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We investigate the death and revival of chaos under the impact of a monotonous time-dependent forcing that
changes its strength with a non-negligible rate. Starting on a chaotic attractor it is found that the complexity of
the dynamics remains very pronounced even when the driving amplitude has decayed to rather small values.
When after the death of chaos the strength of the forcing is increased again with the same rate of change, chaos
is found to revive but with a different history. This leads to the appearance of a hysteresis in the complexity of
the dynamics. To characterize these dynamics, the concept of snapshot attractors is used, and the corresponding
ensemble approach proves to be superior to a single trajectory description, that turns out to be nonrepresentative.
The death (revival) of chaos is manifested in a drop (jump) of the standard deviation of one of the phase-space
coordinates of the ensemble; the details of this chaos-nonchaos transition depend on the ratio of the characteristic
times of the amplitude change and of the internal dynamics. It is demonstrated that chaos cannot die out as
long as underlying transient chaos is present in the parameter space. As a condition for a “quasistatically slow”
switch-off, we derive an inequality which cannot be fulfilled in practice over extended parameter ranges where
transient chaos is present. These observations need to be taken into account when discussing the implications of
“climate change scenarios” in any nonlinear dynamical system.
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I. INTRODUCTION

Chaotic dynamics has been celebrated as an important part
of different processes in various disciplines of science like
mechanics, optics, meteorology, chemistry, neuroscience, and
population dynamics, as presented in several textbooks (see,
e.g., [1–4]). Macroscopic systems are generally dissipative,
and they are driven by external forces in order to compensate
energy loss. External drivings are typically assumed to be
temporally periodic. The widespread theory of chaos is based
on the existence of an infinity of unstable periodic orbits
[1–3]. Here we investigate how chaos dies out (and revives) in
dissipative systems, under a realistic time-dependent change
of parameters, a question not yet studied in the literature. To
this end, we pass with a certain speed through a considerable
range of the parameter space and enter the region where only
simple dynamics is possible (in our illustrative example, even
the region where the motion is about to stop). Thus, we have
to inevitably leave the traditional theory of chaotic systems,
as the time dependence of the driving is not purely periodic, it
exhibits a trend and hence no periodic orbits can exist.

In cases when the dynamics is complex, it is not even
known what should be understood under chaotic behavior. For
example, the widely used concept of Lyapunov exponents, in
the traditional formulation, requires a long-term observation,
but with shifting parameters, the character of the dynamics also
changes, and one should then concentrate on finite temporal
intervals, but their particular choice would be a source of
subjectivity. Instead of a search for an exact definition, we
decide to follow a qualitative picture: we examine for how

long a typical property of chaos holds, namely the coexistence
of a wide variety of possible motions, in other words, the
internal variability of the dynamics. A central observation of
our studies is that the variability lasts for surprisingly long
periods of time, up to times when the magnitude of driving
falls down to rather small values. The linear (and therefore
certainly not chaotic) behavior about the state of rest can set
in only afterwards. The interest in systems with trends in their
parameter change is motivated by the problem of climate
change, and concerns related to it. Several studies indicate that
such a change can lead to qualitative changes in the dynamics:

One branch of research concentrates on bifurcations in var-
ious contexts in mathematics, physics, and biology, traversed
with a time scale similar to that of the internal dynamics.
Bifurcations are found to occur often delayed like in the case
of period doubling [5], transcritical bifurcation in lasers [6,7],
or Hopf bifurcation [8], and resonances [9], and the observed
delay depends on the speed of the parameter change. The liter-
ature refers to bifurcation tipping or ramped tipping [10–12],
the former denotes the case where a bifurcation is involved
in the qualitative change of the dynamics when a parameter
is varied in time, while the latter corresponds to crossing
manifolds in state space as a consequence of a shift in a
parameter. Appropriate mathematical methods to tackle those
questions in which the time scale of variation of the parameter
is different from the time scale of the internal dynamics are
multiscale methods [13]. None of these bifurcation-related
studies have ever addressed the question of what happens to
bifurcations leading to chaos.
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Another branch of research concentrates on changes in
chaotic attractors due to parameter changes [14–18]. These
studies look at the impact of shifting environmental conditions
from a more general perspective to, e.g., reveal the conse-
quences of climate change on the number of extreme events
to be expected in the future [17]. Atmospheric motion is often
described by chaoticlike dynamics and hence, changes in the
shape of chaotic attractors and/or their statistical properties
are the result of trends acting on the system. This part of the
literature has not addressed the question of the disappearance
of chaotic attractors.

