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Modulated point-vortex pairs on a rotating sphere: Dynamics and chaotic advection
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The dynamics of modulated point-vortex pairs is investigated on a rotating sphere, where modulation is chosen
to reflect the conservation of angular momentum (potential vorticity). For sufficiently close vortices (dipoles)
the trajectories of their center-of-mass are shown to correspond to those of a point particle moving freely on
a rotating sphere. For finite size vortex pairs, a qualitative similarity to the geodesic dynamics is found. The
advection dynamics generated by vortex pairs on a rotating sphere is found to be chaotic. In the short time
dynamics we point out a transition from closed to open chaotic advection, which implies that the transport
properties of the flow might drastically be altered by changing the initial conditions of the pair on the sphere.
Due to spherical topology, for long times, even the open advection patterns are found to gradually cross over
to that corresponding to a homogeneous closed mixing. This pattern extends along a zonal band, whereas short
term closed mixing remains always bounded to the moving pair.
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I. INTRODUCTION

There is a current interest in the dynamics of point vortices
on a sphere. After the appearance of Newton’s book [1] and
more recent reviews [2], the emphasis seems to have been
shifted from nonrotating to rotating spheres [3–6] due to an
increasing focus on environmental and climatic aspects of
hydrodynamical flows.

The precise description of the vortex dynamics on a
rotating sphere requires the proper handling of the interaction
between the vorticity and the background flow. This is
possible only in the form of an integrodifferential or a
partial differential equation (see, e.g., Ref. [7]). In order to
keep the low-dimensional character of the usual point-vortex
dynamics, a widely used approximation [2–5] considers a
solid body rotation with the angular velocity of the sphere
as the background flow and neglects the feedback of the point
vortices of constant circulation on the background flow. In
this setting the conservation of the fluid’s angular momentum
(which appears in the hydrodynamical context via the so-called
potential vorticity) cannot be clearly incorporated.

Another, phenomenological approach in which this draw-
back can be avoided is based on a modulation of the vortex
circulations. Motivated by vortices moving over sloping
bottoms, there is an extended literature [8–12] on how the
conservation of potential vorticity [13] can be introduced into
the point-vortex picture by applying a modulation of the vortex
circulation with the coordinate along the slope. The circulation
�j of any vortex is made linearly location dependent. This
is done in the spirit of the β-plane approximation [11,13],
according to which the local vertical component of the Earth’s
angular velocity (responsible for Coriolis deflection) can be
considered to depend linearly on the latitudinal angle ϕ. With
this approach, one neglects the vorticity production due to the
transport of fluid elements outside the vortices, as discussed in
Ref. [11,13]. The modulated point-vortex model is therefore
valid as long as this vorticity gain is negligible. The price of this
approach is the introduction of a phenomenological quantity,
called the vortex radius. Although such point vortices are not

exact solutions of the hydrodynamical equations, they have
been shown to be useful in understanding several features,
e.g., the existence of modonlike excitations [8]. In a number
of experiments, laboratory-generated vortices on a topographic
β plane (sloping bottom) could be approximated quite well by
the modulated point-vortex model over a considerable time
span [11,14–17].

Here we generalize the principle of modulation by making
the vortex circulation nonlinearly dependent on the latitudinal
angle ϕj of vortex j . The idea is to take into account the
conservation of total vorticity on a sphere rotating with angular
velocity �. This is valid in a shallow layer of fixed height, and
implies [13]

ζ (ϕ,λ) + 2� sin ϕ = C (1)

along a fluid element trajectory, where ζ denotes the vertical
component of the vorticity vector expressed in geographical
coordinates λ (longitude) and ϕ (latitude), and C is a constant.
Under the assumption that a point vortex represents a small
patch of vorticity, of an area a2π , the circulation of vortex j

with coordinates ϕj ,λj is given as �j = a2πζ (ϕj ,λj ). From
Eq. (1) we then obtain

�j (ϕj ) = �j r − 2�a2π (sin ϕj − sin ϕj r), (2)

where

�j r = a2πC − 2�a2π sin ϕj r (3)

is the circulation at a reference latitude ϕj r. We call �j r the
vortex strength (at the reference latitude), and a the vortex
radius, the latter being assumed to be the same for all point
vortices. Equation (2) sets the modulation of circulation on a
rotating sphere.

In this paper we investigate the dynamics and advective
features of special two-vortex systems, vortex pairs. We see
that the possible types of the center-of-mass trajectory of a
vortex pair of small distance correspond to those of a point
particle moving freely on a rotating sphere as described in
Refs. [18–22]. The fact that the motion of vortex pairs and
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that of free particles become related on a rotating sphere can
be qualitatively understood based on the observation that fluid
elements move approximately as free particles in the presence
of weak pressure gradients [23].

Although the vortex pair dynamics is regular (but non-
trivial), the advection in its velocity field is chaotic. This is
only the consequence of the rotation of the sphere (since the
motion of a vortex pair on a nonrotating sphere is always
uniform [1]). In the character of the advection dynamics a
time scale separation can be observed. On the time scale of
a single winding around the sphere there is a clear transition
from closed advection (tracer patterns remain bounded to the
moving pair for all times) to open advection (tracers become
distributed in the wake of the pair) at a critical value of
the initial latitude of the center of mass of the vortex pair.
Due to spherical topology, however, the vortex pair meets its
wake after one winding of the sphere. Therefore, for long
time scales the advection dynamics becomes closed and the
wake homogeneously mixed. This pattern extends along a
zonal band, whereas short-time closed mixing remains always
bounded to the moving pair. An explanation of this crossover

is given in terms of the chaotic saddle, underlying any open
advection problem, as becoming space filling.

