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Driving a conceptual model climate by different processes: Snapshot attractors and extreme events
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In a low-order chaotic model of global atmospheric circulation the effects of driving, i.e., time-dependent
(periodic, chaotic, and noisy) forcing, are investigated, with particular interest in extremal behavior. An approach
based on snapshot attractors formed by a trajectory ensemble is applied to represent the time-dependent likelihood
of extreme events in terms of a physical observable. A single trajectory-based framework, on the other hand, is
used to determine the maximal value and the kurtosis of the distribution of the same observable. We find the most
significant effect of the driving on the magnitude, relative frequency, and variability of extreme events when its
characteristic time scale becomes comparable to that of the model climate. Extreme value statistics is pursued by
the method of block maxima, and found to follow Weibull distributions. Deterministic drivings result in shape
parameters larger in modulus than stochastic drivings, but otherwise strongly dependent on the particular type of
driving. The maximal effects of deterministic drivings are found to be more pronounced, both in magnitude and
variability of the extremes, than white noise, and the latter has a stronger effect than red noise.
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I. INTRODUCTION

The concept of climate has attracted the interest of great
scientists [1]. It is commonly defined as the collection of
some long-time average temperature, humidity, precipitation,
etc. (see the Glossary of the 2007 Synthesis Report of the
IPCC [2]). Alternatively, the average (or other statistical
measures in a wider sense) can be taken over an ensemble of
possible states stemming from unknown initial conditions in
the distant past of a dissipative system [3–7]. Thus, climate in
the latter theoretical sense is independent of initial conditions
and governed only by forcing. In dynamical systems terms the
concept of pullback [8] or snapshot attractor [9], arising in the
study of driven nonautonomous systems, coincides precisely
with the ensemble that is referred to in the above alternative
definition of climate. A snapshot attractor is an object which is
approximated by trajectories initialized in the infinitely distant
past, while all of them experience the same perturbations.
With chaotic dynamics the snapshot attractor is a fractal,
whose shape changes over time, but its fractal dimension is
constant [9,10]. A rigorous mathematical definition of the
pullback attractor of a nonautonomous dynamical system can
be given in terms of its two-time evolution operator [11,12].

The method of stochastic parametrization [3,13], in order
to account for physically unmodeled subgrid scale processes
in complex climate models in an efficient and manageable
way, naturally leads to the studying of driven dynamics.
Furthermore, a planetary climate dominated by solar radiation
or climate subsystems, embedded in a network of subsystems,
can be seen as genuinely driven. It has been proposed [12,14]
that snapshot attractors, being the building blocks of the fuzzy
chaotic attractors arising in the traditional approach [15], can
provide additional geometric information about the driven dy-
namics, potentially much more rich than the undriven one [5].

In earlier papers [5,16] we extended the white noise-driven
snapshot attractor approach of climate-related problems to
chaotic and periodic drivings. With a chaotic driving [16] of

variable time scale we found typically an enhancement of the
magnitude of extremes, the strongest effect occurring for the
time scale comparable to that of the undriven system.

Here we expand on our study of the effects of the variable
time scale of drivings. Beside deterministic chaotic drivings,
for a comparison, we consider red noise as a stochastic process,
and, for reference, we also consider the highly regular periodic
signal and the completely irregular, uncorrelated white noise.
For a listing and classification of processes to be used as
driving, see Fig. 1.

To demonstrate the effects of such drivings, a conceptual
climate model described by three ordinary differential equa-
tions is analyzed: Lorenz’s (L84) model of global atmospheric
circulation [17]. Such simple models play an important role in
climate research [18], as they expedite efficient testing of the-
oretical ideas, and facilitate simple visualization of the results.

Both within the snapshot attractor- and the single trajectory-
based frameworks our analysis shows that the magnitude,
relative frequency, and variability of extremes is maximally
enhanced when the time scale of driving becomes compara-
ble with that of the undriven climate system—indicating a
resonancelike effect. With more regular drivings, exhibiting a
higher degree of periodicity, the effects are more enhanced.

Different choices of the type of the driving process will
be explored also in terms of a more comprehensive extreme
value statistics. Extreme value statistics in dynamical systems
have been concerned exclusively with autonomous undriven
systems so far (see, e.g., Refs. [19–23]), and here we apply
the standard method of block maxima to driven dynamical
systems. For all types of drivings Weibull distributions are
found, with shape parameters larger in modulus for determin-
istic as opposed to stochastic drivings, but otherwise strongly
dependent on the particular type of driving.

