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H-1117 Budapest, Hungary
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We analyze the effect of the Basset history force on the sedimentation of nearly neutrally
buoyant particles, exemplified by marine snow, in a three-dimensional turbulent flow.
Particles are characterized by Stokes numbers much smaller than unity, and still water
settling velocities, measured in units of the Kolmogorov velocity, of order one. The presence
of the history force in the Maxey-Riley equation leads to individual trajectories which
differ strongly from the dynamics of both inertial particles without this force and ideal
settling tracers. The main effect of the history force is an extraordinary slow, power-law
type convergence to an asymptotic settling velocity of the center of mass, which is found
numerically to be the settling velocity in still fluid. The spatial extension of the ensemble
grows diffusively after an initial ballistic growth lasting up to circa one large eddy turnover
time. We demonstrate that the settling of the center of mass for such light aggregates is best
approximated by the settling dynamics in still fluid found with the history force, on top of
which fluctuations appear which follow very closely those of the turbulent velocity field.
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I. INTRODUCTION

There is an increasing evidence, both theoretical and experimental, pointing out the relevance of
memory effects in the advection of inertial particles (see, e.g., Refs. [1–11]). Several further studies
concerning these effects in turbulence are reviewed in Refs. [12,13]. The equations of motion for
small spherical inertial particles were formulated by Maxey and Riley [14] and Gatignol [15] with
corrections by Auton et al. [16] and are of integro-differential type in their full form. They contain
an integral term which accounts for the diffusion of vorticity around the particle throughout its entire
history. This integral term is called the history (or Basset) force [17], and it has become clear that
the often used approximation in which this term is neglected is improper, and the full Maxey-Riley
equation should be considered [1–10,12,18,19].

In this work, we analyze the effect of the history force on sedimenting particles in turbulence in the
presence of gravity. Previous efforts to understand the importance of the history force in the presence
of gravity in smooth flows are due to Mordant and Pinton [7] and to Lohse and coworkers [20,21].
Their studies, however, concentrated on free sedimentation, that is, on the particle motion in a fluid
at rest, and on bubble dynamics in a standing wave, respectively. More recent papers investigate the
problem in a stationary [22] and periodically changing cellular flow [4]. The sedimentation problem
in turbulent flows has been considered, to our knowledge, only in stratified turbulence [23] and for
the plankton problem [24].

The motivation for our particular range of parameters comes from recent studies of marine
ecosystems which emphasize the importance of marine snow. Marine snow plays a central role in
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FIG. 1. Representation of the chosen parameters (see Table I) on the particle radius-excess density plane.
The two lower curves represent the relationship between the effective excess density �ρ and the effective radius
a for aggregates with predominantly organic composition [35,45], as expected for the open ocean, while the
uppermost curve shows this relationship for aggregates from coastal areas and estuaries [48], containing a large
fraction of inorganic components.

the carbon cycle [25–27], and its formation is mainly due to physical aggregation, a consequence of
particle-flow interactions. Sedimentation of marine snow is considered to account for a large fraction
of carbon sequestration into the deep ocean [28,29]; this net ocean sequestration flux is estimated
to reach ∼1015 g carbon/yr [29]. The physical and biological properties of marine snow aggregates
make it rather difficult to estimate their sinking velocity. The techniques employed to evaluate settling
velocities vary across different measurements [30,31], and the results are difficult to compare due
to the variation in density and sizes of the used aggregates. An additional difficulty for in situ
experiments is the fact that turbulent kinetic energy varies with depth [32]. While some laboratory
experiments with grid-generated turbulence [33,34] and in situ measurements [35] find indications
for a retarded settling in situ compared to laboratory measurements in still water, other observations
in coastal areas [36] and in the laboratory using Couette devices [37] report an enhancement of the
sinking speed in turbulence.

Marine snow particles contain organic and inorganic components as primary particles which stick
together in a fractal-like structure possessing a relatively high porosity. This fact has been taken
into account in concepts working with an effective density [38–40], an effective diameter [41], or a
modified Stokes law [42] of the aggregates. Moreover, sinking marine aggregates undergo changes
in size and density due to aggregation and fragmentation processes influencing the settling of them
[43].