In Sec. II we write the equations for modulated point
vortices on a rotating sphere. Numerical results for modulated
vortex pairs are shown in Sec. III. The derivation of the
dipole equations is done in Sec. IV, and we compare this
dynamics with that of the free particle in Sec. V. Section VI
is devoted to the advection dynamics. The chaotic sets and
droplet patterns are investigated both on short and long time
scales. We summarize our findings in Sec. VII. Technically
more involved parts are relegated to Appendices.

II. THE MODEL

We consider point vortices whose location is specified by
angles λ, ϕ in geographical coordinates on the surface of a
sphere of radius R (λ being the longitude, ϕ the latitude). The
equations of motion for N modulated point vortices are the
same as for constant-circulation vortices (see Ref. [1]) just
the circulation of vortex j is given by �j (ϕj ) as expressed in
Eq. (2). We thus have

dϕi

dt
= 1

4πR2

∑
j �=i

�j (ϕj ) cos ϕj sin(λi − λj )

1 − cos γij

, i,j = 1, . . . ,N, (4a)

dλi

dt
= 1

cos ϕi

1

4πR2

∑
j �=i

�j (ϕj )[cos ϕi sin ϕj − sin ϕi cos ϕj cos(λi − λj )]

1 − cos γij

, (4b)

where

cos γij = sin ϕi sin ϕj + cos ϕi cos ϕj cos(λi − λj ), (5)

and 2R2(1 − cos γij ) = r2
ij is the chord distance between

vortices i and j .
A natural choice of the length and time scales, L and T ,

is obtained if the radius is taken as the length unit and 1/�

is chosen to be proportional to the time unit, i.e., L = R and
T = 1/(2�). As a consequence, the dimensionless circulations
are

�′
j (ϕj ) = �′

j r − a′2π (sin ϕj − sin ϕj r),
(6)

a′ = a

R
, �′

j r = �j r

2�R2
.

From here on, we consider two modulated vortices. Their
chord distance D′ is a constant of motion, as shown in
Appendix A. We write the dimensionless equations for
two vortices by explicitly indicating that the dimensionless
distance is a constant D′:

dϕi

dt
= [�′

j r − a′2π (sin ϕj − sin ϕj r)] cos ϕj sin(λi − λj )

2πD′2 ,

(7a)
dλi

dt
= 1

cos ϕi

1

2πD′2 [�′
j r − a′2π (sin ϕj − sin ϕj r)]

×[cos ϕi sin ϕj − sin ϕi cos ϕj cos(λi − λj )]. (7b)

Here i,j = 1,2, i �= j , and the initial conditions are given by
the initial values λi0, ϕi0, i = 1,2. Alternatively, we can use the
initial center-of-mass coordinates λ0, ϕ0 and the initial angle,
denoted by α0, between the line connecting the elements of
the pair and the local meridian (λ = const). The value of α0 is
chosen to be 0 when vortex 1 is closer to the North Pole than
vortex 2 (while both vortices are along the same λ = const
line).

We consider a type I vortex pair to be a two-vortex system
whose elements have oppositely equal vortex strengths at a
common reference latitude:

ϕ1r = ϕ2r ≡ ϕr (8)

and

�′
1r = −�′

2r ≡ �′ > 0. (9)

This definition gives ϕr a well-defined physical meaning, and
ϕr becomes an important parameter of the vortex pair model.
(We note that this definition of a vortex pair permits the
elements of the pair to have the same sign of circulation at
latitudes far enough from the reference latitude for certain
parameter values. However, in most of the cases considered in
this paper, and in particular in the dipole limit, the circulations
have different signs for all times.)

A type II vortex pair is defined by the opposite equivalence
of the initial circulations wherever they start:

�′
1(ϕ1 0) = −�′

2(ϕ2 0) > 0. (10)
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FIG. 1. (Color online) Trajectories of the vortices (solid lines) and of their centers of mass (dotted, dashed, or dot-dashed lines) on the (λ,ϕ)
plane for type I pairs, when varying the initial latitude ϕ0. The arrows indicate the direction of propagation. Parameters: ϕr = 0.65, D′ = 0.01,
a′ = 0.01, �′ = 5 × 10−6π . Initial conditions: α0 = 0, λ0 = 0, and ϕ0 as indicated in the panels. The special latitude to which the trajectory of
(d) converges is ϕ− = 0.65027. The other special latitude (not shown) is ϕ+ = 0.64979.

We identify the reference latitudes of the two vortices with
their initial latitudes,

ϕj r = ϕj0, j = 1,2, (11)

in order to ensure that Eq. (9) holds again. In Sec. IV we point
out that both definitions lead to identical results in the dipole
limit.

III. NUMERICAL RESULTS FOR MODULATED
VORTEX PAIRS

Numerical solutions of Eqs. (7) show that only a few
trajectory forms are possible. The most important ones can
be found by keeping the parameters constant and varying
only one initial condition. A common feature of almost all
trajectories is that they repeat their shape in λ and also in
time. The corresponding temporal period of a trajectory will
be denoted by T0.