In the following section the L84 model is described, along
with the various processes that are used as driving. In Sec. III
the concept of snapshot attractors is introduced in more
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FIG. 1. List of processes to be used to drive a conceptual climate
model (L84): (P) Periodic signal, (R) first component of the Rössler
equations, (L) first component of the classical Lorenz equations, (C)
red (colored) noise, (W) white noise. (See Sec. II.) Some properties
of the processes are indicated (dense hatches for affirmative, blank
for the opposite). The loose hatches indicate partial validity of the
property in question.

detail, examples are given, and measures of certain regions
of the snapshot attractor are associated with extreme events.
Section IV provides a systematic numerical comparative study
by varying the time scale of different drivings, demonstrating
possible enhancement of magnitude and variability of ex-
tremes. An interpretation of these findings is given based on the
periodically driven case. Extreme value statistics is pursued in
Sec. V, whereby the shape parameter of the prevailing extreme
value distribution is determined using the method of block
maxima. In Sec. VI we draw conclusions on the effects of
driving on various properties.

II. MODEL AND DRIVINGS

Lorenz’s model of global atmospheric circulation (L84)
reads as follows [17,18]:

ẋ = −y2 − z2 − ax + aF,

ẏ = xy − bxz − y + 1, (1)

ż = xz + bxy − z.

These equations express the fact that within the atmospheric
dynamics, which is fundamentally determined by solar forc-
ing, wind energy might drive a heat transport towards the pole,
facilitated by cyclones that are given rise by a global instability,
called the baroclinic instability. The thermal imbalance due
to solar forcing, related to averaged wind speeds of the
Westerlies, is represented by variable x. Two modes of the
cyclonic oscillations are represented by their amplitudes, y

and z. The total cyclonic activity can be described by the
composed variable

r =
√

y2 + z2. (2)

The total energy of the model atmosphere E = (x2 + y2 +
z2)/2 is varying but bounded.

For the parameter setting we take the common choice:
a = 1/4, b = 4. Parameter a is the ratio of the damping
times of the Westerlies and the cyclonic eddies, while b

is the ratio of relaxation times of the displacement and
amplification of eddies by the Westerlies. The equations appear
in a dimensionless form with the time unit corresponding to
about 5 days.
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FIG. 2. Bifurcation diagram y vs F , using several long trajecto-
ries sectioned by a Poincaré surface (see main text). All coexisting
attractors are represented. A double arrow indicates the approximate
range of drivings, corresponding to coupling strengths (A) given in
the caption of Fig. 4.

The dynamics of L84 is determined by the strength F of the
solar irradiation. For, e.g., F ≡ 6 or F ≡ 8 a regular summer
or a chaotic winter is found; see the bifurcation diagram in
Fig. 2. The dynamics can be conveniently visualized by a
two-dimensional (2D) Poincaré section (PS) of the attractor.
The sectioning surface z = 0 with ż > 0 is a suitable choice for
this. Figure 4(f) shows the PS of the chaotic winter attractor.
The characteristic time of the L84 dynamics for F ≡ 8 turns
out to be about 20 days. The dimensionless L84 time is thus
τL84 = 4.

Driving of L84 is introduced through a time-dependent term
in the solar forcing, which fluctuates around a mean value F0:

F = F (t) = F0 + �F (t). (3)

The fluctuations �F (t) may be interpreted as the variation
of the albedo via various mechanisms. Examples may in-
clude cloud formation due to varying weather conditions of
convectional origin, or orbital eccentricity. The dimensionless
characteristic time τ of �F (t), given in multiples of τL84, are
in these cases τ � 1 and τ � 1, respectively. More generally,
F (t) can also be considered as the strength of the green house
effect.

In this paper we use F0 = 8 [corresponding to the Lorenzian
winter scenario with �F (t) = 0]. To characterize the driving,
defined as

�F (t) = A[x̃(t) − 〈x̃(t)〉],
five different processes, x̃(t), will be considered. 〈x̃(t)〉
represent the long-time average of the process. With coupling
strength A the magnitude of the driving can be controlled.

(P) Periodic driving:

x̃ = sin(2πt/τP ). (4)

This regular driving serves as a reference. Its frequency
spectrum in Fig. 3(a) features a characteristic peak at f =
1/τP . That is, the characteristic time (compared to that of
L84) is τ = τP /τL84 = τP /4, which is to be varied for our
analysis.
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FIG. 3. Frequency spectra |X| = |X(f )| [absolute value of the
Fourier transform as a function of the (nondimensional) frequencyf ]
of the various processes x̃(t) that are used to drive L84 (see code
names in Fig. 1 or the main text): (a) P, (b) R, (c) L, (d) C, (e) W, and
(f) that of x of the undriven L84. They are shown in log-log diagrams
to indicate possible power law behavior. In the case of periodic driving
a Dirac delta is represented by a vertical line, and in the case of white
noise a horizontal line indicates the uniform spectrum; in all other
cases the numerically obtained frequency spectrum is shown. Model
parameters to generate the driving signals are as stated in the main
text, and the time scale parameters are τP = τR = τL = τC = 1. The
probability density functions of the driving signals are displayed in
insets (without axis annotations).

(R) Rössler driving, i.e., the first component of the (dimen-
sionless) Rössler equations:

˙̃x = − 1

τR

(ỹ + z̃), ˙̃y = 1

τR

(x̃ + aỹ),

(5)
˙̃z = 1

τR

[b + z̃(x̃ − c)].

