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Chaotic motion of light particles in an unsteady three-dimensional vortex:
Experiments and simulation
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We study the chaotic motion of a small rigid sphere, lighter than the fluid in a three-dimensional vortex of
finite height. Based on the results of Eulerian and Lagrangian measurements, a sequence of models is set up. The
time-independent model is a generalization of the Burgers vortex. In this case, there are two types of attractors
for the particle: a fixed point on the vortex axis and a limit cycle around the vortex axis. Time dependence
might combine these regular attractors into a single chaotic attractor, however its robustness is much weaker
than what the experiments suggest. To construct an aperiodically time-dependent advection dynamics in a simple
way, Gaussian noise is added to the particle velocity in the numerical simulation. With an appropriate choice of
the noise properties, mimicking the effect of local turbulence, a reasonable agreement with the experimentally
observed particle statistics is found.
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I. INTRODUCTION

In the past decade, there has been a growing interest in
the advection of finite-size inertial particles (for reviews,
see [1–5]). However, the active theoretical investigations do
not always occur in conjunction with those in laboratories.
In particular, very little is known on the experimental side
of the dynamics of rigid, spherical buoyant particles, also
called bubbles (i.e., particles of smaller density than the
fluid).

The behavior of such particles is fundamentally different
from the behavior of heavy particles because they have the
appealing feature of being pulled toward vortex centers rather
than being pushed away. This is due to the change of sign of
the centrifugal force with the density difference between the
particle and the ambient fluid. Earlier experimental studies
concentrated mainly on gas bubbles (of the size of a few
microns) in acoustic waves, as illustrated by the recent works
of Lohse and co-workers (see, e.g., [6,7]). Our investigations
are an extension of such studies in that we examine rigid
particles of a much larger size (on the order of millimeters) in
a three-dimensional (3D) vortical flow. Another noteworthy
feature is the fact that our “bubbles” deviate considerably
from the fluid’s motion, and therefore the drag force cannot
be considered to be Stokesian. At the same time, the vortical
flow exhibits complex features since small-scale turbulence is
present.

Cylindrical containers (laboratory glass beakers) with
magnetic stirrer bars are generally used as chemical reactors.
In a few applications, knowledge of the flow field is also
important, in addition to the mixing property of the system
[8]. The character of the flow field can serve as an explanation
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for some spatial anomalies of the chemical reaction rates in
reactors [9], as well as for the chiral selection process in chiral
reactions [10]. The flow field and mixing properties around
magnetic stirrers can be important in reactor miniaturization
[11], and they are also relevant in the study of the extraction
efficiency of the stirrer [12]. Knowledge of the flow field is
also useful when the aim is that the reacting components should
avoid the region of the stirrers [13].

Time-averaged behavior of the flow field generated by
magnetic stirrers was studied experimentally in [8], and a
Burgers vortexlike flow has been identified (similar to bathtub
vortices [14]). The core of the flow is able to keep a buoyant
particle, moving up and down, near the axis. Visual observa-
tions of [8] also suggest that the particle dynamics appears
to be the experimental realization of a motion on a chaotic
attractor (projected on the three-dimensional coordinate space
of the liquid, of course). The experiment in [8] served as an
inspiration for our present work. The goals of the present paper
are to improve the model of the flow field and to understand the
motion of a buoyant particle in detail. We will achieve these
goals through a combination of experiments and computer
simulations.

Specific features of our problem are that (i) due to a strong
downwelling, buoyant particles remain localized in a finite
vertical region (while exhibiting irregular motion) for a long
time; (ii) the typical particle Reynolds number is much larger
than unity, hence a more general force than Stokesian drag
should be taken into account; (iii) in addition to a large-scale
vortical structure, the effect of small-scale turbulence turns
out to be relevant; and (iv) turbulence proves to be not
homogeneous, therefore a nontrivial height dependence should
be taken into account.

Preliminary experimental runs have been performed in
which several identical particles were released simultaneously
from a small, compact initial domain at the water surface.

1539-3755/2014/90(1)/013002(12) 013002-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.90.013002


VANYÓ, VINCZE, JÁNOSI, AND TÉL PHYSICAL REVIEW E 90, 013002 (2014)

The trajectories of initially adjacent particles visibly tended
to diverge from each other after a few seconds, though they
remained confined to the aforementioned vertical region. This
qualitative observation—the apparent sensitivity of the system
to initial conditions—can be considered to be a suggestion of
the chaotic nature of the particle motion. However, since the
applied image-processing-based particle-tracking algorithm
would not have been able to differentiate between particles and
track their trajectories separately, no direct qualitative measure
of chaoticity (e.g., a Lyapunov exponent) could be determined
experimentally. For the same reason, all the experimental data
presented here are results of single-particle measurements.
Such technical measurement limitations were among the main
reasons that triggered the numerical part of this work, aiming
to better understand the dynamics of inertial particles in a
vortex flow.

The paper is organized as follows. A summary of the
experimental results is given in Sec. II. The construction of
a periodically time-dependent model flow, and the equation of
motion for the particle, are presented in Sec. III. Section IV
is devoted to an analysis of the advection dynamics and a
description of the attractors. We show that the regular attractors
of the time-independent case might combine into a single
chaotic attractor in the presence of a periodic driving. The
existence of chaos in the parameter space is, however, found to
be rather limited, and to lie far away from any realistic values.
Section V is devoted to modeling the effects of turbulence
on the particle via introducing a random force and to pre-
senting the corresponding simulations. Finally, in Sec. VI we
discuss the implications of the results. Technical details are
relegated to an Appendix.