First we investigate type I pairs characterized by some
fixed value of ϕr. We vary the initial latitudinal angle ϕ0

and choose α0 = 0 which implies an eastward initial velocity.
The numerically obtained trajectory forms are shown in
Fig. 1. At ϕ0 = ϕr [Fig. 1(a)], a small amplitude meandering
motion, called wobbling, is initiated. Increasing ϕ0 makes
the amplitude also increase [Fig. 1(b)], and a manifestly
wobbling motion occurs. The deviation from the eastward
direction can grow so large that the trajectory turns back,
to the west, intersecting itself [Fig. 1(c)]. This new type of
motion is called tumbling. Increasing ϕ0 further, we find a
critical value ϕc corresponding to a separatrix [Fig. 1(d)] when
the trajectory asymptotically approaches a special latitude,
denoted by ϕ− (≈ϕr), corresponding to uniform westward
propagation. For ϕ0 < ϕc, the motion extends to both sides
of ϕ−, while for ϕ0 > ϕc, the vortices stay on the northern
side of ϕ−, tracing out tumbling loops [Fig. 1(e), dashed
(red) curve]. All the forms described here are repeated in
reverse order, in a mirrored way, when initiated well below
ϕr [Fig. 1(e), dot-dashed curve, and Fig. 1(f), which represents
in a topological sense a mirrored pair to Fig. 1(c)]. There exists
another special latitude ϕ+ (<ϕr on the Northern Hemisphere)

which as an initial condition belongs to a uniform eastward
propagation. Vortex pairs initiated near ϕ+ with an eastward
velocity always exhibit a wobbling motion. Whether the
trajectory initially bends to the south or to the north depends
on whether ϕ0 is on the northern or the southern side of ϕ+.

One might note an interesting analogy between the dy-
namics of a type I pair with any fixed value of ϕr and that
of a single inertial orbit on a rotating Earth worked out by
Paldor and co-workers [18–22]. The center-of-mass orbits of
Fig. 1 are remarkably similar to the ones shown in Fig. 1 of
Ref. [18]. This is surprising since the equations of motion are
rather different.

The trajectory of a point mass is determined by its initial
coordinates and velocity. In order to explore the analogy
described above, we have to express the velocity u of the
center of mass of the vortex pair in terms of the positions
and the circulations of the elements of the pair. Assuming that
the signs of the circulations of the elements are opposite, the
dimensionless velocity modulus of the center of mass at any
instant of time is given by the average of the velocity moduli of
the elements of the pair, after taking into account the spherical
geometry:

|u(t)| = |�′
1(ϕ1(t))| + |�′

2(ϕ1(t))|
4πD′√1 − (D′/2)2

= 2�′ + a′2π (sin ϕ2(t) − sin ϕ1(t))

4πD′√1 − (D′/2)2
. (12)

The direction of the velocity is perpendicular to the line
connecting the vortices.1

Now we turn to the investigation of type II pairs. Numerical
studies indicate that varying the initial latitude ϕ0 for α0 = 0
(similarly as we did for type I pairs, which now implies the
variation of the reference latitudes) leads to the appearance
of only one trajectory shape, an eastward wobbling. The
amplitude of this wobbling increases with increasing ϕ0.

1To facilitate comparison with Ref. [18], we choose |u| � 1, a range
motivated in Ref. [18] by geophysical considerations.
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FIG. 2. Trajectories of the vortices (solid lines) and of their centers of mass (dotted line) on the (λ,ϕ) plane for type II pairs, when varying
the initial angle α0. The arrows indicate the direction of propagation. (c) A separatrix. Parameters: D′ = 0.01, a′ = 0.01, �′ = 5 × 10−6π .
Initial conditions: λ0 = 0, ϕ0 = 0.65, and α0 as indicated in the panels.

The similarity to the geodesic motion is more hidden: the
other trajectory forms can be obtained by varying α0 at
some prescribed value of ϕ0. The numerical results in Fig. 2
indicate that every shape of Fig. 1 appears this way. Note
that the tumbling circles exhibit here a left-curving shape,
which is characteristic for the type I pairs (shown in Fig. 1) in
domains lying on the southern side of the special latitude ϕ−.
Meanwhile, the wobbling trajectory in Fig. 2(a) bends initially
to the right, which is characteristic of the northern side of ϕ+
in Fig. 1.

IV. EQUATIONS OF MOTION FOR A DIPOLE

In order to unfold the essence of the vortex dynamics, in this
section we consider dipoles, very close and very weak vortex
pairs whose velocity is finite. In view of Eq. (12), we are
interested in the limit �′,D′ → 0. As a′ refers to the radius of
a patch of vorticity, for nearby vortices it should also go to zero.
Since both D′ and a′ correspond to distances, we consider them
to be of the same order. Let us write the time-dependent vortex
coordinates as ϕ1,2 = ϕ ± dϕ, and λ1,2 = λ ± dλ, where ϕ and
λ are the center-of-mass coordinates in the dipole limit. For a
dipole, dϕ and dλ are infinitesimally small, and we assume that
dϕ, dλ, D′, a′, and �′ are all of the same order. For a type I pair,
no further quantities should be considered as infinitesimally
small in the dipole limit. For a type II pair, however, the initial
value dϕ0 of the variable dϕ takes a special role since the
reference latitudes should be written as ϕ1,2r = ϕ0 ± dϕ0 with
dϕ0 infinitesimally small.

From the equations of motion (7) of a vortex pair one can
obtain the equations of motion for ϕ, dϕ, λ, and dλ via a
systematic Taylor expansion up to leading order. An important
element is that the circulations of the vortices have to be
calculated up to second order. For a type I pair, the circulations
are

�′
1,2(ϕ1,2) = ±�′ + a′2π sin ϕr − a′2π sin(ϕ ± dϕ)

� ±�′ + a′2π sin ϕr − a′2π sin ϕ. (13)

For a type II pair, they are written as

�′
1,2(ϕ1,2) = ±�′ + a′2π sin(ϕ0 ± dϕ0) − a′2π sin(ϕ ± dϕ)

� ±�′ + a′2π sin ϕ0 − a′2π sin ϕ. (14)

One finds thus full equivalence between the circulations of
type I and type II pairs in the dipole limit with ϕr = ϕ0. Since
the reference latitudes only appear in the circulations of the

elements, we conclude that the problem of a type II vortex
pair in the dipole limit is equivalent to that of a type I dipole
with an initial condition ϕ0 = ϕr. Alternatively, we can say
that the reference latitude of a type I dipole should be chosen
as the initial latitude to obtain a type II dipole. Thus, type II
dipoles can be regarded as special cases of type I dipoles. In
what follows, we only consider type I dipoles and call them
dipoles.