Those biological properties are difficult to take into account when modeling the sinking of marine
aggregates as inertial particles using the Maxey-Riley equation. The fractal shape can be taken into
account by means of an effective density [44], but this has been studied so far only neglecting the
history force. Since the latter has not yet been formulated for more complicated objects than spheres,
the present study will work exclusively with spherical particles the properties of which are based on
the effective aggregate diameters and effective densities given in the literature. The effective densities
of marine aggregates are usually very close to the water density, and a general property is that larger
aggregates have smaller density than small ones. The relationship between the size (average effective
radius a) and effective excess density �ρ between particle and fluid (�ρ = ρp − ρf ) for aggregates
rich in biological components was proposed by McCave et al. [45] to be �ρ ∝ a−1.3, and this
relation was used to fit the experimental results [46]; see the middle curve in Fig. 1. This relation
is close to the one obtained from in situ measurements from Santa Barbara Channel by Alldredge
et al. [35]: �ρ ∝ a−1.6 for marine snow characterized by a > 250 μm, also with predominately
organic composition (lowest curve in Fig. 1). On the other hand, in estuaries and coastal regions
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TABLE I. Parameters for six representative cases of marine aggregates in the ocean [(I), (II), (III)] and
coastal areas [(IV), (V), (VI)]. Parameters β, St, W , and Re∗

z are defined in Eqs. (5)–(7) and (1), respectively.

Case �ρ (g/cm3) β a (m) St W Re∗
z

(I) 0.015 0.9900 8.21 4.1
(II) 0.0075 0.9950 5 × 10−4 0.083 4.12 2
(III) 0.003 0.9980 1.65 0.8
(IV) 0.05 0.9677 9.67 2.9
(V) 0.025 0.9836 3 × 10−4 0.03 4.91 1.5
(VI) 0.01 0.9934 1.98 0.6

aggregate composition includes more inorganic components [47]; therefore, they are smaller and
slightly denser than the ones formed in the ocean. The corresponding effective size effective density
relationship was studied by Soulsby et al. [48] and assumes �ρ ∝ a−0.66 (see uppermost curve
in Fig. 1). For a review see Ref. [49]. Typical velocities in the ocean’s upper layer are strongly
dependent on the wind and can reach up to 0.5 m/s [50]. The turbulent kinetic energy ε typical for
the open ocean is ε = 10−6m2/s3 [25,51], which sets the size of the smallest possible eddies, the
Kolmogorov length η, to be ∼10−3 m. The size of aggregates (macroaggregates) varies from 0.1
to less than 1 mm [26,52]; however, the average aggregate size is always at most η/2 according to
Refs. [26,52], though the relationship between the average aggregate size and the turbulent kinetic
energy in the ocean is not well established due to the difficulty of in situ measurements.

Since we are interested in the effect of the history force we are confined to a certain, yet realistic,
set of parameters for size and density of our marine snow particles. On the one hand, we choose
Stokes numbers that are not too small for the history term to play an important role. On the other
hand, these Stokes numbers are small enough to decrease the impact of preferential concentrations.
To study the problem, we select six density-size pairs typical of marine snow. The radii are 0.5 and
0.3 mm, since the strongest impact of the history force is expected at the largest sizes, the largest
possible Stokes numbers [12]. To both of these sizes we assign three different densities; see Fig. 1,
where we also display the results of the relationship of the excess density �ρ and particle radius a

for open ocean [48] and coastal areas [45]. The sizes and the flow set the Stokes numbers [see Eq. (6)
below], which take the values St = 0.083 and St = 0.03, respectively. The parameters characterizing
the six cases are summarized in Table I.