II. EXPERIMENTAL RESULTS

The experiment consists of a rotating magnetic stirrer
generating a vortex in a cylindrical container filled with tap
water at room temperature (see the left panel of Fig. 1). In our
set of experiments, the radius of the cylinder is R = 11.2 cm,
the water height is Hw = 30 cm, and the length and diameter
of the stirrer are l = 4 cm and d = 1 cm, respectively. The
rotational frequencies of the stirrer (f ) used in the experiments
are given in the first row of Table I. The cylinder is wide
enough to ensure that the f dependence of the water height
Hw is negligible.

We take a basic result of [8]: the particle image velocimetry
(PIV) method revealed that the time-averaged tangential
component of the flow can be described by the Burgers form:

ut = C

r
(1 − e−r2/c2

), (1)

where the parameter c is the radius of the vortex core, and
C is the vortex strength (defined as 2π times the circulation
along a circle far from the center). By using this component,
simple estimations for the average funnel height (h̄) and for
the average half-width (b̄) of the funnel (defined as the radius
of the funnel at half of its height) lead to

h̄ = ln 2
C2

c2g
and b̄ ≈ c, (2)

where g is the gravitational acceleration.

FIG. 1. (Color online) Schematic diagram of the experimental
setup (left) and the trajectory of a tracked particle (green line) from an
experiment over 25 s (right). The geometrical parameters in the left
panel are the radius of the cylinder R, the water height Hw , the height
of the funnel h, and the half-width of the funnel b. H = Hw − h is
the distance between the deepest point of the funnel and the bottom
of the container, and l and d are the length and diameter of the stirrer
bar, respectively.

The vortex strength was found to be directly proportional
to the frequency f of the stirrer [8]:

C = A02πf, (3)

while the average half-width of the funnel appeared to be
independent of frequency f .

Unfortunately, the planar PIV approach is not suitable
to study the inner part of the flow. Other methods should,
therefore, be used to study the core of the vortex. This is
why we carried out new, detailed measurements of the funnel
parameters and of the particle dynamics. The latter approach is
based on the following observation: A spherical macroscopic
buoyant particle (i.e., lighter than water) is put on the surface
of the water. After a while, the particle gets to the bottom of
the funnel. Theoretically, the particle should remain on the
surface because of the buoyancy force, but the fluctuations of
the flow field, which lead to a change of the location of the
funnel, are able to pull the particle down from the surface if
the frequency of the stirrer is large enough. The particle carries
out a chaotic-looking motion in the bulk of the water, but after
some time it reaches the bottom from where the stirrer kicks
it to outer regions of the container, where it rises up to the
surface.

TABLE I. Essential features of the funnel versus stirrer frequency
f . The rows of the table contain the frequency ω of flow oscillations,
the average funnel height (h̄), and the standard deviation of the funnel
height [s(h)] divided by h̄. The typical magnitude of the errors is 5%.

f (Hz) 5.0 7.5 10.0 12.5 15
ω (Hz) 0.39 0.55 0.91 1.22 1.07
h̄ (cm) 1.07 2.30 4.36 7.48 11.01
s(h)/h̄ 0.12 0.09 0.07 0.07 0.07
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Both the funnel and particle properties are monitored by
means of video recordings. The right panel of Fig. 1 shows
a typical particle trajectory after the detachment form the
surface.

In our experiments, the particle is made of low-density
polyethylene (LDPE), its density is ρp = 0.85 g/cm3, and a
typical radius is a = 0.2 cm. The temporal resolution of the
recorded movies is τsample = 1/30 s.

There are several ways to estimate the Reynolds number
characterizing the flow. One of its dominant features is a
downwelling jet in the vortex axis. The characteristic width
of this jet is about L = 1 cm, as also suggested by the scale
given in the right panel of Fig. 1. A typical vertical velocity
in the vortex center is found to be U = 10 cm/s, from which
Re = UL/ν = 1000 follows with the kinematic viscosity ν =
0.01 cm2/s of water. Because of the high Reynolds number,
small turbulent vortices are expected to be present around the
vortex axis.

To estimate the turbulence properties, we carried out a
careful analysis of the PIV velocity data at a distance of about
4 cm from the center (where data are already at the edge of
becoming reliable). Our analysis revealed that the velocity
fluctuations u′ are about 15% of the tangential velocity there.
Assuming this ratio remains valid even at L = 1 cm from
the center, we obtain values from Eqs. (1)–(3) for a typical
frequency f = 10 Hz and ut = 52 cm/s, from which u′ ≈
8 cm/s. Since the characteristic scale of the flow is L = 1 cm,
with this u′ the energy dissipation rate [15] is ε = u′3/L ≈
510 cm2/s3. The Kolmogorov length and temporal scale are
found to be η = (ν3/ε)1/4 ≈ 0.007 cm and τη = (ν/ε)1/2 ≈
0.004 s, respectively. It is worth noting that the Reynolds
number Re′ = u′L/ν based on the integral scale of turbulence
turns out to be 800, and it is the same order of magnitude as
that of the previous estimate.

A. Funnel properties

Figure 2 displays the height h of the funnel versus time
as obtained from a video record. The insets show the power
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FIG. 2. Height h of the funnel vs time at stirrer frequency
f = 10 Hz. Insets (a) and (b) show the power spectrum and the
autocorrelation function, respectively. The period of the latter is
T = (6.9 ± 0.3) s and the corresponding frequency is ω = (0.91 ±
0.4) Hz.
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FIG. 3. The vertical coordinate z of the particle vs time. f =
10 Hz. Inset: power spectrum of z(t). The extracted data are v̄z =
1.2 cm/s, z̄ = 4.82 cm.

spectrum and the autocorrelation function of the time series.
The large peaks indicate a periodicity in the movement of
the funnel. This may be due to an overall periodic time
dependence of the flow (which is disturbed by turbulence).
The main angular frequency ω of the flow oscillations is found
to depend on the stirrer frequency f ; see Table I. According
to our experiments, the half-width is b = 0.75 ± 0.05 cm (a
mean of 50 measurements), and the coefficient A0 in (3) is
determined from the average funnel heights (h̄) of Table I to
be A0 = 0.99 ± 0.08 cm2.