From the equations of motion for ϕ, dϕ, λ, and dλ, a closed
dynamics follows for the center-of-mass coordinates ϕ and λ:

d

dt
(cos ϕλ̇) = ϕ̇ sin ϕ(γ δ(ϕ) + λ̇), (15a)

d

dt
ϕ̇ = −λ̇ cos ϕ sin ϕ(γ δ(ϕ) + λ̇), (15b)

where

γ = a′2

D′2 (16)

and

δ(ϕ) = 1 − sin ϕr

sin ϕ
. (17)

The details of the calculation are found in Appendix B. Using
the zonal and meridional center-of-mass velocity components

u ≡ λ̇ cos ϕ, v ≡ ϕ̇, (18)

the dynamics of the center of mass is written as

u̇ = γ δ(ϕ)v sin ϕ + tan ϕuv,
(19)

v̇ = −γ δ(ϕ)u sin ϕ − tan ϕu2.

Equations (18) and (19) for a dipole depend only on the
parameters ϕr [through the function δ(ϕ)] and γ = a′2/D′2.
�′ does not appear in these equations. �′ and D′ together can
be used to set the initial velocity by means of Eq. (12). In the
dipole limit, the precise formula is (see Appendix B)

|u| = �′

2πD′ . (20)

This shows that the velocity modulus can be calculated from
the reference vortex strengths.

V. COMPARISON OF DIPOLE AND SINGLE-PARTICLE
TRAJECTORIES

In Sec. III, we found a similarity in the shape of the
trajectories of a vortex pair to that of a freely moving point
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FIG. 3. Trajectories of the vortices (solid lines) and of their center of mass (dotted line) on the (λ,ϕ) plane for type I pairs with a large
distance D′. The arrows indicate the direction of propagation. (c) A figure-eight-shaped trajectory separating net eastward and westward
motion. (e) A separatrix. Parameters: ϕr = 0, D′ = 0.1, a′ = 0.1, and �′ = 0.005π . Initial conditions: α0 = 0, λ0 = 0, and ϕ0 as indicated in
the panels.

mass. Now we show that a full equivalence can be obtained
for dipoles at particular values of the parameters ϕr and γ .

The equations of motion for a single particle on a rotating
sphere [18] in a form adimensionalized according to the units
used so far are

u̇ = v sin ϕ + tan ϕuv, v̇ = −u sin ϕ − tan ϕu2, (21)

λ̇ = u

cos ϕ
, ϕ̇ = v, (22)

where ϕ and λ are the geographical coordinates of the point
mass, and u and v represent its zonal and meridional velocity
components, respectively.

For the equivalence of Eqs. (21) and (22) and Eqs. (18) and
(19), we first have to ensure that δ(ϕ) is 1 independent of ϕ.
This can only be the case if ϕr = 0, that is, when the reference
latitude is at the equator.

With this choice, the equations of motion of the dipole
and the single particle are identical, up to the factors of γ .
The equivalence is perfect if the vortex radius and the vortex
distance coincide:

a′ = D′ (23)

in the limit of D′ → 0. This may be regarded as a gener-
alization of Kimura’s statement [24] on the equivalence of
geodesics and vortex dipole trajectories.

When Eq. (23) does not hold, a dipole trajectory does
not correspond to a free particle trajectory on the same
sphere. However, factor γ can be eliminated by an appropriate
rescaling of the dimensionless time, and we can thus say that
dipole motion always corresponds to free particle motion on
a sphere rotating a factor γ faster than that of the dipole. This
also implies that the shape of a dipole trajectory is the same as
for a geodesic on a rotating sphere if the reference latitude is
ϕr = 0.

Numerical investigations of the convergence to the dipole
limit in the ϕr = 0, a′ = D′ case indicate that the difference of
the center-of-mass trajectory of a finite size type I vortex pair
from the trajectory of a dipole (a geodesic) is negligible when
the vortex distance D′ is less than 0.001.

The topology of the geodesic trajectories is found to be
very robust. Figure 3 shows that we find topologically similar
center-of-mass trajectories to those in Fig. 1 of Ref. [18]
obtained for free particles even for vortex distance D′ = 0.1
which is nearly comparable to the radius of the sphere. The
trajectories of Fig. 3 are also topologically similar to those
obtained with an arbitrary value of ϕr (see Fig. 1). The special
feature of the ϕr = 0 case is that every trajectory has an
exactly symmetrical counterpart with respect to the equator,
and that the equator coincides with the special latitudes ϕ±
that correspond to the uniform eastward and westward prop-
agation, respectively. Both properties follow from Eqs. (18)
and (19).

VI. ADVECTION IN THE FIELD OF MODULATED
VORTEX PAIRS

A. Introduction

In a frame co-moving with a modulated vortex pair, the
flow field is time periodic (with period T0) and, therefore,
the advection dynamics is typically chaotic [25–33]. [An
exception is the case of the separatrix motion of Fig. 3(e).] A
feature of interest that remains is the type of advective chaos.

There exist two basically different types of advective
chaos: that taking place in closed containers [25–28] and that
generated by open flows [29,31–33]. In open flows there is
a current flowing through the observation region to which
particles, once escaped downstream, cannot return. The basic
difference between the transport generated by closed and
open flows is that particles remain trapped forever around the
vortices in the first case, whereas they become transported in
the far wake in the second case.