Our subject lies thus at the boundary of these different
classes of approach. A concept ideally suited to the study of
dynamical systems with arbitrary time dependence—and this
is what we find appropriate to use in our problem—is that
of snapshot attractors [19] (also called pullback attractors in
the mathematics and climate-related literature [14,16,20–22]).
Loosely speaking, a snapshot attractor is an object belonging
to a given time instant that is traced out by an ensemble of
trajectories initialized in a region of the phase space in the past,
all of the ensemble members governed by the same equation of
motion. In the dynamical systems community, the concept of
snapshot attractors has been known and successfully applied
for many years [19,23–29]. A precursor was the discovery of
synchronization by common noise (i.e., by the same realization
of a random driving) by Pikovsky [30], a case when—in
the current terminology—the snapshot attractor turns out to
be regular. The use of deterministic driving goes back to
Kloeden [21] and to recent climatic applications [18,31]. By
now, applications to systems with a high degree of freedom
are also available [32–34].

For our investigation of the dying out (and revival) of chaos
we choose a paradigmatic example of a driven dissipative
system, a driven pendulum whose suspension is oscillating
periodically. With a constant driving amplitude, an extended
chaotic attractor is known to exist [2]. In our model this
amplitude is assumed to decay in time, but the period of
oscillation is unchanged. Thus the possibility of defining a
stroboscopic map, often used in the description of usual chaos,
is kept, although periodic orbits themselves obviously do
not exist any longer. We emphasize, however, that the role
of periodicity is not essential, it provides merely a natural
sampling time. In other problems with driving without any
periodicity such a sampling time can be chosen arbitrarily.
The advantage of having periodicity in our problem is,
nevertheless, that conventional methods can be applied before
the switching off process starts.

As for the temporal change of the driving, we take an
exponentially decaying form. An advantage of this is that the
driving decays in a similar way as the relaxation caused by
dissipation. Both can be characterized by constant relaxation
times. The switching off is considered to be fast, if its time
constant is smaller than that of dissipation. We are mainly
interested in the range where the two times are comparable,
but also find a criterion for the case when the switching off
process could be considered to be quasistatic.

After introducing the model in the next section (Sec. II),
we turn to the presentation of the bifurcation diagram of the
original dynamics with time-independent driving amplitudes
(Sec. III). The case studies of the system with decaying

amplitude (Sec. IV) indicate that individual trajectories are
not representative and motivate us to turn to an ensemble
approach. The results related to the geometry of the snapshot
attractor and its comparison with that of the attractors of the
bifurcation diagram, and with the unstable manifolds of the
underlying transient chaos, are summarized in Sec. V. The
dynamics’ strong variability is shown to be accompanied by
a horseshoelike structure in the stable and unstable foliations
found to be present also in the dynamics with decaying driving.
Next we turn to a statistical characterization of the snapshot
attractors in terms of the standard deviation of one of their
coordinates and find that a drop in this quantity might be
used as a sign of chaos death. In the same Sec. VI we also
study the revival of chaos seen when the decay of the driving
amplitude is changed into an increase, and find a strongly
different history, reflected by a pronounced hysteresis loop in
the standard deviation-driving amplitude plane. A summary
is given in Sec. VII augmented with a discussion of when
a parameter change can be considered to be “quasistatic.”
We come to the conclusion that over an extended range of
parameters this is practically not possible due to the transient
chaos underlying the original problem, a feature never reflected
in traditional bifurcation diagrams.

II. EQUATION OF MOTION

The dimensionless equation of motion for the angle ϕ

taken with respect to the vertical of a driven mathematical
pendulum with its suspension point moving periodically along
a horizontal line with a constant amplitude C reads as [2]

ϕ̈ = −γ 2 sin ϕ − 2βϕ̇ + C cos (ϕ) cos (t). (1)

The dimensionless driving period is T = 2π , while γ repre-
sents the dimensionless frequency of the pendulum’s small
amplitude swingings without driving and dissipation, and β

is a friction constant. In our numerical study we shall fix the
values of γ = 1/3 (the driving frequency is three times that of
the eigenfrequency) and of β = 0.05 (the dissipative relaxation
rate is 1/20th of the driving frequency).

With dimensionless driving amplitude C0 = 2, i.e., when
the amplitude of the suspension point’s oscillation is twice
as large as the length of the pendulum, the dynamics is
chaotic and possesses an underlying chaotic attractor of large
extension [2].

For simplicity, we model the switching off process by taking
the driving amplitude to be the time dependent C(t) with the
following particular exponential scenario:

C(t) =
{
C0, for t < t0 = 10T ,

C0e
−α(t−t0), for t � t0 = 10T .