As a preliminary qualitative analysis, let us concentrate here on the particle Reynolds number Rep

that should not exceed a limit. It should be below or of the order of unity for the Stokesian drag to be
valid, at least in a good approximation. Since gravity breaks the isotropy of the advection problem
by preferring the vertical (z) direction, and particles are nearly neutrally buoyant, it is worthwhile
defining a vertical and a horizontal particle Reynolds number for spheres of radius a and of typical
slip velocity �v − �u relative to the fluid

Re∗
z = a|vz − uz|

ν
, Re∗

h = a| �vh − �uh|
ν

, (1)

where index h refers to the horizontal component, and ν is the fluid’s kinematic viscosity. The
corresponding usual particle Reynolds number Rep follows from the identity Re2

p = Re2
z + Re2

h.
The order of magnitude of the vertical slip velocity is the settling velocity in still water which
we write as Wsettling = Wuη, where W is the dimensionless settling velocity taken in units of the
Kolmogorov velocity uη (all results for turbulent advection will be given in Kolmogorov units).
Measuring the particle radius in Kolmogorov length, η, we find

Re∗
z = a

η

Wuηη

ν
= W

a

η
, (2)
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since the fluid Reynolds number on the Kolmogorov scale uηη/ν is by definition unity. The horizontal
slip velocity is expected to vanish with the Stokes number. Therefore, the horizontal slip velocity
should be proportional to St uη. Taking the proportionality factor to be unity, we find for the horizontal
Reynolds number in an analogous manner the estimate

Re∗
h = St

a

η
. (3)

Since St � W (see Table I), we find that Rep ≈ Rez. We think that this is a central property of
marine snow sedimentation, which expresses that these particles behave nearly as passive tracers
when looking at their horizontal dynamics, but they sediment with a speed comparable to that of
the small-scale fluctuations of the fluid (uη); i.e., particles are not passive tracers from the point of
view of their dynamics in the vertical direction. We shall in fact see that the instantaneous particle
Reynolds numbers converge in time towards Re∗

z . The characteristic numbers Re∗
z are also indicated

in Table I.
The paper is organized as follows: In Sec. II we present an overview of the equation of motion with

the history force. Next, we recall an infinite series solution of it in still fluid and find a simple analytic
approximation to be valid after relatively short times, presented in Sec. III. Then we summarize the
approach used to compute the history force and to generate the turbulent velocity field in Sec. IV.
In Sec. V our numerical results concerning the sedimentation dynamics in space are summarized. In
Sec. VI we turn to results on velocities and accelerations. Section VII is devoted to estimating the
relevance of the Faxén corrections. Our final conclusions are given in Sec. VIII.

II. EQUATION OF MOTION AND NOTATIONS

We analyze the advection of spherical, rigid particles with a small particle Reynolds number
in an incompressible and viscous fluid. The Lagrangian trajectories of such particles are evaluated
according to the Maxey-Riley equation [14,15], including the corrections by Auton and coworkers
[16]. In the full Maxey-Riley picture one describes the dimensionless evolution of the particle position
�x(t) and velocity �v(t) = d �x/dt in a flow field �u(�x,t). Without Faxén corrections the equation of
motion reads as

d �v
dt

= 1

St
(�u − �v) + W

St
�n + β

D�u
Dt

−
√

3β

πSt

∫ t

0

d(�v−�u)
dτ√
t − τ

dτ, (4)

where �n is the vertical unit vector pointing downwards. This form of the equation holds when the
particle is initialized at time zero with a velocity coinciding with that of the fluid (�v(0) = �u(0)), i.e.,
with zero initial slip velocity. Otherwise, in the equations of motion that are valid for arbitrary initial

conditions the last term of Eq. (4) has to be replaced by
√

3β

πSt
d
dt

∫ t

0
(�v−�u)√

t−τ
dτ . Note that this is also

equivalent to simply adding the term [�v(0) − �u(0)]/
√

t to the right-hand side of Eq. (4) [53,54]. We
have to distinguish the full derivative along a fluid element and a particle trajectory, given by