The dynamics of a passive tracer can be considered as
that of a third vortex of zero circulation, �′

3(ϕ3) ≡ 0. We deal
then with a restricted three-vortex problem where the inactive
vortex has no influence on the others. For illustrative purposes
we consider type I vortex pairs with the reference latitude at the
equator, ϕr = 0, and with a relatively large distance D′. The
dimensionless equations of motion for the coordinates (ϕ,λ)
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of the tracer particle are thus

dϕ

dt
= 1

4π

2∑
j=1

(�′ − a′2π sin ϕj ) cos ϕj sin(λ − λj )

1 − cos γj

, (24a)

dλ

dt
= 1

cos ϕ

1

4π

2∑
j=1

(�′ − a′2π sin ϕj )[cos ϕ sin ϕj − sin ϕ cos ϕj cos(λ − λj )]

1 − cos γj

, (24b)

where

cos γj = sin ϕ sin ϕj + cos ϕ cos ϕj cos(λ − λj ) (25)

is related to the chord distance between the tracer and vortex
j . Note that the dynamics (24) of a tracer can be considered
a dynamical system of two variables driven by the vortex pair
dynamics.

On the one hand, we may naively follow the positions of the
tracers on the sphere in the original reference frame. On the
other hand, the closed-open character of the flow can best be
recognized in a reference frame co-moving with the vortex cen-
ters. The origin in the λ coordinate is chosen to be the center of
mass of the vortex pair (i.e., vortices 1 and 2). In this co-moving
reference frame the forcing entering into the two-variable
tracer dynamics turns out to be periodic. This allows us to de-
fine a two-variable stroboscopic map fully describing the tracer
dynamics, taken at integer multiples of T0. Consequently, this
can be chosen to correspond to a configuration in which the
maximum of the vortex center-of-mass trajectory is reached.

From the point of view of the tracer advection, there is
always a region close to any of the vortices which is isolated
from the surroundings. Here the circulational flow of a single
vortex dominates, and the influence of the other can practically
be neglected [34–36]. These regions are called the vortex cores.
Whether advection is chaotic is determined by investigating
regions outside the cores, but being not far away from the
vortices. In between the vortices one always finds such a region
because the vortex cores obviously cannot overlap.

If the tracers of a small droplet placed in between the
vortices at t = 0 remain distributed in a finite range around
the vortices after arbitrarily long times, the flow is closed;
otherwise it is open. From a dynamical-systems point of
view, the basic difference between closed and open advection
dynamics lies in the structure of the chaotic set. For closed
chaotic advection, which is an example of a closed Hamil-
tonian chaos, the chaotic set extends over a two-dimensional
area of the fluid surface. The region filled in asymptotically by
the droplet points is part of the chaotic set, and other such areas
might also exist, reachable from other initial droplet positions.
In contrast, the chaotic invariant set of the open advection
dynamics contains fractal parts of zero area. This chaotic
saddle [31,32,37,38] is formed by an infinity of unstable
particle orbits which are trapped by the vortices forever, both
forward and backward in time. In such cases points of a droplet
come to a close neighborhood of the chaotic saddle, but leave
it sooner or later. Their asymptotic form is determined by the
unstable manifold [31–33,37,38], itself a fractal, of the chaotic
saddle.

B. Short term advection

In order to study the short term advection dynamics, we
initiate a small droplet of tracer particles between the two
vortices and follow its evolution. One option is to plot the
positions of the tracers after some time to visualize the spatial
pattern characterizing the advection process (i.e., the unstable
manifold of the saddle in the open case). As another option,
we define an escape circle of radius ρ centered in the center of
mass of the two vortices and measure the escape time (the time
needed to leave the circle) of each tracer. We choose this radius
ρ to be considerably smaller than the diameter of the sphere
in order to ensure that the tracers detrained along the wake
leave the escape circle before they could reenter again. This
way we investigate the short term detrainment of the tracers
from the neighborhood of the pair. High escape times from the
circle correspond to closed advection and to initial conditions
situated either in the vortex cores or close to the stable manifold
of the chaotic saddle in the case of open advection. Plotting
the escape time as a function of the initial position thus draws
out the stable manifold of the saddle as ridges in the plot.

When numerically investigating the advection generated by
vortex pairs initiated with an eastward velocity, we find that the
open or closed character of the flow can be altered by a mere
change in the initial latitude (as also found on a topographic
β plane in Ref. [12]). Vortex initial conditions closer to the
equator than this critical latitude ϕ0c lead to open advection,
while the others correspond to closed advection.

Numerical results are presented in Figs. 4 and 5. For
wobbling motion [Fig. 4] the tracers are detrained along a
simple tail; an intricate lobe structure is not recognizable
(without magnification). When the vortex trajectories cross
themselves [Fig. 4(b)], large lobes are formed on both sides
of the equator in a symmetrical manner. Finally, when the
trajectory is tumbling and is confined to one of the hemispheres
[Fig. 4(c)], southward traveling lobes are created. In each case
the fractal pattern of the stable manifold of the saddle can be
seen as filamentary structures in the escape time distributions
[Figs. 5(a)–5(c)]. Above a critical initial latitude ϕ0c ≈ 0.40,
the tracers are confined to the neighborhood of the vortices
[Fig. 4(d)], and the advection dynamics becomes closed. It
is worth noting that the critical latitude ϕ0c differs from the
separatrix latitude ϕc defined for the vortex pair dynamics.