(2)

This corresponds to the situation when the pendulum is
driven with a constant amplitude C0 = 2 up to time t0 = 10T

(trajectories are found to need much shorter times, about 3T ,
to reach the chaotic attractor), and at this instant the decay of
the amplitude starts with an exponential switch-off rate α as
depicted in Fig. 1.

Five different values of α, 0.2, 0.1, 0.05, 0.025, and 0.0125,
are selected for the switching off scenarios. The switch-off
rates α should be compared with the dissipative relaxation rate
β = 0.05. The comparison is more illuminating by comparing
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FIG. 1. The investigated switching off scenarios: time depen-
dence of the driving amplitude C(t) for different switch-off rates
α. Horizontal dotted lines indicate the two C values, C = 1.0670
and C = 0.5692, for which the switching off processes with the
various switch-off rates are compared later. The other dimensionless
parameters used throughout the paper are β = 0.05 and γ = 1/3.

the reciprocals, the (dimensionless) relaxation times, τd and
τs :

τd = 1

β
= 20, τs = 1

α
= 5, 10, 20, 40, 80. (3)

Two of the switching off scenarios are thus faster than
the relaxation induced by dissipation, one has the same
characteristic time as friction (continuous curve in Fig. 1), and
two others are slower. We claim to have realistic scenarios with
either slower or faster changes in the forcing but still on almost
the same order of the time scale of the internal dynamics. To
emphasize the contrast with infinitely slow parameter changes,
reflected in traditional bifurcation diagrams, scenarios with α

on the order of 10−3 or smaller are not considered.
One advantage of our setup is that the relaxation times are

constant, independent of other parameters and, in particular, of
the instantaneous value of the driving amplitude. (In the case
of nonexponential decays only instantaneous dissipative and
switch-off rates can be defined.)

Equation (1) with C = C(t) as given in (2) is solved
numerically by means of a fourth order Runge-Kutta method
with fixed time step h = 0.01T or smaller.

III. STROBOSCOPIC MAPPING
AND BIFURCATION DIAGRAMS

For a frozen-in, constant amplitude case with C0 = 2 a
usual chaotic attractor is present with a stroboscopic view
as shown in the first panel of Fig. 4. This can be obtained
by following a single initial point for a long time and by
determining hundred thousands of stroboscopic intersection
points. It is worth noting that the frozen-in chaotic attractor
can also be obtained in a conceptually different way. One can
choose, say, 100 000 points distributed uniformly in a region
of the phase space. Plotting the stroboscopic position of all
the trajectories after a few, say 10, periods the same figure
is reproduced. This is a consequence of the ergodicity of the
frozen-in chaotic dynamics.
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FIG. 2. Bifurcation diagram of the driven pendulum with frozen-
in amplitude C. (a) The ϕ̇ = ω coordinates on the long-term
attractors are plotted in the stroboscopic map. The upper (red),
middle (blue) and lower (green) curves indicate the bifurcations
of three orbits which are of period 1 for small C: middle (blue),
small amplitude swinging, upper (red), lower (green), clockwise,
and counterclockwise overturning motion. The latter are born in
a saddle-node bifurcation at C = 0.2. Small multipiece attractors
appear as light (yellow) patches. (b) The angular velocity coordinates
during long-lived transients are also shown, colored gray. Note how
much more empty the traditional diagram (a) is.

The bifurcation diagram [3,4] of dynamics (1) with different
constant driving amplitudes C has been determined in the
range (0,2), as depicted in Fig. 2. The results presented for the
angular velocity variable indicate that large, extended chaotic
attractors only exist close to C = 2 and in the amplitude
range around C ∈ (1.6,1.8). There are a few other, rather short
ranges of C where chaotic attractors exist but these are small
multipiece objects. The bifurcation diagram of the dynamics
with frozen-in driving amplitudes is thus dominated by regular
motion.

The traditional bifurcation diagram of Fig. 2(a) is obtained
by plotting the asymptotic coordinates of 400 uniformly
distributed points after 1000 periods. A different facet of the
dynamics is revealed in Fig. 2(b) by plotting the coordinates
after 20 periods only. The results are plotted as gray points.
They trace out broad vertical intervals about the periodic
attractors (colored dots). The appearance of these intervals is a
unique sign of the existence of relatively long transients, most
likely of transient chaos preceding the capture of trajectories by
the periodic attractors. The plot indicates that unlike permanent
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chaos, transient chaos is present in a rather broad range of the
frozen-in dynamics: for all C values larger than about C = 0.3.

