.

The rather stable layering of the chaotic set has the
following interesting consequence. The pattern of homoclinic
or heteroclinic tangles is the one created in two-dimensional
planes transverse to the NHIM and thereby coincides with
the ones found in Poincaré maps of 2-dof systems. In this
sense the chaos of n-dof systems is just a pile of 2-dof
chaos and no basically new elements enter the picture. Of
course, there exist systems with topological chaos but no
NHIM. A well-known 3-dof example is the tetrahedron system
(with three open degrees of freedom) [14]. In this system
the chaotic set in the Poincaré map is completely hyperbolic,
that is, its basic elements are hyperbolic fixed points with
two-dimensional stable and unstable manifolds. Accordingly
the homoclinic or heteroclinic intersection set is a fractal
powder of very low dimension. This low dimension implies
that there are typically no scattering singularities appearing
along one-dimensional curves in the configurational space. In
other words, the chaotic set has little effects on the scattering
functions; see the discussion in Ref. [14]. If a n-dof (n > 2)
scattering system has NHIMs and, in addition, fully hyperbolic
elements in its chaotic set (like in the tetrahedron scattering),
then the effects of the fully hyperbolic part will be hidden
by the effects of the NHIMs. Then the final conclusion is that
typical n-dof (n > 2) chaotic scattering shows either structures
developing out of a stack of chaotic structures of 2-dof type or
hardly any chaotic effects.
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