C. Time scale separation and crossover to global mixing

It is an interesting consequence of spherical topology that
the open character seen on short time scales crosses over into
a closed advection for asymptotically long times. The reason
for this is that the vortex pair meets its wake after one global
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(a) ϕ0 = 0.25, t = 150 (b) ϕ0 = 0.31, t = 150

(c) ϕ0 = 0.34, t = 150 (d) ϕ0 = 0.41, t = 3300

FIG. 4. Positions of N ≈ 70 000 advected tracers and the two
vortices (denoted by larger dots) at time t . The center-of-mass
trajectory of the vortices [corresponding to motions shown in planar
representation in Figs. 3(b), 3(d), 3(f), and 5(d)] is marked by a thin
solid line. Thick lines indicate the equator and the λ = 0 meridian.
The tracers were initiated at the colored and the light gray grid points
in Fig. 5. Vortex pair parameters: ϕr = 0, D′ = 0.1, a′ = 0.1, and
�′ = 5 × 10−3π . Vortex initial conditions: α0 = 0, λ0 = 0, and ϕ0 as
indicated in the panels.

period T1 corresponding to the time needed for the vortex
pair to go around the sphere. The characteristic periods T0

and T1 are rather different [in the case of Fig. 4(a) they are

FIG. 6. Positions of N ≈ 70 000 advected tracers at t = 1000 ≈
T1. The fact that the center of mass of the vortices has just passed the
λ = 0 meridional indicates that the time taken is slightly more than
one global period T1. The tracers were initiated at the colored and
the light gray grid points in Fig. 5(a). Vortex pair parameters: ϕr = 0,
D′ = 0.1, a′ = 0.1, and �′ = 5 × 10−3π . Vortex initial conditions:
α0 = 0, λ0 = 0, and ϕ0 = 0.25.

T0 = 50.6 and T1 ≈ 988, respectively]; therefore, qualitatively
different advection patterns are expected on the time scales
t � T1 and t 	 T1. As the vortex pair propagates through its
own wake, it mixes the tracers which already went through
a similar process when they were located in the vicinity of
the vortex pair one global period earlier. This is numerically
illustrated in Figs. 6 and 7, in a spherical view and in a planar
representation, respectively. After several such mixing events
we find the tracers to continuously fill a zonal band around the
sphere [see Fig. 7(b)]. This band is somewhat narrower near
the current location of the vortex pair. By time t = 11 050
the band is populated by a nearly space-filling distribution,
indicating the tendency towards a complete mixing. The slight
increase of the density of tracers in some localized region in

(a) ϕ0 = 0.25, T0 = 50.6

-0.04 -0.02  0  0.02  0.04
λ

 0.22
 0.24
 0.26
 0.28

ϕ

3

10

50
(b) ϕ0 = 0.31, T0 = 72.9

-0.04 -0.02  0  0.02  0.04
λ

 0.28
 0.3

 0.32
 0.34

ϕ

3

10

50

(c) ϕ0 = 0.34, T0 = 29.4

-0.04 -0.02  0  0.02  0.04
λ

 0.32
 0.34
 0.36
 0.38

ϕ

3

10

50

 0

 0.2

 0.4

 0.6

-π/8 0

ϕ

λ

(d) ϕ0 = 0.41, T0 = 19.5

FIG. 5. (Color online) Escape times (indicated on the color scale, measured in units of the time period T0 for an escape radius ρ = 0.8) of
the tracers of Fig. 4, as a function of their initial position. Homogeneous light gray color indicates that the corresponding tracers did not leave
the neighborhood of the vortices during the simulation time of 250T0. ϕ0 and T0 are indicated in the panels. (d) The closed case. It presents
the shape of the initial tracer droplet in homogeneous light gray color. The trajectories of the vortices (solid lines) and of their centers of mass
(dotted line) are also shown to help visualize the relative size and location of the droplet compared to the vortex motion.
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FIG. 7. Same as Fig. 6 for (a) t = 2050 ≈ 2T1 and (b) t = 11050 ≈ 11T1 in a planar view.

λ is a consequence of the initially localized tracer distribution
and will slowly disappear with a further increase of time.

The easiest way to characterize these phenomena is the
investigation of a chaotic scattering process [31,37,38] in the
stroboscopic map defined in Sec. VI A in a reference frame
co-moving with the vortices. On the map’s surface in this
reference frame the fluid moves uniformly (in zonal direction)
except for the vicinity of the λ = 0 coordinate where the vortex
pair is located in a meridional direction. Chaotic features in the
tracer advection can only occur in this localized region. One
can thus define this region as a scattering region. Due to the
zonal direction of the uniform movement of the fluid far from
the origin, one may decide to rely only on the coordinate λ

when declaring boundaries for the scattering region: we define
this region as the interval λ ∈ (−λb,λb), indicated in Fig. 8.

The investigation of the short term behavior corresponds
to taking into account only one scattering event for some
particular tracer. We call this scattering process an elementary
scattering. This elementary scattering event is characterized
by a chaotic saddle localized near the vortices, which we call
the elementary saddle. It has stable and unstable manifolds
which extend outside the scattering region.

The elementary saddle and its invariant manifolds can be
numerically constructed by the application of the sprinkler
method [38]: we initiate a droplet of tracers in the incoming
asymptotic region and start a time counter when they first step
inside the scattering region. We stop the counter when they
leave the scattering region to obtain a (discrete) delay time for
each tracer. Particles with a large delay time approach the ele-

mentary saddle during the scattering event. Therefore, their po-
sitions in the incoming asymptotic region mark the stable man-
ifold of this saddle.2 Their positions corresponding to about
half time of the scattering process trace out the elementary sad-
dle, and their positions in the outgoing asymptotic region repre-
sent the unstable manifold of this saddle.3 As a first approach,
we only follow the evolution of the tracers up to their first
encounter with λ = −π . We show the corresponding results
in Fig. 8(a). The tracers are detrained from the vicinity of the
vortex pair along the unstable manifold [marked by light gray
(red) in Fig. 8(a)] of the elementary saddle. The elementary
saddle itself can be considered the intersection of its own stable
and unstable manifolds [although this is not visible in Fig. 8(a)
since we do not plot the manifolds for |λ| < λb for clarity].