IV. CASE STUDIES WITH DECAYING AMPLITUDES

One of the system’s most interesting features is that the
motions can be drastically different during the entire switching
off process, depending on the initial conditions. To illustrate
this, we choose initial conditions in the last moment of
the existence of the frozen-in chaotic attractor, at t = 10T .
Significant differences are found during rather long time
intervals. This clearly shows that a strong internal variability
characterizes the system during most of the switching off
process. Despite the fact that the initial conditions differ only
slightly, the functions ϕ(t) and ω(t) differ significantly, as
shown in Fig. 3. The angle ϕ is displayed in the interval
(−π,π ), in a periodic representation. Accordingly, if the curve
crosses the boundary, it enters from the bottom, marking
an overturning of the pendulum. The motions presented
correspond to energy rich initial conditions since overturnings
last up to about 25 periods, although details are different.
Even more significant differences can be seen in the angular
velocity: between periods 15 and 25 both pendula rotate with
an approximately constant angular velocity, but these values
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FIG. 3. Single trajectories over the entire switching off process.
In panels (a) and (b) the numerically determined angle vs time
functions ϕ(t) and the angular velocity ω(t) are displayed for initial
conditions (ϕ1 = −1.065, ω1 = 1.211) continuous (blue) curves and
(ϕ2 = −1.071, ω2 = 1.185) dashed (red) curves, respectively. In both
cases, the initial moment is t = 10T , i.e., the initial conditions are
taken on the chaotic attractor right before switching off takes place,
with rate α = 0.025.

are about +1 and −1, respectively. Small amplitude swinging
about the origin sets in after more than 40 periods only,
when the driving amplitude has fallen to one-hundredth of its
original value. Figure 3 and a number of additional simulations
illustrate the high degree of variability of the switching off
dynamics. This is of course partly inherited by the chaoticity
of the first ten periods, but as the accumulation about ω = ±1
shows, the entire decay process also contributes to the internal
variability. Our goal is a more complete exploration of this
property.

V. SNAPHSOT ATTRACTOR VIEW

According to the analysis in the previous section, a
randomly selected switching off trajectory is usually not
representative. What can be considered to be representative
can only be decided when looking at several trajectories
simultaneously. Let’s start therefore the investigation of the
time evolution of phase-space ensembles. Such approach
is becoming increasingly popular in the literature on the
dynamics of nonautonomous systems with smooth shifts in
the parameters, like in the dynamics of climate change (see,
e.g., [16,18], or in engineering problems [35]). Clearly, in
such cases the monitoring of a single long trajectory and the
ensemble picture lead to different results: ergodicity does not
hold [36]. It is the latter picture which proves to be effective
because the ensemble defines, after some time, a distribution,
specifying how many members of the ensemble fall close to
certain points in phase space, at any given time. The set traced
out by the ensemble is called the snapshot attractor, which
is always subject to temporal change. The attractor itself and
the distribution on it are independent of the choice of the
initial distribution of the ensemble. This approach enables us
to define (time-dependent) averages, and to decide what should
be considered to be representative.

It is therefore appropriate to investigate the switching off
dynamics in this spirit. The phase-space region of interest is
the rectangle (−π,π ) × (−3.2,3.2). We distribute N = 105

points uniformly on it as the initial condition, and follow this
ensemble on the stroboscopic map. The set traced out by our
ensemble is at any instant of time, after t = 10T , a snapshot
attractor. Its form is independent of the initial distribution
and of whether the switching off scenario starts at t = 10T

or much later, as the convergence to the attractor at C0 = 2
requires about 3T only. It should be noted that snapshot
attractors are not necessarily chaotic; they can be associated
with regular motions, too. A hint on chaoticity might be the
filamentary, fractal-like structure of the attractor which signals
an underlying horseshoelike structure [1], i.e., a topological
identification of chaos. We always initiate the ensemble at
time t = 0, and record its position in the phase space at integer
multiples of the period T = 2π .

A. Attractor geometry changing in time

The following tableau (Fig. 4) shows the time dependence
of the snapshot attractor belonging to a switch-off rate larger
than the dissipation rate β. The first panel shows the original
chaotic attractor existing yet after n = 10 periods, as the
initial shape of the ensemble, at the moment when the
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(a) (b) (c)

(g) (h) (i)

(d) (e) (f)

FIG. 4. Snapshot attractors for switch-off rate α = 0.1. N = 105 points are initially evenly distributed over the (ϕ,ω) phase space, in the
rectangle shown. The snapshot is taken (n is the number of periods passed since t = 0) at n = 10–14 in panels (a)–(e), at n = 16 in (f), n = 19
in (g), n = 21 in (h), and n = 24 in (i). In the panels the corresponding C values are also indicated.

switching off process starts. The variability of the dynamics
is reflected by the extension of the attractor either in the
angle or the angular velocity direction (or in both). It is
remarkable that filamentarity is present even about ten periods
after the beginning of the switching off process [Figs. 4(g)
and 4(h)], a time instant for which the amplitude C fell down
to two-thousandths of its original value (cf. Fig. 2).