D

Dt
= ∂

∂t
+ �u · ∇ and

d

dt
= ∂

∂t
+ �v · ∇,

respectively. The velocity of the particle changes due to the action of different forces. The forces in
Eq. (4) represent from left to right: the Stokes drag, the gravity, the pressure force (which accounts
for the force felt by a fluid element together with the added mass force), and the Basset history
force. For our choice of the integral form of the history force with the Basset kernel we rely on the
experimental evidence that the Maxey-Riley equation appears to be valid up to Rep approximately
5 [55] and 17 [56]. The equation is written in dimensionless form, rescaled by the Kolmogorov time
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τ and the Kolmogorov length scale η of the flow (uη = η/τη). The ratio

β = 3ρf

ρf + 2ρp

= 3ρf

3ρf + 2�ρ
(5)

characterizes the excess density of the particle �ρ and the density of the fluid ρf . For aerosols
β < 1 [57].

Another dimensionless parameter in Eq. (4) is the Stokes number

St = a2

3νβτη

= τp

τη

, (6)

which is the ratio of the particles’ relaxation time τp due to kinematic viscosity ν of the fluid to the
Kolmogorov time.

Additionally, parameter W governs the dimensionless settling velocity in still fluid. It can be
written as

W = St(β − 1)
gη

u2
η

, (7)

where the last factor corresponds to the reciprocal of a turbulent Froude number. It is to be emphasized
that W cannot be varied freely: an ad hoc choice of W to a given St could imply that, for a fixed
density, the flow and/or the gravity g are changed. The W values given in Table I, used by us, are
the ones which follow from the particle properties and the characteristics of our turbulent flow. In
sedimentation the role of the dimensionless settling velocity might be more relevant than that of the
Stokes number.

We shall compare the Maxey-Riley equation [Eq. (4)] to the approximation, which does not take
into account the history force,

d �v
dt

= 1

St
(�u − �v + W �n) + β

D�u
Dt

, (8)

often called the advective equation of inertial particles. We emphasize that Eq. (8) does not follow
from any approximation of the Maxey-Riley equation for our sets of particle parameters; its use is
motivated by mere numerical convenience.

We also carry out simulations with the equation

�v = �u + W �n, (9)

valid for ideal noninertial particles. Note that this case arises when St → 0 and is the limit of both
Eqs. (4) and (8), with different convergence properties, of course.

III. SETTLING IN STILL FLUID

The exact solution for the settling in a still fluid (�u = 0) was worked out by Belmonte and
coworkers [2]. In this case a natural velocity unit is the settling velocity Wsettling, and time can be
measured in units of the particle relaxation time τp. In these units, the dimensionless vertical velocity
v′

z(t
′) in dimensionless time t ′ can be expressed in terms of complementary error functions Erfc.
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FIG. 2. Short-term behavior of the settling in still fluid (�u = 0) in the different dynamics investigated. With
memory (10): continuous line; without memory (12): dashed line, and noninertial particles [v′

z = 1 for t ′ > 0, as
follows from (9)]: dotted line. Note the rather different velocities predicted for any time instant up to t ′ = 3. The
extension panel shows that the solution with memory is considerably away from unity at t ′ = 50, illustrating
an extraordinarily slow convergence. Time and velocity are measured in units of τp and Wsettling, respectively.

With zero initial velocity it reads in our notation as

v′
z(t

′) = 1 +
√

3β

α1 − α2

[
eα1t

′
Erfc(

√
α1t ′)√

α1
− eα2t

′
Erfc(

√
α2t ′)√

α2

]
(10)

where α1,α2 are the roots of the quadratic equation α2 + (2 − 3β)α + 1 = 0 depending only on the
density via parameter β.

By keeping only the leading terms of the power-law expansion of the function eζ Erfc(
√

ζ ) for
large ζ (long times t ′), we find

v′
z(t

′) = 1 −
√

3β

πt ′

[
1 − (3β − 2)

2t ′

]
. (11)

This form turns out to provide a rather accurate approximation for t ′ > 2, and even by neglecting
the second term in the parentheses it is very close to the exact solution for t ′ > 22. Note that these
forms do not depend on the particle size since Stokes numbers can be defined only in a moving fluid.
Whether the particle Reynolds number Rep remains small, i.e., whether Eq. (4) remains valid during
the entire free fall, should be checked a posteriori in the knowledge of the dimensional settling
velocity, the particle size and the fluid’s kinematic viscosity.