Due to the periodic nature of the sphere in λ, the invariant
manifolds do not have an end at π or −π but they reenter the
domain λ ∈ [−π,π ) on the other side. If we just follow them
up to their next encounter with the interval (−λb,λb) (without
taking into account a second scattering event), we find that
they intersect each other. The creation of new homoclinic and

2One may note that the set of points with large escape times in
Fig. 5 have a similar meaning. In Sec. VI B, however, the region
under investigation is only a close vicinity of the vortices and of the
elementary saddle.

3Technically, the stable manifold is obtained as the mirror image
of the unstable manifold to the λ = 0 line, due to the chosen special
configuration of the vortex pair.
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(a)

-λb λb
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(b)
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 0.33
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 0.35

 1.64  1.68  1.72

FIG. 8. (Color online) (a) The stable (blue or dark gray) and unstable (red or light gray) manifold of the elementary saddle, followed up
to λ = π and −π , respectively. The elementary saddle is shown in black in the scattering region λ ∈ (−λb,λb). These sets are numerically
obtained by means of the sprinkler method with N = 1.9 × 106 tracers. (b) The new components (magenta or gray) of the chaotic saddle as
described in the text, obtained as intersection points between the stable and the unstable manifolds of the elementary saddle. For comparison
the elementary saddle is also plotted. The inset in (b) is a magnification of a well-populated region of the new saddle components. Vortex pair
parameters: ϕr = 0, D′ = 0.1, a′ = 0.1, and �′ = 5 × 10−3π . Vortex initial conditions: α0 = 0, λ0 = 0, and ϕ0 = 0.25. λb = 0.42.
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FIG. 9. (Color online) The unstable manifold of the elementary saddle, plotted in subsequent windings around the sphere by defining λ as
a rotational angle.

heteroclinic points implies the appearance of new components
of the chaotic saddle underlying the dynamics on long time
scales. These new components consist of orbits which are
permitted to leave the close vicinity of the vortices but return
after the number of iterations that corresponds to one winding
around the sphere. Note that the investigated intersections
of the stable and the unstable manifold of the elementary
saddle appear in the whole domain λ ∈ [−π,π ) [i.e., also
outside (−λb,λb)], implying that the chaotic saddle has a
zonally global extension. This is illustrated in Fig. 8(b). In
the inset of Fig. 8(b) one can see the fractal structure of the
new components of the chaotic saddle.

The stable and unstable manifolds of the elementary saddle
do not have an end even after one full winding (once around the
entire sphere). After each full winding new intersection points
are created. For simplicity, let us suppose that the invariant
manifolds of the elementary saddle do not change their spatial
pattern shown in Fig. 8(a) when continuing the manifolds
arbitrarily long. Since the ratio T0/T1 of the local and global
periods is typically irrational, the created intersection points
will densely fill the whole domain λ ∈ [−π,π ) in the limit of
infinitely many windings.

The real scenario is, however, more complicated. For
convenience, let us define λ as a rotational angle to see clearly
how the invariant manifolds of the elementary saddle evolve
after subsequent windings. In Fig. 9, one can observe that
the unstable manifold of the elementary saddle is distorted
(or mixed) when meeting the vortices at λ = −2π . Every
time the invariant manifolds of the elementary saddle meet
the vortices it results in a mixing due to chaotic effects
originating from the elementary scattering. After such an
event the invariant manifolds cannot become less dense than
before mixing. This process repeats itself at integer multiples
of −2π . As a consequence, the argument corresponding to
the simplified scenario remains valid and the full domain
λ ∈ [−π,π ) becomes densely filled by intersection points in
the limit of infinitely many windings in the real scenario
as well. This implies that the exact chaotic “saddle” of the
full global problem of tracer advection is space filling. This
corresponds to a chaotic sea characterizing the asymptotically
long time advection of the tracers in the velocity field of a
vortex pair. The space-filling behavior starts to emerge on
time scales much longer than the global period T1.

Since a drop of tracers of any shape is smeared into a
space-filling distribution after a long time, this is true also for
the simple pattern of the unstable manifold of the elementary
scattering shown in Fig. 8(a). We can see three steps of this

process in Fig. 9: the unstable manifold becomes denser when
crossing integer multiples of 2π from the right to the left. This
shows that the transition to a space-filling distribution is a
step-by-step process, controlled by the elementary scattering.
From Fig. 9 one also learns that the chaotic sea only extends
to a finite interval in the latitudinal variable ϕ: though the
unstable manifold expands in ϕ at λ = −2π , the expansions
occurring later are weaker, and the width converges to a finite
size. Then we can say that the long term global advection is
characterized by a chaotic sea that extends to a whole zonal
band on the sphere.

It is important to note that this conclusion is true only in
cases when the short term tracer advection is open. If the short
term advection is closed, the invariant manifolds of the chaotic
set do not leave the vicinity of the vortices and the chaotic set
remains localized around the vortices in both λ and ϕ. This
implies that tracers initiated near the vortices always stay in
a localized region around the vortices and never fill a whole
zonal band [see Fig. 4(d)].

VII. SUMMARY

In order to find a phenomenological model of vortices on a
rotating sphere, we have extended the concept of modulation
to spherical geometry by taking into account the preservation
of potential vorticity. The new modulation implies a sinusoidal
dependence of the vortex circulation on the latitudinal angle.

We have unfolded the nontrivial dynamics of modulated
vortex pairs and have found a qualitative similarity to the free
particle motion on a rotating sphere. In the dipole limit, when
both the vortex strength � and the distance D between the
vortices is very small, but their ratio, a characteristic velocity,
is finite, a full equivalence is found for the special choice when
the vortex radius a coincides with D and the reference latitude
is the equator ϕr = 0. In other cases, the vortex trajectories are
deformed versions of those of free particles.