When comparing with slower scenarios, not shown, a
striking difference is that the contraction of the shapes appears
to be stronger, at least when considered at the same C values
which, however, belong to much longer times. For faster
scenarios filamentary structures remain visible up to smaller
C values since these values are reached during shorter times,
and the phase-space contraction due to dissipation cannot yet
be pronounced over such short intervals. In other words, the
motion remains rather energy rich upon reaching very small C

values in the framework of fast scenarios.
In order to better understand the relationship between the

switch-off rates and the dissipation rate, and the expression
of this in the snapshot patterns, let us see, for the different
scenarios, how the snapshot attractors compare to each other
when looked at after a given time t which is chosen to be on
the order of the dissipative relaxation time, τd = 1/β.

When looking at the ensembles after a preselected time, the
effect of dissipation is the same for all the scenarios. Thus,
the differences in the snapshot attractors are caused by the
different switch-off rates themselves. In Fig. 5 all five of the
scenarios are presented at time t = 25T . We immediately
see that the smaller switch-off rates display much higher
complexity. The one with α = 0.05 is special, because it
equals the rate of dissipation, β. We see that for α > β, the
ensembles are spiralling near the origin, and for α < β they
still very much resemble the initial, chaotic attractor. In other
words, the overturning states which stretch over the entire
angle range 2π seem to disappear for α > β by the time
of t = 25T . Figure 6(d) provides an additional comparison
of the different scenarios. Here besides the amplitude ratio
C(t)/C0 the ensemble averaged mechanical energy 〈E(t)〉/E0

is also plotted (symbols) at integer periods [37], where E0

is the initial average energy. One sees that for fast scenarios
the amplitude ratio is below the energy ratio indicating that
even after the amplitude has decreased to a negligible small
value, the motion is yet rather energetic, and, e.g., overturnings
might occur. For slow scenarios small energy values are
reached earlier than small values of the amplitude. For α = β

(continuous, red curve and diamonds in the last panel) the
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FIG. 5. Snapshot attractors at time t = 25T , that is 15 periods
after the beginning of the switching off process. In panels (a)–(e)
the switch-off rates are α = 0.2, 0.1, 0.05, 0.025, and 0.0125. The
corresponding amplitudes C(t = 25T ) are also indicated. Panel (f)
shows a comparison of the relative amplitude C(t)/C0 (curves as
shown in Fig. 1) and the relative mechanical energy averaged over
the ensemble 〈E(t)〉/E0 (symbols), where E0 is the initial average
energy.
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FIG. 6. Comparison of the snapshot attractors with the frozen-in
attractors for switch-off rates α = 0.1 (a), 0.05 (b), 0.025 (c), and
0.0125 (d) when the amplitude takes on C = 0.5692. Colored Dots
indicate the coordinates of the frozen-in (regular) attractors for the
same C = 0.5692, marked with the same color as in the bifurcation
diagram. The snapshot attractors have nothing to do with the frozen-in
attractors belonging to the same C value.

two quantities become negligible at about the same time.
This indicates a qualitative difference between fast and slow
scenarios: the former dynamics is energetically rich at the end
of the switching off process.

B. Comparison of the snapshot attractors
with the frozen-in attractors

We take a fixed C = 0.5692 value where only three simple
periodic attractors, period-2 limit cycles, exist. Whatever
switch-off rate is chosen, the ensemble when reaching this C
value differs greatly from the frozen-in attractors: the ensemble
has a very rich filamentary structure. In Fig. 6 the points (large
dots) of the frozen-in periodic attractors do not even overlap
with the branches of the snapshot attractor in many instances.
Accumulation about these points is strongest for the lowest
rate, but even here the filamentary structure stretches over the
whole angle range.

C. Comparison of frozen-in unstable manifolds
and the snapshot attractors

The grey dots in Fig. 2(b) provide a clear evidence for
the presence of long-lived transients over a broad range
of frozen-in C values. Transient chaos is governed by an
underlying nonattracting chaotic set, a chaotic saddle in phase
space [38]. As any saddle, it also possesses both a stable and
an unstable manifold. The unstable manifold is characteristic
for moving away from the chaotic saddle. Since the frozen-in
attractors differ strongly from the snapshot attractors, it is
natural to compare the latter with the invariant sets of the
frozen-in chaotic saddles.