B. Particle dynamics

Figure 3 exhibits a time series of the vertical coordinate
z(t) of a particle. The particle is released from the surface at
the bottom of the funnel at zero vertical velocity. In the first
period of motion (for t � 20 s), it descends to a given mean
depth as illustrated in Fig. 3. An average sinking velocity v̄z

characterizes this part. After the particle reaches the lower
region (second period, t � 20 s) it dances for a longer time
and eventually reaches the bottom (at t ≈ 105 s). Then the
particle escapes as it hits the stirrer at about z = 1 cm and
is kicked out. The average height z̄ of the second period is
shown by the horizontal line. The frequency ω = 0.91 Hz of
flow oscillations is also found to appear in the power spectrum
of function z(t).

At the lowest studied stirrer frequency, f = 5 Hz, the axial
flow is not strong enough to keep the particle under the surface,

TABLE II. Statistical properties of the particle dynamics for
the different stirrer frequencies f . s(z) and σz denote the standard
deviation of the dataset z and of the histograms in Fig. 5. The unit of
data is cm when not stated otherwise. The last column exhibits the
symbols for the different frequencies used throughout the paper.

f (Hz) v̄z (cm/s) z̄ s(z) σz Sym.

7.5 1.1 ± 0.4 5.37 3.35 3.48 •
10.0 1.5 ± 0.3 4.78 2.86 4.60 �
12.5 2.1 ± 0.9 4.83 2.35 4.74 �
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FIG. 4. The height distribution P (z) in the second period of
the motion (see Fig. 3). Different symbols mark different stirrer
frequencies (see Table II). For better visibility, the upper two graphs
are shifted by 
P = 0.1 each.

while at the highest frequency f = 15 Hz the flow is so strong
that the particle simply goes through the studied region. We
therefore concentrate on the stirrer frequency values f = 7.5,
10, and 12.5 Hz. In these cases, it is possible to study the
particle motion statistically by using video recordings of an
approximate length of 5 min. The results are summarized
in Table II. The first column contains the average sinking
velocities along with their standard deviations.

The second period of motion can be considered to represent
a steady state. We can then determine the probability distribu-
tion P (z) of height z. The results are shown in Fig. 4. Visits at
larger heights have a relatively low probability. The motion is
probabilistic, and—as mentioned in the Introduction—appears
to be sensitive to the initial conditions, which can be interpreted
as a sign of possible chaoticity of the finite-size particle
dynamics. We also study the velocity increments 
�v of the
time series as in [16]. Figure 5 shows the histograms of the
vertical component of the velocity increments 
vz between
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FIG. 5. Histograms of the vertical component of the velocity
increments, 
vz, from the time series. The fitted σz’s in (4) can
be found in the fourth column of Table II. (The symbols correspond
to those in Table II.)
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FIG. 6. Dependence of σz on the average height z̄. The fitted
curves (piecewise linear functions) are of the form of (5) with
parameters A, B, and M given in Table III. (The symbols correspond
to those in Table II.)

subsequent frames of the video record. The distributions are
found to be approximately Gaussian with zero mean and a
standard deviation σz:

P (
vz) = 1√
2πσz

exp

(
−
v2

z

2σ 2
z

)
. (4)

σz can be interpreted as the average of the modulus of
the velocity increments. A detailed study of several records
indicates that σz depends on the average height z̄. The height
dependence of the average velocity increment σz is exhibited
in Fig. 6 and Table III, and it suggests a form

σz(z̄) =
{

Az̄ + B if z̄ � M−B
A

,

M if z̄ > M−B
A

.
(5)

The vertical components of the successive velocity in-
crements are clearly anticorrelated. Figure 7 shows the
correlation functions for the three given stirrer frequencies (see
Table II). The observed one-step anticorrelation might also be
considered to be a hint of the existence of small turbulent
eddies in the background [17].

Particles do not stay very long in the bulk of the flow. Escape
typically happens at the bottom when a particle hits the stirrer
and is kicked out. In practice, the lifetimes can be measured
by a simple stopwatch. The mean lifetime T̄ is measured in
100 experimental runs and found to be in the range of (14 s,
50 s).

TABLE III. Parameters to (5) obtained from a fit to Fig. 6.

f (Hz) A B M

7.5 −0.411 5.43 2.52
10.0 −0.531 7.09 3.92
12.5 −0.689 8.02 4.20
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FIG. 7. Correlation functions r(t) of the vertical component of
the velocity increments 
vz(t) in all three cases. (The symbols
correspond to those in Table II.) At time zero, all three symbols
coincide. The measured points are taken at multiples of the sampling
time τsample = 1/30 s. The velocity components are practically
uncorrelated for t � 2τsample, whereas clear negative correlation can
be found at t = τsample.

III. MODEL

A. Model flow

An important feature of the vortex governing the flow
within the container is its finite height, denoted by H . To
construct the simplest model flow, we ignore the effect of a
free surface as the well-known Burgers vortex does, and we
take, in the notation of Fig. 1, Hw = H (h = 0). Because of
the cylindrical symmetry of the container, it is natural to use
cylindrical coordinates. Axis z is chosen to coincide with the
axis of the vortex. The level z = 0 (z = H ) is the bottom (top)
of the flow. It is easy to satisfy the top and bottom boundary
conditions if the vertical component of the velocity of the
model flow is chosen as

uz = −uz,maxf (r)g(z) (6)

with g(0) = 0 and g(H ) = 0. Function f determines the ve-
locity profile of the vertical component and has a maximum in
the axis (r = 0), while function g gives the height dependence.
Maxima of f and g are chosen to be 1, so that uz,max is the
maximum value of the vertical velocity component. A simple
choice for function g is a polynomial

g(z) = 1 −
∣∣∣∣2z

H
− 1

∣∣∣∣
n

(7)

with n as a positive integer. Exponent n will be fixed later, but
H = 25 cm will be kept constant throughout the paper.