In the above equations we introduced parameter τR in order to
control the time scale of the driving signal. With the common
choice a = 0.2, b = 0.2, c = 5.7, the solution is chaotic. This
way we realize randomlike driving, which is continuous in
time. It can be viewed as a chaotically modulated periodic
signal. For τR = 1, its frequency spectrum [Fig. 3(b)] has a
continuous background, governed by a power law of a large
exponent for large frequencies. The crossover to this power
law is commonly considered as the intrinsic time scale. In
our case it is about f ≈ 1/5. Over the continuous background
of the frequency spectrum discrete peaks can be observed.
The highest peak is associated with the principal periodic
component, which is well visible in a time series (not shown).
The reciprocal of the mean zero crossing time of the time
series, 1/5.86, matches the principal peak frequency of the

frequency spectrum very accurately, and hardly differs from
the time scale extracted from the crossover in the spectrum. We
choose therefore f = 1/5.86 as the characteristic frequency
that leads to τ = 5.85τR/4. The mean of this driving signal
is 〈x̃(t)〉 ≈ 0.175. In numerical simulations the equations of
L84 and R are integrated in parallel using a fourth-order
nonadaptive (fixed time step h) Runge-Kutta integrator. The
fixed time step in any one integration is h = 0.01 or less.

(L) Lorenz driving, i.e., the first component of the (dimen-
sionless) classical Lorenz equations:

˙̃x = 1

τL

σ (ỹ − x̃), ˙̃y = 1

τL

(ρx̃ − ỹ − x̃z̃),
(6)

˙̃z = 1

τL

(−βz̃ + x̃ỹ),

with the common choice σ = 10, ρ = 28, β = 8/3 for a
chaotic solution. The frequency spectrum in Fig. 3(c) does not
feature any obvious peak, only the continuous background.
An initial slightly sloping plateau switches into a much more
steep slope, which is also described by a power law but one
of a much higher exponent (about 13). The location of the
crossover appears to be the only feature based on which an
intrinsic time scale can be defined. This occurs at frequency
f ≈ 1.4, which leads to τ = 0.7τL/4.

(C) Red (colored) noise, generated by the Ornstein-
Uhlenbeck (OU) process, which is governed by the follow-
ing (dimensionless) stochastic differential equation of the
Langevin form:

˙̃x = − 1

τC

x̃ +
√

2

τC

ξ, (7)

where ξ represents uncorrelated white noise,

〈ξ (t1)ξ (t2)〉 = δ(t1 − t2) (8)

(δ denoting the Dirac delta) with a Gaussian distribution of zero
mean and unit variance. The OU process realizes a Gaussian
probability density distribution [see the inset in Fig. 3(d)]. Due
to the bias, the first term on the right-hand side of Eq. (7), the
variance of x̃ remains bounded.

Considering a well-known formula for the variance of the
OU process [24], the strength of the white noise term ξ is
adjusted such that the variance of the process remains unity
when varying τC . Notice that rescaling time is not achieved
simply by multiplying the right-hand side of the equation,
contrary to drivings R and L.

The frequency spectrum of the OU process in Fig. 3(d)
features a cutoff frequency (2πτC)−1, by which the length of
the plateau can be approximated. We define the characteristic
time scale of the process by the reciprocal of the plateau length,
such as τ = 2πτC/4. It is noted that the case of white noise of
unit variance is not obtained in the limit τ → 0.

For numerical solutions of the coupled L84 and OU
equations an autonomous explicit order 1.5 strong scheme [25]
has been used, which is detailed in the Appendix.

(W) Uncorrelated white noise:

x̃ = ξ, (9)

where ξ has a Gaussian distribution of zero mean and unit
variance, is also considered for reference. Due to a lack of
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FIG. 4. Snapshot attractors on the Poincaré surface z = 0,ż > 0,
of L84 driven by (a) P, a periodic signal (A = 0.2797), (b) R, the first
component of the Rössler equations (A = 0.0383), (c) L, the first
component of the classical Lorenz equation (A = 0.025), (d) C, red
(colored) noise, i.e., OU driving (A = 0.1978), and (e) W, Gaussian
white noise (A = 0.1978). (f) Chaotic attractor of the undriven L84
(A = 0, F0 = 8). In all cases τ = 1 is set. The snapshots are taken
at the same time t = 30, and the instantaneous island measure (10)
is also indicated. The time t is measured from after 100 time units
when the N = 106 trajectories, initially randomly distributed in x,y ∈
[0,2], z = 0, already reached the snapshot attractor.

correlation there is no typical time scale associated with white
noise, and hence it cannot be varied in this case. For numerical
solutions, the same integrator scheme as described in the
Appendix is applied.