When the driving amplitude is continuously changing, there
is no time to reach a particular attractor belonging to a given C

value. The ensemble of trajectories is thus expected to reflect
the deviation from chaotic saddles. The question thus arises:
what is the relationship between the image of the snapshot
attractor and the unstable manifold for the appropriate C value.
The latter can be obtained by standard numerical methods
worked out in the theory of transient chaos [38]. The black
curves in Fig. 7 illustrate that a qualitative similarity can be
observed indeed.

The frozen-in saddles possess also stable foliations. To
check if an analogous property holds for the decay of chaos,
we have iterated an initial phase-space region with the time
reversed dynamics of (1). In order to generate the grey (red)
curve in Fig. 7(c), we took a small disk of phase-space radius
0.1 with N = 106 initial points about the unstable period-1
orbit of small amplitude swingings around the origin (the
continuation of the middle (blue) branch in Fig. 2(a)) at
C0 = 0.5692 and iterated them backwards with α = 0.025
up to reaching C = 1.067 after four periods. The filaments
plotted in grey red in Fig. 7(c) approximate thus the stable
foliation of an unstable period-1 orbit on the snapshot attractor
at time t = 14T . The snapshot attractor at the same time is
well approximated by the fourth iterate of a small disk about
the small-amplitude-swinging period-1 orbit on the C0 = 2
attractor, thus the black filaments in this panel can also be
considered to be the unstable manifold of a period-1 orbit
observed at time t = 14T . These two foliations together imply
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(a) (b) (c)

(d) (e) (f)

FIG. 7. Comparison of the frozen-in unstable manifold [panels (a) and (d), small rectangles around attractors indicate the escape condition
used in the numerics] and the snapshot attractor (b) and (e) reached with α = 0.1 at C = 1.0670 and C = 0.5692. Panels (c) and (f) exhibit
the snapshot attractor for C = 1.0670 and C = 0.5692 with a slow rate, α = 0.025. In these panels the right column the stable foliation is also
given in grey (red) (see text).

the existence of a horseshoe structure in the phase space of
even the decaying dynamics, and can be considered a clear
indication of chaos. The right lower panel is an analogous
stable foliation obtained by taking a small phase-space
droplet about the unstable period-1 orbit of small amplitude
swingings around the origin at C0 = 0.1620 and iterating it
backwards with α = 0.025 up to reaching C = 0.5692 after
eight periods. The dynamics with changing driving might
thus also be interpreted as one governed by a continuously
moving underlying chaotic saddle, which exists for up to
surprisingly low values of C. (Numerical evidence indicates
that in the stable foliation, filamentarity in the droplet’s shape
never appears when the backward simulation stops at C < 0.3.
Hence no time dependent chaotic saddle can exist in this
range.)

VI. A STATISTICAL MEASURE OF
THE DYNAMICS’ VARIABILITY

A. Standard deviation over the ensemble

The internal variability of the dynamics may be character-
ized by the extent of the attractor either in the angle or in the
angular velocity direction. Since the angle is represented in
the range (−π,π ), this periodic projection is not a proper
representation of variability. It is therefore appropriate to
concentrate on the angular velocity. The maximum extent
of the attractor in this direction may be a good measure of
variability. In order to not only reflect a “geometric” property
but also take into account the uneven distribution of points on
the snapshot attractor, we evaluate the standard deviation of
the angular velocity ω, that is, the quantity

σ = (〈ω2〉 − 〈ω〉2)1/2, (4)

where the brackets represent averaging over the N members
of the ensemble. This quantity is of course dependent on the
time instant t when the averaging is performed.

Figure 8 shows the σ (t) and σ (C) functions evaluated at
integer multiples of the period for the different scenarios.
In the σ (t) graph no change can be seen in the first ten
periods since the driving is constant C0 = 2 up to t = 10T .
Immediately after the switching off process starts, for t > 10T ,
the standard deviation decreases in time [Fig. 8(a)]. This
change is slow, especially for the slow scenarios. The reason
for this lies in the existence of transient chaos for a long
time in the switching off dynamics. The standard deviation
then suddenly drops, indicating a qualitative change in the
dynamics, when the region of oscillations about the origin
is reached, but the time of the drop depends strongly on the
scenario. The σ (C) graphs [Fig. 8(b)] compare the standard
deviation in the various scenarios at identical C values. They
are rather similar for C > 0.2. The region C < 0.25 is blown
up in the inset to indicate the dependence of the drop on
the scenario. There we see that the scenario with α = β

(approximately linear continuous curve with red diamonds)
plays the role of a kind of separatrix: fast (slow) scenarios
are characterized by approaching zero along a graph with
infinite (zero) slope. This indicates again that dynamics with
α > β remain rather rich in energy up to very small C

values.