This form ensures that the maximum of the downwelling
velocity occurs at height z = H/2. Our choice for f is

f (r,t) = I (t)

[
1 −

(
r

R0

)2]
(8)

and f ≡ 0 for r > R0, where R0 = 1 cm. Note that this is a
parabolic profile corresponding to a wall atR0 = 1 cm. This is,
of course, an approximate form expressing that considerable
downwelling velocities occur in a restricted region only. The
use of this form is supported by our observations according to

which the particle concentrates most often to a region r < 0.5
cm from the vortex center.

The general form of I (t) is I (t) = 1 + 
I sin(ω t), where ω

is the overall period of the flow oscillations, and 
I represents
the amplitude. A similar time dependence is often used in
the literature on inertial particle dynamics (see [18–20]). We
estimate the dimensionless 
I as 
I ≈ s(h)/h̄ (see Table I).
For 
I = 0, the flow is time-independent.

We suppose that the radial component of the flow also
factorizes

ur = uz,maxF (r)G(z). (9)

Because the fluid is incompressible, the incompressibility
condition

1

r

∂(rur )

∂r
+ 1

r

∂ut

∂ϕ
+ ∂uz

∂z
= 0 (10)

yields two relations between factors f , g, F , and G:

G(z) = g′(z) (11)

and

f (r) = F (r)

r
+ F ′(r). (12)

By taking into account that ur = 0 in the axis (r = 0), we find
F (0) = 0. So one can easily check that F appears as

F (r) = 1

r

∫ r

0
r ′f (r ′) dr ′ = I (t)

(
r

2
− r3

4R2
0

)
. (13)

The third, tangential component of the flow is given by (1)
(the Burgers form). Figure 8 provides an overview of the
flow field for n = 2 in (7) as the simplest nontrivial example.
The Appendix presents how the shape of the funnel can be
obtained when the effect of the free surface is taken into
account. In this case, Hw > H and their difference determines
the funnel height h̄.

B. Particle dynamics

The equation of motion of a small spherical particle of
radius a in a velocity field u(r,t) is

mp r̈ = mf

Du(r,t)
Dt

+ 1

2
mf

(
Du(r,t)

Dt
− r̈

)
+ (mp − mf )g + Fdrag, (14)

where D/Dt is the hydrodynamic derivative taken comoving
with the flow. mp is the mass of the particle and mf is the mass
of the fluid displaced by the particle [21,22]. This equation
has been shown to be the valid equation of motion for small
particles in several papers (see, e.g., [23–26]).

The key feature is that the drag force, Fdrag, depends
sensitively on the particle Reynolds number,

Rep = 2a|ṙ − u|
ν

, (15)

and it also contains an integral, the so-called history force
[1,21,22,27], being also strongly Rep-dependent. [It is the
Rep � 1 limit of (14) which is called the Maxey-Riley
equation [21,22,27].]

In our experiments, we often observe a particle hovering at a
given height in the center of the vortex for a while. Since there
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is a strong downwelling of speed ≈10 cm/s in the center,
the relative velocity is then of the same value, and Rep =
0.4 cm × 10 cm/s/(10−2 cm2/s) = 400, thus we conclude
that the particle Reynolds number can reach up to 400 at least.

At increasing Reynolds numbers, the relative weight of
the history force is decreasing. A qualitative explanation of
this fact can be given by observing that the history force
(even if it remained Rep-independent) provides a contribution
proportional to the velocity difference and hence to the
Stokes drag (see, e.g., [28]), but this term becomes negligible
compared to the full nonlinear drag for increasing relative
speeds. In our simple model, we therefore neglect the history
force (as in other approaches describing particle advection in
similar flows [18–20]), but we take the nonlinear drag into
account via a semiempirical formula [29,30],

Fdrag = − 1
2f CD(Rep)a2π (ṙ − u)|ṙ − u|, (16)

where

CD(Rep) = 24

Rep

+ 6

1 + √
Rep

+ 0.4, (17)

and Rep [see Eq. (15)] is the particle Reynolds number.
After substituting Fdrag in (14), the equation of motion of

the particle is

r̈ = 3

2
R

Du(r,t)
Dt

− 3

8

R

a
CD(Rep)(ṙ − u)|ṙ − u|

+
(

1 − 3

2
R

)
g, (18)

�1 0 1
0

25

r cm

z cm uz

FIG. 8. Vertical section of the time-independent velocity field
of the model across the axis of the vortex, represented by arrows.
A velocity vector corresponding to 10 cm/s is indicated at the left
margin. The continuous line represents the velocity profile of uz(r)
at z = 12.5 cm in arbitrary units. The parameters are n = 2, uz,max =
10 cm/s, and f = 10 Hz.

where

R = 2f

f + 2p

(19)

is the density ratio. In the simulations, we take g =
1000 cm/s2, ν = 0.01 cm2/s, ρf = 1 g/cm3 (water), and the
properties of the particle used in the experiments: a = 0.2 cm
and ρp = 0.85 g/cm3 (R ≈ 0.74).

When the particle size becomes comparable to the flow’s
characteristic scale, the so-called Faxen correction should be
added to many of the terms in the equation of motion. The
one appearing in the velocity difference is, for example (see
[1,21,22,31]), a2/6
u (
 being the Laplacian). The order of
magnitude of this term is (1/6)(a/L)2U ≈ 0.007U , which we
can neglect in our simple model.