In all cases the coupling strength A is set so that �F = Ax̃

have the same variance, observing that the variance of x̃

for P, R, L, C, W are different. In case of the Lorenz
driving L, A = 0.025 is set, which determines the settings
of A (different values) for all the other drivings. (For the
particular values of A refer to the figure caption of Fig. 4.)
This setting implies relatively strong driving signals, which
sweep ranges approximately as indicated by the double arrow
in the bifurcation diagram of Fig. 2.

III. SNAPSHOT ATTRACTORS

In the driven L84 system, when using a single trajectory, the
attractor on the Poincaré surface is blurred. With an ensemble
of chaotic trajectories, however, a clear 2D fractal snapshot
attractor is obtained at any time instant. The geometry of the
snapshot attractor changes over time [10].

Snapshot attractors can be numerically obtained using a
cloud of initial conditions, all chosen from the same basin of
attraction. After some time, the trajectories in the (x,y,z) space
attain the instantaneous three-dimensional (3D) snapshot

attractor. When determining a 2D snapshot attractor taken on
an appropriate Poincaré surface, one has to take into account
that the ensemble of trajectories is necessarily of finite size in
numerical studies. Thus, at any given time trajectory endpoints
fall on the sectioning surface with zero probability. To cater for
this, we proceed as follows. The unique time instants when the
trajectories, each and every one, cross the surface are recorded,
and those trajectories together are retained to form a PS whose
crossing time fall in a particular time interval of length δt 	 1.
We used δt = 0.02. This window of time can subsequently be
shifted in time to follow the time evolution of the PS of the
snapshot attractor.

Examples of snapshot attractors are shown in Figs. 4(a)–
4(e), one with each of the drivings described above. Inter-
section points with ż > 0 are considered only. The snapshot
attractor consists of a “mainland,” slightly displaced and
distorted over time, and occasionally an “island” which can
grow large, merge into the mainland, or disappear for finite
periods of time. Thus, the island is identified as a feature in
which the deviation of the driven system from the undriven one
is clearly manifested, since in the latter a medium size island
is permanently present (see the scattered points around y = 2
in Fig. 2). The islands represent large y values. In physical
terms they correspond to extreme or strong cyclonic activity.
Therefore the extremal behavior of this type of cyclonic
activity is of particular interest.

The island measure μi is considered to be the proportion of
the number of points that make up the island. In order to deal
with cases when the island merges into the mainland, we apply
as a practical definition the proportion of points that satisfy the
condition y > 1.9:

μi = μ(y > 1.9|z = 0). (10)

As an example, the time series of the island measure cor-
responding to Fig. 4(c) is shown in Fig. 5(a). The upper
horizontal line indicates the maximal island size of all those
undriven systems for which the constant F is from the range
of the double arrow of Fig. 2. (Regular regimes where no
islands exist are represented by μi = 0.) It is perhaps the most
remarkable feature of the diagram that the maximal value
μi = 0.044 (for about F ≡ 8.33) is exceeded regularly and
significantly [26]. The lower horizontal line indicates the island
size for F ≡ 8.

It has been demonstrated [16] by numerically obtaining
the probability density distributions over snapshot attractors
that the excessive island measures are due not only to the
grown extent of the island, but also to occasionally much
increased probabilities. This intermittent behavior becomes
more frequent and characteristic, or, indeed, the accumulation
of points, due to the reduction or sign change of the local
maximal Lyapunov exponent [27], becomes the rule rather
than the exception as a change of parameter (e.g., reducing F0

in our case) shifts the driven system towards regular dynamics.
A much more characteristic intermittent behavior has been
found in a low-order El Niño–Southern Oscillation (ENSO)
model [14].

Another measure μc to consider extreme cyclonic activity
is the measure

μc = μ(r > 1.8) (11)
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FIG. 5. Time series of (a) the island measure (10) of the 2D- and
(b) the cyclonic activity measure (11) of the 3D snapshot attractors
using the Lorenz driving (τ = 1, F0 = 8, A = 0.025). An ensemble of
106 trajectories is used. Horizontal lines indicate the reference values
in terms of the undriven system: (a) μi = 0.01 at F ≡ 8, maximal
μi = 0.044 at F ≡ 8.33, and (b) μc = 0.126 at F ≡ 8.

of that part of the 3D snapshot attractor that satisfies the
condition r > 1.8. Since r is defined by (2), this condition
allows for large values in either y or z (or both). The
time-dependent μc(t) can be interpreted as a measure of the
likelihood or probability of strong cyclonic activities at any
time. It is computationally much more efficient to determine
μc than μi . In fact, there is a correlation between the two, as
testified by Fig. 5. The maximal value of the cross-correlation
function is about 0.6.

It is worth emphasizing that for the range of parameters
investigated the snapshot attractor is never found to be regular
in spite of the fact that the F values cover several periodic
windows of the undriven problem. Regular behavior is thus
suppressed by driving. This has been explained [5] in terms
of transiently chaotic dynamics in the periodic windows of
the undriven system, namely, that the relatively fast driving
does not allow the trajectories to settle on, or even to closely
approach, the regular attractor before they are driven back
to chaotic parameter regimes. The consistent geometry of the
snapshot attractors is due to the fact that in the periodic window
the nonattracting chaotic sets, or their unstable manifolds,
resemble the attractors of neighboring chaotic regimes.