For comparison, we mention that the solution of the widely used inertial dynamics equation
[Eq. (8)] provides for the same problem a linear differential equation whose solution is with the
same zero initial condition, and in the same units:

v′
z(t

′) = 1 − e−t ′ . (12)

This solution is of completely different character.
The solution of the ideal tracer problem [Eq. (9)] is that the particle velocity jumps immediately

from 0 to unity and remains there forever. Note that this behavior follows from both formulas (11)
and (12) in the limit of τp → 0, which is equivalent to taking t ′ → ∞ in these expressions. Equation
(12), however, does not follow as any limit of (10). Figure 2 provides a comparison of these different
dynamics. It is to be noted that the solution with memory has an extraordinary long convergence,
while the inertial solution without memory (12) reaches the still water settling velocity with a 1%
accuracy at t ′ = 4.6; the solution with memory is still 15% away at t ′ = 50 (as shown in the extension
panel of Fig. 2), and the 1% accuracy will be reached by about t ′ ∼ 104.
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TABLE II. Parameters of the simulated turbulent flow: Taylor Reynolds number Reλ = λurms/ν, size of
the periodic box Lbox, integral scale L = u3

rms/ε, Taylor microscale λ = urms

√
15ν/ε, size of a grid cell �x,

length of the whole simulation Tsim, large-eddy turnover time T = L/urms, time step �t , root-mean-square of
the velocity urms = √〈�u2〉/3, number of grid points N3. All dimensional quantities are given in multiples of
the corresponding Kolmogorov units.

Reλ Lbox/η L/η λ/η �x/η Tsim/τη T /τη �t/τη urms/uη N 3

112 633 156 20.9 1.24 1020 29.0 0.015 5.39 5123

IV. TURBULENT FLOW AND NUMERICAL SIMULATION

We consider here the case of particles moving in statistically homogeneous, isotropic, and
stationary turbulence [58]. To this end we solve the vorticity equation, which is equivalent to the
incompressible Naiver-Stokes equation, on a grid in a triply periodic box of size Lbox. The energy
is injected by a large-scale forcing; see Ref. [12]. For the integration of the flow we use a standard
dealiased Fourier pseudospectral method [59,60] with a third-order Runge-Kutta time-stepping
scheme [61]. The values of Eulerian quantities, which are available on a grid, are obtained at the
particle positions through tricubic interpolation. The characteristics of the turbulent flow and the
simulation parameters are depicted in Table II. Since the Kolmogorov scale is η = (ν3/ε)1/4 [58], a
fixed value of it can belong to any kinematic viscosity ν and mean energy dissipation ε, as long as
the ratio ν3/ε is fixed. For the particular choice of η = 1 mm, which we shall take as a typical value
in our estimations, one finds ε ∼ 10−6 m2/s3 with the viscosity of water.

The presence of the history integral in Eq. (4) leads to two problems from the numerical point
of view. First, the singularity of the history kernel impedes an accurate numerical solution. This
problem can be solved by the use of a specialized integration scheme [19], which treats the history
force appropriately. This third order scheme has been adjusted for our purposes; see Ref. [12] for
details. Second, it is necessary to recompute the history integral for every new time step. This leads
to high computational costs and a high demand for memory (to store the history of each particle).
This second problem is inherent to the dynamics with memory and, as a consequence, limits us to
a moderate number of particles. For each case of particle parameters we simulated Np = 1.5 × 105

particles. The initial particle positions have been chosen randomly and homogeneously distributed
in the triple-periodic box of size Lbox of the simulation; the initial particle velocity is that of the fluid
at the particle’s position.