IV. MODEL ANALYSIS

A. Time-independent flow

First we study the time-independent case 
I = 0. Since n

in (7) will be fixed from the data of the time-dependent flow,
here we take n = 2 as an example. We find two types of particle
attractors in the system. Both can be described by constant r

and z coordinates, denoted by r∗ and z∗. The existence and
stability of the fixed points and limit cycles depend strongly
on the value of uz,max. These dependencies are shown in Fig. 9.
For higher n values, the bifurcation diagram is qualitatively the
same but its shape is similar to a parabola of order 1/n.

The density of the particle is smaller than that of the fluid,
so buoyancy and “anticentrifugal” forces act upon the particle.
Both of them are independent of uz,max. If uz,max is small,
the downward flow is not strong enough to keep the particle
under the water, and no attractors exist. At uz,max ≈ 10.4 cm/s,
a tangent bifurcation occurs and a stable (solid green line)
and an unstable (dashed red line) fixed point appears on the
axis, as the upper panel of Fig. 9 indicates. This occurs near
z = H/2 since, as we saw, downwelling is strongest along the

10 12 14 16 18 20
0

0.4

0.8

u z,max cm s

r�
cm

0

5

10

15

20

25
10 12 14 16 18 20

z�
cm

FIG. 9. (Color online) Attractor coordinates r∗, z∗ as functions
of uz,max for f = 10 Hz and n = 2 in the time-independent flow.
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axis at z = H/2 [see (7)]. The upper (unstable) fixed point is
repulsive in the z direction for any uz,max. The radial stability of
a fixed point depends on the difference of the anticentrifugal
force and the radial component of the drag force. For 10.4
< uz,max < 11.2 cm/s, both fixed points are attractive from
the radial direction. As uz,max is increased continuously, ur

and the radial component of the drag force are also increasing.
At uz,max ≈ 11.2, the difference becomes zero, and the lower
fixed point becomes repulsive from the radial direction and
loses its stability. This is a saddle-node bifurcation: at the
same time another stable state arises that corresponds to a
limit cycle around the axis (solid blue line with r∗ > 0). The
limit cycle can be characterized by a constant angular velocity
of the particle.

B. Periodically time-dependent flow

To get an overview of the dynamics in the time-periodic
case (
I > 0), we present in Fig. 10 the plane spanned by
the two most important parameters uz,max and 
I . Figure 11
shows typical particle trajectories in the r-z plane in different
regimes of Fig. 10.

Basically, the parameter space can be divided into two parts.
In the first part (regions I and II), the particle can escape, so
the motion takes a finite amount of time. In this part, two
qualitatively different dynamics exist. In the simpler case, the
particle goes only upward and reaches the surface (z = H ) in
a short time (region I), while in the other case transient chaotic
motion [32] is possible and the lifetime can be long (region II).
In the other part of the parameter space (regions III, IV, and V),
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(f)

(e)

I

II

III

IV

V

FIG. 10. The regions of the uz,max,
I parameter plane, character-
ized by different types of dynamics in the periodically time-dependent
model flow. Roman numerals mark the regions, and Latin letters
denote points corresponding to the parameters of the panels of Fig. 11.
I, escape at the bottom (a); II, transient chaotic behavior (b); III,
oscillation in the axis; IV, simple loop motion in the r-z plane (c);
V, period-doubling bifurcation and permanent chaotic region (d)–(f).
The “realistic” parameter domain, accessible by the experiment, lies
within the dashed rectangle. Other parameters: f = 10 Hz, n = 2.
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FIG. 11. Typical particle trajectories for different parameters in
the r-z plane. The parameters are the same as in Fig. 10; the 
I

and uz,max values corresponding to panels (a)–(f) are indicated in that
figure. Initial conditions: r0 = 0.3 cm, z0 = 3.0 cm, and the initial
velocities are 0 cm/s in all cases. In the case of (c)–(f), the first
300 s is cut off.

the particle cannot escape and goes to an attractor (periodic in
III, IV, and partially chaotic in V).

On the r-z plane, we can see most often a closed curve
corresponding to a periodic attractor [Figs. 11(c)–11(e)]. The
most expanded area (region IV) belongs to a simple loop
[Fig. 11(c)]. If we are in that region and 
I is increasing,
at the border of region IV and V the system undergoes
a period-doubling bifurcation [33]. We can see that after
every bifurcation, the number of loops doubles [Figs. 11(d)
and 11(e)]. Within region V, permanent chaotic motion is also
found [Fig. 11(f)]. The value of the Lyapunov exponent on
this attractor is found to be 0.067 1/s corresponding to an
e-folding time of 15 s of uncertainties. For n > 2, the regions
become deformed, and region V becomes thinner and more
insignificant.

In the experiments, irregular motion typically occurs in
a much wider parameter range than in the simulation. To
illustrate this, we recall from the s(h)/h values of Table I
that the range of 
I is (0.07,0.12), and from measurements
of [8] uz,max is expected to be larger than 8 cm/s, which is
plotted as a dashed rectangle in Fig. 10. Inside this region,
the simulations do not exhibit any kind of irregular motion.
This implies that the time-periodic model lacks an important
feature of the real system.

V. TURBULENCE

A. Modeling turbulence effects

As the Reynolds number of the flow is quite high (≈103),
it is necessary to add the effect of turbulence to the model. We
do that in a relatively simple way by taking into account that
turbulent vortices in the flow kick the particle and modify its
velocity with a vector 
�v.

Unfortunately, we do not have any direct information or
measurement on the turbulent vortices; their effect on particle
motion can, however, be observed. In our simple model, we
choose an exponential distribution to describe the time periods
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VANYÓ, VINCZE, JÁNOSI, AND TÉL PHYSICAL REVIEW E 90, 013002 (2014)


t between the kicks, i.e., a Poisson process. Its probability
density function, F(
t), is thus

F(
t) = 1

τ
exp

(
−
t

τ

)
, (20)

where τ is the mean kicking time. The value τ = 0.01 s
appears to be an appropriate choice because this happens to
be the largest value compatible with a Gaussian distribution of
the velocity increments.