IV. ENHANCEMENT OF EXTREMES

In the following the different types of driving described in
Sec. II will be analyzed by varying their time scales. Their
effect on three different scalar indicators of extremal behavior
will be considered. The first one is described in the snapshot
attractor framework, and the second and third ones in a single
trajectory framework. At the end of the section we return to the
snapshot attractor framework and consider the case of periodic
driving, which will help in interpreting the main finding: a
resonancelike enhancement of the magnitude and variability
of extremes.
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FIG. 6. Dependence of σ [μc] on τ−1 for various drivings: (a) P,
(b) R, (c) L, and (d) C. For reference, a horizontal line indicates
σ [μc] = 0.036 for the Gaussian white noise-driven case. Note the
different range for τ−1 in case of the Lorenz driving (L), and the
different range for σ [μc] in case of L and C.

A. Measure of strong cyclonic activity

The first indicator to be considered is the measure μc

of strong cyclonic activity, defined in Sec. III. The τ -
dependence of the variance, or standard deviation σ [μc] =
〈(μc − 〈μc〉)2〉1/2, is shown in Fig. 6. Note that τ−1 is measured
on the horizontal axis, in a fashion similar to frequency spectra
(as in Fig. 3). To obtain a time series for μc, N = 105 randomly
initialized trajectories were followed for 300 time units, all
subject to the same perturbation, after an initial simulation of
300 time units. We make the following observations:

(i) For all types of driving σ [μc] is enhanced relative to the
undriven case of zero σ [μc]. (ii) The dependence of σ [μc] on
τ−1 is nonmonotonic and features a maximum. (iii) The more
regular the driving, exhibiting a higher degree of periodicity,
the more characteristic the maximum. (iv) The maxima occur
when the characteristic time scale of the drivings is on the order
of that of L84, i.e., when τ is of order 1. (v) For very short
time scales the undriven case is approached, i.e., σ [μc] → 0 as
τ → 0. (vi) The more irregular the driving, this convergence
becomes the slower. (vii) The enhancement with white noise
driving can be exceeded around the local maxima.

Points (i)–(iv) describe an effect which may be interpreted
as a kind of resonance. It is convenient to shift all resonances
to τ ≈ 1. To this end we rescale the dimensionless time with
the Lorenz driving and choose a τ ′ as τ ′ = 2.33τ = 1.63τL/4.

Point (v) is expected on the basis of stochastic singular
perturbation theory [28–30]. The technique of stochastic mode
reduction is based on this theory, with the following premise.
The strength σξ of the equivalent white noise to some relatively
fast time-continuous driving signal x̃(t) is proportional to the
total integral of the autocorrelation function of the latter. This
reads formally as follows:

σξ ∝
∫ ∞

0

[
lim

T →∞

∫ T

0
x̃(s)x̃(t + s)ds

]
dt. (12)

τ compares well with the time scale of the decay of the
autocorrelation function (in the square brackets above), and
so the area below it, with which σξ is proportional, vanishes
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FIG. 7. Kurtosis of distributions of r vs τ−1 for various drivings:
(a) P, (b) R, (c) L, and (d) C. For reference, two horizontal lines
indicate figures for the undriven case (lower) and for the Gaussian
white noise-driven case (upper).

as τ → 0. Therefore, despite that numerical results in Fig. 6
have been produced over a rather limited range of τ , we expect
that the observed vanishing tendencies continue for τ−1 or
τ ′−1 > 4.

B. Kurtosis

Next we consider the total cyclonic activity r (2) in a single
trajectory framework. The kurtosis of the probability density
distribution of variable r , 〈kurt[r]〉, is shown in Fig. 7. Time
series of r of length 5000 time units are considered for this.
A number of N = 100 different realizations of the drivings
have been used to obtain the average over the realizations:
〈kurt[r]〉 ≡ 〈kurt[rj ]〉j , j = 1, . . . ,N . The standard deviation
of the estimator is obtained as σj [kurt[rj ]]/

√
N . With N =

100 this yields such small figures that error bars are comparable
in size with the marker size, and so they are not featured
in the diagrams. For reference, baselines of kurt[r] of the
undriven case (lower) and the white noise-driven case (upper)
are included. Observations (i)–(vii) as detailed above apply
to the kurtosis, too. This implies that the maxima of 〈kurt[r]〉
coincide with those of σ [μc].

C. Maximal extreme value

A simple indicator of extremes is the maximal extreme
value that a variable can take. This maximum, rmax, can
be approximated from below by the maximal element of a
very long time-series r(t), denoted by max[r]. Equivalently,
in a numerical procedure, using an ensemble of trajectories
rj (t), j = 1, . . . ,N , rmax can be approximated by the maximal
element of the all-time maximal element of the ensemble of
much shorter time series: maxt [maxj [rj (t)]].