B. Revival of chaos

Up to now, the dying out of the system’s chaotic behavior
has been studied. Now we turn to study the process in the
reversed direction when the driving amplitude starts growing
from an initially small value. It is important to note that this
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FIG. 8. Standard deviation of the angular velocity ω on the snapshot attractor (a) as a function of time and (b) as a function of the amplitude
C (right panel). The ensemble consists of N = 105 points, the different scenarios are marked with different symbols. The inset in (b) shows
a blow-up of the graphs near the point of a sharp transition, about C ≈ 0.2. The black graph is obtained by evaluating the standard deviation
over the periodic orbits of the bifurcation diagram by taking each element with equal weight. This switching over to σ = 0 at C = 0.2 is due
to the fact that the overturning period-1 attractors disappear in a saddle-node bifurcation here.

is not the time reversed dynamics of Eq. (1). The dynamical
problem remains dissipative (β > 0), Eq. (1) holds, only (2)
is replaced by C ′(t) with a formally negative rate (of the same
modulus as in the switching off process) and a small initial
value C∗ � 1:

C ′(t) =
{
C∗ · eαt , for t < t∗0 ,

C0, for t � t∗0 .
(5)

Time t∗0 is the length of the switching off process after
which the revival starts (see Fig. 9). For function C ′ to be
continuous,

C∗ = C0e
−αt∗0 .

For each elapsed period in this new process, the same
C values are obtained, as during the switching off process.
The “death,” and “revival” of chaos can thus be compared.
Correspondingly, the initial condition for the ensemble of the
“revival of chaos” process consists of the snapshot attractor at
t = 10T + t∗0 . Since the initial extension of the ensemble for

FIG. 9. Time dependence of the standard deviation for the death
and revival of chaos. The standard deviation of the ensemble has been
calculated according to (4) at the end of each elapsed period. Here
α = 0.025, t∗

0 = 30T .

the new process is small, the beginning of the ensemble’s time
evolution is rather simple, the ensemble remains very much
concentrated to the origin. After a few times of ten periods,
an increasingly complex pattern appears rather suddenly. The
standard deviation of the angular velocity characterizes well
the variability of the dynamics in the revival of chaos, too. The
results are shown in Fig. 9 such that the data for the revival are
plotted as a continuation of the α = 0.025 (orange) curve of
Fig. 8(a).

C. Hysteresis

A different representation of the variability of the death
and revival processes is obtained by plotting the results as
a function of the instantaneous driving amplitude of both
processes on the same plot. The difference between the death
and revival of chaos then appears in the form of a hysteresis
loop. The upper and lower panels of Fig. 10 show the results
for the switch-off rate of Fig. 9 and for a much faster scenario,
one with α = 0.1 > β, respectively. For the preparation of
Fig. 10(b), we took into account that waiting too long would
cause the original ensemble to become so much concentrated
to the origin that in spite of the increase in the amplitude, the
ensemble would numerically remain a point in phase space,
with 0 standard deviation. Therefore, here we chose a much
shorter t∗0 value, that of 12T . Comparing the two panels of
Fig. 10 we see that the hysteresis loop is more or less of
the same size. This is so for all the other scenarios, too. The
difference between cases with α < β and α > β is that for
slow scenarios the upper curve approaches the origin along
the C axis [as in Fig. 10(a)], while this occurs along the σ

axis for fast scenarios [as in Fig. 10(b)], in harmony with
the tendency found in the inset of Fig. 8. Further insight can
be provided into the mechanisms underlying the hysteresis
by plotting the projection of the snapshot attractor on the
angular velocity axis, for both the death and the revival
process, overlaid with the bifurcation diagram of Fig. 2(b)
(see Fig. 11(a)). The fact that the increase in the hysteresis
loop starts in all cases at about C = 1 might be related to the
collision of the unstable swinging orbit, the continuation of
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FIG. 10. Panel (a): hysteresis in σ (C) for α = 0.025 < β, t∗
0 =

30T . Panel (b) for α = 0.1 > β, t∗
0 = 12T .

the blue branch in the bifurcation diagram, with an extended
chaotic saddle at about C = 1. In the other direction, when
C is decreasing from C0 = 2, the ensemble size practically
follows the hull of the extension of the chaotic saddle and
its unstable manifolds as long as they exist. Our simulations
indicate that transient chaos is not present in the frozen-in
system for C < Cc, where Cc ≈ 0.33. This observation also