The direction of the vector 
�v of velocity increments is
chosen randomly in the spherical angles φ and θ . θ is the
angle between the z axis and the direction of 
�v (0 < θ < π ),
and φ is the angle between the x axis and the projection of 
�v
to the xy plane (0 < φ < 2π ).

The magnitude 
v of the vector 
�v is chosen also
randomly. Its probability density function is assumed to be
the Gaussian

P (
v) = 1√
2πσ

exp

(
−
v2

2σ 2

)
. (21)

Parameter σ determines the modulus of the average kick size,
which should be determined later.

B. Parameter tuning

Parameters n, uz,max, and σ are not fixed yet. In what
follows, we determine them by fitting the numerical results
to the experimental data.

A first estimation of n and uz,max can be obtained
by comparing the periodically time-dependent simulations
without kicking (σ = 0) with the measured v̄z and z̄ (see
Table II). As Fig. 12 illustrates, the results are n = 6 and
uz,max = 11.9 cm/s for f = 10 Hz.

The next step is to turn on kicking (σ > 0). Due to the
stochastic forcing, it is not sufficient to study a single trajectory.
Therefore, in what follows, an ensemble of 100 trajectories is
monitored. Initially, they are distributed homogeneously in

0 20 40 60 80 100 120 140
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15

20

25

t s

z
cm

FIG. 12. Simulated vertical motion of a particle without kicking.
Parameters: f = 10 Hz, 
I = 0.07. Initial conditions: z0 = 20 cm,
r0 = 0.01 cm, v = 0 cm/s. By choosing uz,max = 11.9 cm/s and
n = 6, the height of the horizontal line and the slope of the two
parallel lines agree with the measured z̄ and v̄z (4.78 cm and 1.5 cm/s,
respectively; see Table II).
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FIG. 13. Average sinking velocity v̄z of simulated particles vs the
average kick size σ for f = 10 Hz. All other parameters are the same
as in Fig. 12. Every point of the figure represents the average over 100
trajectories. The inset shows the standard deviations of the sinking
velocities (compare to Table II).

the range 20 � z � 20.09 cm, 0.001 � r � 0.01 cm, in the
φ = 0 plane.

Figure 13 shows that in the presence of model turbulence,
the simulated average sinking velocity v̄z depends on the
average kick size σ . The reason for the effect is simple: if
the particle is kicked upward, the relative velocity difference
between the flow and the particle is increased, which causes
a higher drag force. If the particle is kicked downward, the
effect is the opposite. The net effect of the kicks is that the
sinking velocity is increasing. As Fig. 13 illustrates, for σ > 3
the relation is linear. Note that the slope is relatively large
(an increase of 
σ = 1 implies an increase of v̄z by about
0.5 cm/s, which is on the same order as the measured v̄z in
Table II), indicating a strong dependence on σ . In addition,
the graph depends on the value of uz,max, which is 11.9 cm/s
in Fig. 13. Thus we conclude that a simultaneous tuning of σ

and uz,max is necessary even at a fixed value of n.
A rough estimation of σ is nevertheless possible based

on the observation that the variance of vz appears to be
independent of uz,max. We emphasize that this estimation uses
only the first (descending) period of the particle motion (see
Fig. 3). As the inset of Fig. 13 shows, the standard deviation
s(vz) of the sinking velocities obeys the linear relation

s(vz) = 0.229σ − 0.167. (22)

In view of the analogous experimental data of Table II for the
variance of vz (0.3, 0.4, and 0.9 cm/s), we find that 2 < σ <

4.6 cm/s.
Another estimation (more established than the previous

one) of σ is based on the height distribution P (z). P (z) in
the steady state can also be deduced from the simulations.
Figure 14 shows the results for f = 10 Hz with different σ

values. A comparison of the experimental and the simulated
data suggests that the best agreement is found for σ ≈ 5 cm/s.
The inset displays the dependence of the average lifetime T̄

obtained from 100 trajectories as a function of σ . Particles are
considered as escaped if z < 1 cm. We see that for 5 � σ � 6,
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FIG. 14. Height distributions P (z) for f = 10 Hz, uz,max =
11.9 cm/s, n = 6 with different σ values. Circle: σ = 3.5, square:
σ = 4.0, triangle: σ = 5.0, and ×: σ = 7.0. The filled square marks
the experimental data of the 10 Hz case. Every point of the figure
represents the average over 100 trajectories. The inset displays the
mean lifetime T̄ vs σ in the simulations.

the lifetime values are on the same order as the measured ones
mentioned at the end of Sec. II B.

The third estimation of σ is based on the velocity increments
that characterize instantaneous (or short time) properties of the
system augmenting the previous two estimations, which are
long-time properties. In Fig. 5, the histograms of the vertical
component of the velocity increments are shown, and the
values of σz are calculated from the measured signals. The
same method can also be applied to calculate the analogous
values (σ ′

z) of the simulated trajectories where the velocity
increment 
vz is evaluated also in the simulation after 
t =
τsample. This distinction is made because we cannot be sure that
it is σ ′

z, which should directly correspond to the σz extracted
from experiments. Figure 15 shows the relation between the
freely chosen kick size σ and the numerically obtained average
velocity increment σ ′

z for f = 10 Hz. A direct proportionality

0 1 2 3 4 5 6 7
0

1

2

3

4

5

Σ cm s

Σ
′ z
cm
s

20 10 0 10 20
0

0.05

0.1

vz cm s

P

FIG. 15. Dependence of σ ′
z on σ in the simulation for f = 10 Hz,

uz,max = 11.9 cm/s, n = 6. The inset exhibits the distribution P (
vz)
belonging to the end point of the arrow.