We found that more robust indicators of tendencies with
respect to the time scale of driving τ are given by the mean
〈maxj [rj ]〉t and standard deviation σt [maxj [rj ]], which are
shown in Fig. 8 by solid circles (•) and error bars, respectively.
For these results we used N = 104 randomly initialized and
independently driven trajectories, and followed them over 300
time units, after an initial run of 300 time units.
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FIG. 8. Dependence of a robust estimator of the maximal extreme
value rmax on τ−1 for various drivings: (a) P, (b) R, (c) L, and (d)
C. Solid circles (•) and corresponding error bars indicate the mean
〈maxj [rj ]〉t and standard deviation σt [maxj [rj ]], respectively. For
reference, the lowest horizontal black line indicates max[r] = 2.30
for the undriven case. Another reference is provided in terms of the
Gaussian white noise-driven case: the upper horizontal black line (at
r = 2.55) corresponding to the solid circles, and the pair of horizontal
gray lines corresponding to the error bars.

The same observations (i)–(vii) made above in the case of
σ [μc] apply to 〈maxj [rj ]〉t , too. This implies that the maxima
of 〈maxj [rj ]〉t coincide with those of 〈kurt[r]〉 and σ [μc]. That
this is not a mere coincidence is indicated in Sec. IV D.

The enhancement may be interpreted as a resonancelike
effect. It is noted, however, that an enhancement is observed
only in 〈maxj [rj ]〉t , but the variance, or 〈σt [rj ]〉j , has not been
found to vary with τ to a measurable degree. It is also noted
that 〈maxj [rj ]〉t is enhanced maximally by just over 10%.

The phenomenon of resonance is traditionally associated
with linear systems driven by periodic signals. Here we find
that an enhancement of extremes typically occurs in nonlinear
systems driven by aperiodic signals or noise. This effect is the
strongest when an average period of the driving exists, and it is
comparable with the characteristic time scale of the undriven
system. It is not surprising that the amount of enhancement of,
e.g., the maximal value is found to be smaller in such cases
than in the classical setting.

D. Island measure with periodic driving

When the driving is periodic, μc(t) or μi(t) are also
periodic, despite the chaotic individual constituent trajectories
in the ensemble from which the measures are estimated. This
is due to the fact that a stroboscopic Poincaré map exists in
this case, the attractor of which is equivalent with the 3D
snapshot attractor, as discussed in Ref. [5]. Therefore, e.g.,
max[μi] can be estimated as soon as the ensemble converges
to the snapshot attractor—whereas with an irregular driving
the estimation of max[μi] with the same accuracy might be
possible only from a much longer time series μi(t), which is
proportionally more demanding to generate numerically. This
is why μi is not considered in Sec. IV A. In the periodic case,
however, it is affordable and also insightful to consider.
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FIG. 9. (Color online) Dependence of max[μi] and 〈maxj [rj ]〉t

on τ−1 for L84 driven periodically (F0 = 8, A = 0.2797).

In Fig. 9 max[μi] is shown, along with 〈maxj [rj ]〉t ,
depending on τ−1. We observe a sharp peak of max[μi] just
about the peak of 〈maxj [rj ]〉t . At this time scale of the driving
μi ≈ 1/2, i.e., the island is comparable in weight with the
mainland. In a detailed numerical study, resolving τ very
finely, for several distinct values around τ = 1, some attracting
period-3 and period-8 cycles have been found (not shown).
That is, by some periodic driving, a chaotic trajectory of L84
can be turned into a periodic cycle—a phenomenon referred
to as resonant chaos control [31]. It has been demonstrated in
Ref. [31] that an unstable periodic orbit (UPO) of the chaotic
attractor can be stabilized by adding harmonic driving, whose
frequency is adjusted to that of the UPO, and whose amplitude
is also adjusted appropriately. The UPOs that can be most
readily stabilized in this simple way are those in association
with neighboring periodic windows of a bifurcation diagram.
As in our case the amplitude was not adjusted, it is more
likely that the resulting periodic cycles can be approximated
by periodic cycles from neighboring periodic windows [32].

Thus, the enhanced magnitude of extremes and variance
σ [μc] can be explained in a way that at relative frequencies
closer to unity (τ ≈ 1) the periodic perturbation retains more
of its stabilizing power. Time to time conditions are favorable
to regularize parts of the snapshot attractor (by locally
decreasing the instability, i.e., the maximal Lyapunov exponent
of trajectories), which manifests itself in the accumulation,
i.e., synchronization of trajectories. This mechanism works
in a similar manner in the case of irregular drivings, but
suitable conditions for synchronization occur less often, which
is reflected in, e.g., a more modest enhancement of σ [μc] for
L as opposed to P in Fig. 8.