(a)

(b)

FIG. 11. (a) The extension of the snapshot attractor in the angular
velocity direction overlaid with the ω vs C bifurcation diagram
[Fig. 2(b)]: revival of chaos (death of chaos) light grey, orange, (dark
grey) intervals. α = 0.025. (b) estimated escape rate of the frozen-in
chaotic saddle for the different amplitudes.

explains why the σ (C) curves are practically the same for
C > 0.33. To prepare the discussion of the next section, we
display, in Fig. 11(b), the estimated value κ(C) of the escape
rate from the frozen-in chaotic saddle. Since the reciprocal of
the escape rate sets the average lifetime of transient chaos, we
see that the latter extends over a very broad range, in particular
since κ approaches zero about crisis points.

VII. DISCUSSION

We have shown that the disappearance of chaos due to
the gradual switching off of the driving is a surprisingly
complex process. Individual trajectories vary considerably,
thus, no single randomly selected time series can be considered
to be representative. Therefore, monitoring an ensemble of
trajectories (of snapshot attractors) is found to be appropriate.
The shape of the attractor itself, and its change in time depends
on the switching off scenario.

Naively one might think that the behavior seen during
this process is closely related to the bifurcation diagram,
which displays the attractors observed in an infinitely slow,
quasistatic switching off scenario.

The dynamics studied are found instead to follow roughly
the structure of the bifurcation diagram containing the tran-
sients: the unstable manifolds of the underlying frozen-in
chaotic transients are observed to be reflected in the patterns
of snapshot attractors. This suggests that a portion of the
ensemble members may come close to some chaotic-saddle-
like structures, but because they are unstable, trajectories start
moving away from there along the unstable manifolds. There
is not enough time for the trajectories to reach the frozen-in
attractor, because the driving is ever shifting in time. Not even
the frozen-in unstable manifolds lead to total agreement. We
have seen that below Cc ≈ 0.33 no transient chaos can exist
in the frozen-in system, but the snapshot attractor of Fig. 4(f)
belonging to C = 0.0461 has a strong filamentary structure.
A possible explanation might be here that by reaching this
C value, due to the previously existing chaotic saddle, and
its manifolds, the snapshot attractor already has a striated
structure. Later this shape is just passively “advected” further
in the phase space, which is now lacking any kind of frozen-in
chaos. We thus conclude that the death of chaos can only start
below the critical Cc value which designates the disappearance
of transient chaos in the frozen-in system.

Our observations help to formulate what the condition
for a “quasistatic” switching off is. Without knowing chaos
theory one may think that the switch-off time must be much
longer than the dissipative relaxation time: τs 	 τd . However,
transient chaos defines a new timescale which is estimated by
the reciprocal of the escape rate from the chaotic saddle, 1/κ .
This can be much larger than the dissipative relaxation time.
In addition, the escape rate may depend on all parameters of
the nonlinear problem. The condition for a quasistatic process
becomes thus

α � β,κmin, (6)

where κmin is the lowest value in the whole range of parameters
tested. In our case β = 0.05, and the minimum of the
numerically determined escape rates [Fig. 11(b)] is very small
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(at crises points the theoretical value of κ is exactly zero). We
thus conclude that a quasistatic switching off is impossible
over the full range (0,2) of driving amplitudes. The dynamics
of the switching off process is much richer than any frozen-in
dynamics.

Finally, we note that the driven pendulum is of course only
one, but a generic, example. In practically the same spirit,
we can also find a condition for quasistatic switching off in
cases where the phase-space contraction and the switching off
scenarios follow a general time dependence. In this case, for
every moment, that is, for each value of C during the scenario,
we can define an effective β(C) and α(C) parameter belonging
to that C. These are to be compared with the escape rate for
the particular frozen-in C value. The local condition for a
quasistatic scenario becomes then to be

α(C) � β(C),κ(C), (7)

for any possible C value. In our example there are C intervals
where κ(C) > β, but the condition α � β is never fulfilled

since the smallest α is just one-quarter of β. This explains
a posteriori why we never found a good agreement with the
bifurcation diagram, and this is why the black curve of the inset
of Fig. 8(b) is not reached by our numerical data. The problem
of understanding the dynamics in the presence of a driving
subjected to a temporal shift is very general, and might occur in
many disciplines, in particular in our era of climate change. The
details may vary from case to case, but it is generally true that
the switching off dynamics with a naturally chosen switch-off
scenario cannot be deduced from the frozen-in cases.
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