Advection in the velocity field of modulated vortex pairs is
studied by considering the passive tracers as vortices of iden-
tically zero circulation. The advection dynamics is typically
chaotic, which would not be the case on a nonrotating sphere.
We find a transition from closed to open chaotic advection
in the field of vortex pairs when the initial latitude of the
pair becomes closer to the reference latitude than a threshold
distance. On asymptotically long times, however, even the
open advection becomes converted into a closed one since the
vortex pair periodically reenters its own wake due to spherical
topology. The chaotic saddle governing the open dynamics
gradually becomes space filling. Such a time scale separation is
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expected to occur in any chaotic advection problem where the
flow is locally open but globally closed. Relevant situations are
provided by the advection by planar vortex pairs moving inside
a disk [39], and when understanding mixing in an infinite array
of cylinders, as defined in Ref. [40], based on the elementary
saddle formed in the wake of a single cylinder [31].

In another vein, our approach indicates that previous studies
of point vortices on a sphere, which were mainly devoted to the
stability of different vortex configurations (see, e.g., [3–6,41–
45]), might be worth extending to dynamical cases. Both these
and the vortex pair dynamics understood on general curved
surfaces [24,46] would be highly interesting to investigate in
the presence of rotation.
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APPENDIX A: DISTANCE BETWEEN A VORTEX COUPLE

The equations of motion (4) for the locations r1, r2 of two
vortices of arbitrary modulation can also be written in vectorial
form [1]:

ṙ1 = 1

2π
�2(ϕ2)

n̂2 × (r1 − r2)

r2
1 2

,

ṙ2 = 1

2π
�1(ϕ1)

n̂1 × (r2 − r1)

r2
1 2

, (A1)

where n̂i is the normal vector to the sphere at the location
of vortex i. Expressing the square of the chord distance in
vectorial form and taking its temporal derivative,

d

dt

(
r2

1 2

) = d

dt
[(r1 − r2)2] = −2

d

dt
(r1r2)

= −2(ṙ1r2 + r1ṙ2). (A2)

By substituting Eq. (A1) we obtain

d

dt

(
r2

1 2

) = − 1

πr2
1 2

�2(ϕ2)

[
n̂2 × (r1 − r2)

]
r2

− 1

πr2
1 2

�1(ϕ1)r1

[
n̂1 × (r2 − r1)

]

= − 1

πr2
1 2

�2(ϕ2)

[
r2 × r2

R

]
(r1 − r2)

− 1

πr2
1 2

�1(ϕ1)

[
r1 × r1

R

]
(r2 − r1) = 0 (A3)

since the product of parallel vectors is zero. The chord distance
D of a two-vortex system is thus always constant on a sphere
of arbitrary rotation.

APPENDIX B: DERIVATION OF THE DIPOLE EQUATIONS

The dimensionless equations of motion (7) are written for
an infinitesimally small vortex pair as

d

dt
(ϕ ± dϕ) = [�′(ϕ ∓ dϕ)] cos(ϕ ∓ dϕ) sin(±2dλ)

2πD′2 , (B1a)

d

dt
(λ ± dλ) = �′(ϕ ∓ dϕ)

2πD′2
cos(ϕ ± dϕ) sin(ϕ ∓ dϕ) − sin(ϕ ± dϕ) cos(ϕ ∓ dϕ) cos(±2dλ)

cos(ϕ ± dϕ)
. (B1b)

Note that these are in fact four equations. As a first step,
we determine the right-hand side of this system of equations
up to first order. Since D′2, appearing in the denominator, is
a quantity of second order, one can see, after expanding the
trigonometric expressions up to first order, that the circulations
(in the numerators on the right-hand side) should be calculated
up to second order. Therefore, the result (13) for the circulation
of an element of a dipole can be substituted. As a next step,
we express ϕ̇, ˙dϕ, λ̇, and ḋλ:

ϕ̇ = − 1

πD′2 �′ cos ϕdλ, (B2a)

˙dϕ = − 1

πD′2 [�′dϕ + a′2πδ(ϕ) cos ϕ] sin ϕdλ, (B2b)

λ̇ = 1

cos ϕ

1

πD′2 �′dϕ, (B2c)

ḋλ = 1

πD′2

[
�′

(
dϕ2

cos2 ϕ
− dλ2

)
+ a′2πδ(ϕ)

dϕ

cos ϕ

]
sin ϕ,

(B2d)

where

δ(ϕ) = 1 − sin ϕr

sin ϕ
. (B3)

(Note that limϕ→0 δ(ϕ) = ±∞; the right-hand sides of
Eqs. (B2b) and (B2d), however, always remain finite.) One
can see that the left- and the right-hand sides of any of
Eqs. (B2a)–(B2d) are of the same order.

Taking the first temporal derivative of Eqs. (B2a)
and (B2c) leads to

d

dt
ϕ̇ = 1

πD′2 �′ sin ϕϕ̇dλ − 1

πD′2 �′ cos ϕḋλ, (B4a)

d

dt
(cos ϕλ̇) = 1

πD′2 �′ ˙dϕ. (B4b)
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Expressing the derivatives ϕ̇, ḋλ, and ˙dϕ on the right-hand
side from the system (B), we arrive at Eq. (15).

In view of Eq. (18), the velocity components (u,v) of the
center of mass of the dipole are obtained from Eqs. (B2a) and
(B2c) as

u = 1

πD′2 �′dϕ, (B5a)

v = − 1

πD′2 �′ cos ϕdλ. (B5b)

The velocity modulus is thus

|u| ≡
√

u2 + v2 = �′

πD′2
√

dϕ2 + cos2 ϕdλ2 = �′

2πD′ ,

(B6)

since

D′2 = 2(1 − cos γ12) = 4(dϕ2 + cos2 ϕdλ2).

(B7)
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