In the light of (temporarily) stabilized and regularized
trajectories the effect of enhanced kurtosis can also be
explained. The distribution of the highly regular periodic signal
is peaked at the extremes or turning points [see the inset of
Fig. 3(a)], because turning takes more time than crossing
the mean value, and turning takes place always at the same
turning point. Such a distribution has a large kurtosis, which
measures the relative frequency of large and extreme values of
the variable.

V. EXTREME VALUE STATISTICS

Extreme value statistics (EVS) characterizes the tail of the
probability density distribution of a variable. This is important
if expected return times of dangerous extremes are to be
determined. According to a common approach, the maximal
elements of large blocks of n consecutive data points of a
discrete time series are considered. The time evolution of r

in our case is continuous, and so discrete data points will be
defined by the local maxima or turning points of r(t) [33].
The turning points follow each other irregularly in time,
nevertheless, for large n the statistics (i.e., parameters of the
fitted distribution) may converge. As an example, probability
density distributions of maximal elements in blocks of length
n = 1000 are displayed in Fig. 10.

According to classical extreme value theory, probability
distributions of the block maxima of some random variable x,
which are well behaved in the asymptotic limit n → ∞, can be
described by a three-parameter (μ,σ,ξ ) family of generalized
extreme value (GEV) distributions:

G(x; μ,σ,ξ ) = exp

{
−

[
1 + ξ

(
x − μ

σ

)]−1/ξ}
, (13)

which combines the Gumbel (ξ → 0), Fréchet (ξ > 0), and
Weibull (ξ < 0) families [34]. In the case of one-dimensional
chaotic systems, Nicolis and co-workers [19] claim that the
distribution of block maxima has discontinuities for any n,
and related features might also show up in multidimensional
systems [20]. Fereitas et al. [23] showed that it is nevertheless
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FIG. 10. Distribution (histogram) P = P (r) of maximal ele-
ments of r in blocks of n = 1000 consecutive maxima of r(t). For
each driving, (a) P, (b) R, (c) L, and (d) C, three values of τ (τ ′ for
L) are used, such as τ−1 = 0.2 (thick gray line), 1 (black), 4 (thin
gray), that is, the smallest and largest, and an approximately resonant
sample value of τ from Fig. 8. For each histogram a number of
300 bins are used between [2, 3], except for the case of the undriven
L84, when the histogram is concentrated over a much shorter range.
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FIG. 11. Estimates of the shape parameter ξ of the GEV distri-
bution, corresponding with Fig. 10: (a) P, (b) R, (c) L, and (d) C. The
error bars indicate the 95% confidence interval of estimation.

meaningful to fit a smooth GEV distribution (13) even in this
case, because the shape parameter (ξ ) of the best fitting GEV
distributions may converge to a well defined limit value as
n → ∞. We adopt this approach in the following (for a
discussion of this issue see also Ref. [35]).

Given a fixed amount of data, a trade-off situation presents
itself between the accuracy and bias of estimation, these
being functions of the used block size n. For this reason
it is common to do the estimation procedure iteratively by
gradually increasing the block size [36]. The original time
series has to be long enough that an approximation of the
limit n → ∞ be possible with relatively small errors. For
our analysis we generated a number of about 107 maxima,
with which an iterative estimation of the shape parameter
(increasing the block size up to n = 5000) resulted in the
diagrams shown in Fig. 11. These figures are all consistent
with Weibull distributions.

It is interesting to note that the shape parameter remains
negative also for the white noise driving. In principle, �F (t)
in this case can take on arbitrary large values (and should
be consistent with a Gumbel-type extreme value distribution).
The probability of such events is, however, so small that they
typically do not occur during the time periods of observations
used here. This observation justifies the use of Gaussian white
noise for mimicking a random driving of finite amplitude in
Eq. (9) a posteriori. The same remark applies also to the red
noise driving, which results in similarly small values of |ξ |,
indicating extended tails. As a rule, deterministic drivings tend
to result in somewhat larger values of |ξ |, corresponding to
more bulky tails.

The undriven case is rather special from the point of view of
the shape parameter. As panel (f) shows, the values are around

ξ = −1, which implies a sharp discontinuous edge of the dis-
tribution. There is no sign of convergence in the region shown.
This is not a surprise since it is known [34] that estimators
of the shape parameters ξ < −1 are generally not obtainable
by maximum likelihood estimation, and estimators of −0.5 <

ξ < −1 have no standard asymptotic properties. If the actual
edge is sharp but continuous, the shape parameter ξ should
be greater than −1. This cannot be verified by the numerical
results. However, there is another way of determining ξ in this
case. The theoretical value of ξ is believed to be obtainable
by the following formula [21]: −1/ξ = D

(1)
0 /2 + D

(2)
0 , where

the Hausdorff dimension of the attractor on some smooth
surface, along the unstable manifold, is D

(1)
0 = 1, and D

(2)
0

denotes that along the stable manifold [37]. We estimated the
fractal dimension D0 on the z = 0 Poincaré surface, applying
a 2D box-counting algorithm on 105 points, to be D0 ≈
1.6, with which D

(2)
0 = D0 − D

(1)
0 ≈ 0.6. This implies that

ξ ≈ −0.9.
It is meaningful to ask whether a similar resonancelike

effect as discussed in Sec. IV [point (iv)] exists also in terms of
ξ . We observe in Fig. 11 that the order of the curves for different
values of τ is different with the different drivings. Thus, no
resonance exists in terms of ξ . Without this, a similar rule to
point (vi) can certainly not hold either, and so, interestingly,
the two chaotic drivings (R and L) differ from each other as
much as either of them differs from the highly regular periodic
driving. It can be said, thus, that the shape parameter depends
strongly on the individual driving signal.