TABLE IV. Correlation function values r1 = r(τsample) belonging
to the sampling time and the reduction factors (see Fig. 7).

f r1
√

1 + r1

7.5 Hz −0.40 0.78
10.0 Hz −0.32 0.83
12.5 Hz −0.57 0.65
Averages −0.43 0.75

is found,

σ ′
z = 0.68σ. (23)

The distributions are Gaussian for all σ , which is represented
for σ = 6 cm/s by the inset. (As mentioned previously, the
Gaussian property would not be true if the mean kicking time
τ were significantly greater.)

Applying (23) for the estimate σ = 5 cm/s based on
the height distributions, we obtain σ ′

z = 3.4 cm/s. In the
experiment, however, σz = 4.6 cm/s for f = 10 Hz (see
Table II). The difference is considerable. It can be understood,
however, by taking into account the (negative) correlations
between the successive velocity increments (see Fig. 7).

To see this, let us first recall that the correlation of the
velocity increments is not significant for 
t � 2τsample (see
Fig. 7). Consider two successive vertical velocity increments
(
vz) of the experiment, separated in time by τsample, as
random variables ξ1 and ξ2. According to our observations,
both distributions are Gaussian and correlated. We denote
the standard deviation for both of these variables and the
coefficient of the correlation between them by σz and r1 ≡
r(τsample), respectively. Let us denote the random variable of the
vertical velocity increments belonging to 
t = 2τsample by η.
Naturally, η = ξ1 + ξ2, and if the kicks would be independent,
than the standard deviation of η would be

√
2σz. In the

correlated case, the standard deviation of η is known [34]
to be

√
2(1 + r1)σz, which means that a correction factor

α = √
1 + r1 appeared. For r1 < 0, the factor is smaller than 1

and the correction means a reduction of the kicking compared
to the uncorrelated case.

The factors
√

1 + r1 range between 0.65 and 0.83 (see
Table IV). For simplicity, we take their average α ≈ 75% as a
reduction factor in all three cases.

To keep our model as simple as possible, we would like
to use uncorrelated kicks in (21). This can be achieved—in
view of the discussion above—by interpreting the numerical
results obtained with (21) as if they were obtained with kicking
strength σ/α. Toward that end, we define a new quantity σ ′′

z ,

σ ′′
z = 0.68σ/α. (24)

This implies of course

σ ′′
z = σ ′

z/α. (25)

This new quantity should be compared with the average
velocity increment σz coming from the experiment in which
anticorrelation plays an important role.
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TABLE V. Parameters A′, B ′, and M ′ of (27) used in the
simulations.

f (Hz) A′ B ′ M ′

7.5 −0.35 5.5 3.0
10.0 −0.25 6.1 4.4
12.5 −0.40 6.7 4.7

To summarize, by anticipating that the measured average
velocity increments σz and σ ′′

z coincide, one expects

σ = α
σz

0.68
(26)

to be a relation between the numerical realization of kicking
in terms of (21) and the measured σz. Indeed, this formula is
consistent with σ ≈ 5 cm/s and σz ≈ 4.6 cm/s.

Unfortunately, by determining the values of v̄z and z̄ with
σ ≈ 5 cm/s in a similar manner as in Fig. 12, essential
differences from the measured values are found. These cannot
be improved by a tuning of uz,max and n either. Therefore, a
consideration of a possible height dependence of σ appears to
be appropriate.

C. Refined steady-state distributions

According to Fig. 6, σz is height-dependent. A height-
dependent kicking, similar in form to (5), should be taken
into account based on Fig. 6. In terms of σ , we therefore write

σ =
{

A′z̄ + B ′ if z̄ � M ′−B ′
A′ ,

M ′ if z̄ > M ′−B ′
A′ .

(27)

Parameters A′,B ′,M ′ are determined from a detailed compari-
son of the numerically determined σ ′′

z (z̄), based on relation (25)
and the experimental σz(z̄) functions. The best fit of the
parameters found from the simulations are given in Table V.
The insets of Figs. 16–18 illustrate the degree of agreement.

After these steps, parameters n and uz,max can be chosen by
the requirement of an agreement as good as possible between
the simulated and measured v̄z and z̄ values. This is based
on the property that an increase of uz,max and n leads to an
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FIG. 16. The measured (filled circles) and the numerically
calculated (circle) height distribution for f = 7.5 Hz. Parameters:

I = 0.09, n = 9, and uz,max = 11.1 cm/s. Inset: dependence of the
average velocity increment on height [measurement, σz: filled circle;
simulation, σ ′′

z (24): circle].
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FIG. 17. The measured (filled squares) and the numerically
calculated (squares) height distributions for f = 10 Hz. Parameters:

I = 0.07, n = 7, and uz,max = 10.8 cm/s. Inset: dependence of
the average velocity increment on height [measurement, σz: filled
squares; simulation, σ ′′

z (24): squares].

increase of v̄z and a decrease of z̄, respectively. The results are
summarized in Table VI. Note that the fitted values of exponent
n in (7) turn out to be rather large, corresponding to a nearly
constant g function at midheights.

At the end, the measured and the numerically calculated
height distributions can be compared as shown by Figs. 16–18.
The agreements are good considering the simplicity of the
model.

At this point the following question naturally arises: Which
parameters and features of our model have the most important
contribution to the right description of the experimental
results? According to the simulations, if 
I is smaller than
the used values, the distributions do not change essentially.
Toward the higher values of 
I , however, the distributions
flatten and broaden. It can also be found that the effect of
the fluid oscillation is so weak compared to the kicks (model
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FIG. 18. The measured (filled triangles) and the numerically cal-
culated (triangles) height distributions for f = 12.5 Hz. Parameters:

I = 0.07, n = 7, and uz,max = 11.1 cm/s. Inset: dependence of
the average velocity increment on height [measurement, σz: filled
triangles; simulation, σ ′′

z (24): triangles].
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TABLE VI. The statistical properties of the simulated particle
dynamics (v̄z and z̄ values) with the best fit of uz,max and n for the
different frequencies f (compare with Table II).

f (Hz) v̄z (cm/s) z̄ (cm) uz,max (cm/s) n

7.5 1.15 5.68 11.1 9
10.0 1.73 4.72 10.8 7
12.5 2.08 5.03 11.1 7

turbulence) that it cannot cause any measurable correlation in
the motion of the particle.