VI. CONCLUSIONS

In this paper we examined the effects of drivings with
variable time scale on the extremal behavior of a model
climate system, Lorenz’s 1984 model of global atmospheric
circulation. Several measures of extremal behavior have been
considered, such as the maximal extreme value, the relative
frequency of extreme events in terms of the kurtosis, and
the shape parameter of the extreme value distribution. Beside
these measures defined in a single trajectory framework, we
also considered the likelihood of extreme events in a snapshot
attractor framework, in particular, in terms the likelihood of
strong cyclonic activities, defined as a measure of the 2D or
3D snapshot attractor.

The main finding of this work is that the above measures
of extremes (except the shape parameter) are typically not
reduced but enhanced upon introducing some driving, and
that their enhancement is maximal when the characteristic
time scale of the driving is on the order of that of the climate
system. This resonance-like effect is interpreted in terms of
the periodically driven case, referring to the technique of
resonant chaos control. The driving can enhance the stability
of trajectories.

Using the various types of driving of equal variance, the
extent of maximal enhancement of the maximal extreme
value have been found to be comparable. This applies also
to the maximal enhancement of the kurtosis. We find it
interesting that the white noise driving is no exception in
this regard, since it is often viewed as a fast driving, and
other fast time-continuous drivings appear to have vanishing
impact.
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The impact of the various drivings on the extreme value
distribution has been also studied. The shape parameter tends
to be smaller in modulus for stochastic drivings. Otherwise,
the shape parameter strongly depends on the individual type of
driving (i.e., shape and variance of distribution, and correlation
properties such as the characteristic time scale). In this regard,
future work should be concerned with the impact on the
predictability of extremes in driven model systems when some
driving, other than the original one, is used.

When comparing the magnitude and variability of extremes
around the resonance frequency, we find that the effect of
deterministic drivings is more pronounced than any of the
stochastic drivings. The largest maxima belong to the exactly
periodic driving, but such a driving is unrealistic in the climatic
context. The most pronounced effect is thus expected to
belong to chaotic drivings with some superimposed periodic
components, such as the Rössler model. It is interesting to
observe that although red noise is generally considered to
better approximate chaos than white noise, the red noise results
remain below the level of white noise results, and the latter are
exceeded by the effects of the deterministic driving around
resonance. A moral from this study could be that the widest
range of extremes are generated by driving via structured
deterministic noise, i.e., by chaotic driving exhibiting a certain
degree of periodicity as well.
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APPENDIX: STOCHASTIC NUMERICAL
INTEGRATOR SCHEME

The implemented autonomous explicit order 1.5 strong
scheme [25] is suitable in the case of diagonal noise (single
independent noise terms appearing in each component). The
system of a number of d coupled stochastic differential
equations is assumed to take a form such as Ẏ = a(Y ) +
bξ , where Y = {Y k}, a = {ak}, b = {bk,l}, ξ = {ξk}, k,l =
1, . . . ,d. When b is a constant diagonal matrix (in our case
only one element is nonzero along the diagonal), the integrator
scheme reads as follows:

Y k
n+1 = Y k

n + bk,k�Wk + 1

2
√

h

d∑
j=1

{ak(Ȳ j
+) − ak(Ȳ j

−)}�Zk

+h

4

d∑
j=1

{
ak(Ȳ j

+) − 2(d − 2)

d
+ ak(Ȳ j

−)

}
, (A1)

where

Ȳ
j
± = Yn + 1

m
ah ± bk

√
h, (A2)

�Wk = ξk
1

√
h, (A3)

�Zk = h3/2/2
(
ξk

1 + ξk
2

/√
3
)
, (A4)

in which ξk
1 ’s and ξk

2 ’s are independent uniformly distributed
random variables of zero mean and unit variance. For satisfac-
tory accuracy of the numerical solution, time step h must be
much smaller than the shortest time scale of the deterministic
dynamics determined by a(Y ).
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[32] A. Hübler and E. Lüscher, Naturwissenschaften 76, 67 (1989).
[33] This also relaxes data storage requirements in numerics.
[34] S. Coles, An Introduction to Statistical Modeling of Extreme

Values (Springer, Berlin, 2001).
[35] M. Ghil, P. Yiou, S. Hallegatte et al., Nonlinear Processes

Geophys. 18, 295 (2011).
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