If the kicks are height-independent, the kicks at the bottom
turn out to be weaker than realistic. This increases the
particle’s lifetimes; moreover, in some cases it even makes
the escape at the bottom impossible. This is in clear contrast
with the observations described in Sec. II. In other words,
the height dependence is essential for the correct escape
dynamics. Without this, the distribution differs markedly from
the measured one, and the typical region where the particle
moves appears to be broader.

On the other hand, the kick reduction, albeit not enormous
(75%), seems to play a crucial role: without it, the particle
escapes too fast (i.e., the lifetimes are too short) and the
correct determination of the distribution becomes difficult,
since the particle practically just runs through the studied
domain.

VI. SUMMARY AND CONCLUSION

In this paper, we studied the motion of an inertial buoyant
particle in a time-dependent three-dimensional vortex. We
have constructed a series of models of increasing complexity to
provide an acceptable minimal model for the experimentally
observed dynamics. At each stage, new features have been
introduced, as follows: (i) motion of an inertial particle in
a time-independent vortex, (ii) periodic time dependence of
the flow, (iii) model turbulence (simple kicks with height
independent σ ), (iv) reduction caused by the anticorrelated
successive velocity increments, and (v) height dependence
of the strength of kicks. The role of stage (i) is to describe
roughly the first, descending part of the particle motion (see
Fig. 3). (ii) opens up the possibility for the appearance of
chaos. However, the parameter domain where chaos exists in
the simulations and in the experiments is disjoint (see Fig. 10).
This observation led us to the conclusion that the reason for
the observed zigzag motion of the particle cannot be explained
solely by the periodic time dependence of the background flow.
Therefore, stage (iii) was necessary to capture the properties
of the real particle motion, and finally, both (iv) and (v) proved
necessary to reproduce the measured data quantitatively.

It is worth noting that the last levels lead to a drastic change
in the character of the particle dynamics. On the time scale
of a few seconds, a roughly exponential separation of nearby
particles can be observed, but much faster than in the chaotic
cases without kicking. Carrying out a similar estimation to
that in Sec. IV B for Fig. 11(h), the analog of a Lyapunov
exponent is obtained to be about 1 1/ s, more than ten times
larger than originally. In addition, this order of magnitude

is also characteristic of cases that are nonchaotic without
kicking. We thus conclude that noise plays a dominant role
in the dynamics, i.e., the chaoticity of the particle motion is
not of low-dimensional origin. It is instead a consequence of
the interaction with a many-degree-of-freedom environment,
representing local small-scale turbulence in the flow.
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APPENDIX: NUMERICAL DETERMINATION OF
THE FUNNEL

By means of the Navier-Stokes equations, it is possible
to calculate the function h(r) describing the shape of the
free surface (funnel) in a steady flow. The local water
height at distance r is then z(r) = Hw − h(r), where Hw

is the ambient water height. To obtain the function h(r),
we need to determine the isobaric surfaces. Because of
the symmetry, we use cylindrical coordinates. Along an
isobar,

dp(r,z) = 0, (A1)

that is,

∂p

∂r
dr + ∂p

∂z
dz = 0. (A2)

Therefore,

dz

dr
= −dh

dr
= −∂p

∂r

/∂p

∂z
. (A3)
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FIG. 19. The numerically calculated free surface z(r) = Hw −
h(r) in a steady flow. Parameters: Hw = 30 cm, f = 10 Hz (n =
7 and uz,max = 10.8 cm/s). The funnel height is found to be h =
4.4 cm.
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From here,

h(r ′) =
∫ r ′

0

∂p

∂r

/∂p

∂z
dr, (A4)

where the partial derivatives in the integrand can be expressed
from the radial and z components of the cylindrical form of
the Navier-Stokes equations. These partial derivatives are [29]

∂p

∂r
= ρ

[
− ur

∂ur

∂r
− uz

∂ur

∂z
+ u2

φ

r

+ ν

(
1

r

∂ur

∂r
+ ∂2ur

∂r2
+ ∂2ur

∂z2
− ur

r2

)]
(A5)

and

∂p

∂z
= ρ

[
−ur

∂uz

∂r
− uz

∂uz

∂z

+ ν

(
1

r

∂uz

∂r
+ ∂2uz

∂r2
+ ∂2uz

∂z2

)
+ g

]
. (A6)

Substituting this into (A4), the shape h(r) of the funnel can be
obtained numerically. Toward that end, parameter H in (7) is
replaced by the full water height Hw, and all the relations (8)–
(13) are kept to determine the flow field. An example of the
funnel’s shape with Hw = 30 cm is provided by Fig. 19. The
funnel height h (and the water height H below the funnel)
is obtained as h = h(0) [and H = Hw − h (see Fig. 1)]. The
result of Fig. 19 illustrates that the choice H = 25 cm used
throughout the paper is a good approximation.

[1] J. Magnaudet and I. Eames, Annu. Rev. Fluid Mech. 32, 659
(2000).

[2] R. O. Medrano-T, A. Moura, T. Tél, I. L. Caldas, and C. Grebogi,
Phys. Rev. E 78, 056206 (2008).

[3] F. Toschi and E. Bodenschatz, Annu. Rev. Fluid Mech. 41, 375
(2009).

[4] J. H. E. Cartwright, U. Feudel, G. Károlyi, A. de Moura, O.
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