V. TURBULENCE: RESULTS ON THE POSITION OF PARTICLES

We start by comparing individual trajectories in the Maxey-Riley equation (4), in the inertial
equation (8) in which memory is neglected, and in the noninertial dynamics (9). Throughout the
paper we will use the following notation for particles following the different dynamical equations (4),
(8), and (9) and show their corresponding curves with particular line types:

(1) Particles with memory, continuous line, computed by (4)
(2) Particles without memory, dashed line computed by (8) and
(3) Noninertial particles, dotted line, computed by (9),

respectively.
Trajectories with the same initial condition, but following these three distinct dynamics, deviate

from each other already after a short period of time. The distance among these trajectories increases
significantly with time in both the horizontal and the vertical directions. This results in strong
differences in the predictions for the position of a particle, since the trajectories of different dynamics
can be a thousand Kolmogorov lengths away from each other after 500τη as Figs. 3(a) and 3(d)
illustrate [62].

Although there are strong differences for the predictions of the position of an individual particle
for these three dynamics [Fig. 3(d)], these differences are smaller when an ensemble is considered
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FIG. 3. (left) Individual trajectories of the same particle started with the same initial conditions (with
zero slip velocity) with the parameter set of case (I), following three distinct equations of motion (x0 =
293.16 η,y0 = 214.18 η,z0 = 105.71 η). (middle and right) Position of the center of mass of the ensemble
containing 10% of our standard particle number (Np = 1.5 × 104), and the standard number Np = 1.5 × 105

of particles, respectively, for the case (I), (II), and (V) evolved with the different equations of motion up to
1020 τη. Here and in the following figures we use the convention that x and t denote the dimensional space and
time, respectively, and the dimensions are given in parentheses.

[Figs. 3(e) and 3(f)]. For this analysis we initialize clouds of particles, one with smaller and other with
larger number of particles, with the initial condition mentioned above, and evolve them according
to our three possible dynamics. The center of mass of each cloud also follows a distinct trajectory;
however, the distances among the centers of mass do not grow as fast as that of the trajectories
of individual particles [see Figs. 3(b) and 3(c)], where the final horizontal difference is of a few
Kolmogorov lengths only. Moreover, in the x,y planes (upper panels (a)–(c)), it becomes clear that
the total displacements are in rather different directions with the different dynamics. The horizontal
distances between the centers of mass decrease with the number of particles, which can be considered
as a consequence of the law of large numbers. The total horizontal displacement in all three dynamics
is therefore expected to be zero in the large-particle number limit [63].

After having seen the results for the center of mass of the particle ensembles, we show in Fig. 4
their distribution in space at three different time instants. It is clear that with large settling velocities
the ensemble blobs are well separated after 500 time units; this separation decreases, however,
with W , and with the smallest settling velocity there is hardly any separation, the blobs strongly
overlap, and some points are even above the cube of initial conditions after 1020 time units. These
results are obtained in the presence of memory effects, but we generated the corresponding figures
without memory and with noninertial particles [governed by Eqs. (8) and (9), respectively] too. In
spite of the difference in the individual and in the center-of-mass trajectories following from the
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FIG. 4. Spatial distribution of the sedimenting particle ensembles for cases (IV), (V), and (VI) simulated
with the Maxey-Riley equation (4). Black (the top), blue (the middle) and red (the lower) ensemble of dots
represent the location of the particles at times t = 0,510 τη, and 1020 τη, respectively. A 2D histogram of the
particle density is projected onto the (y,z) plane, curves represent isolines of densities.

different dynamics, the statistical properties are found to be more similar. To see the differences,
more quantitative methods should be taken.

In Fig. 5 we present a time-continuous plot of the z coordinate of the center of mass for the
different cases with the three different dynamics. Here differences become visible and are on the
order of a few hundred Kolmogorov lengths at the end of the simulation. The long-term behavior is a
seemingly linear increase in all cases. Note that the graphs for the largest excess density [case (I) and
(IV)] are close to each other in spite of the different Stokes numbers. The cases with intermediate
and small excess densities also behave similarly.

FIG. 5. Time dependence of the z coordinate of the center of mass in the different dynamics, distinguished
by different line types, as in Fig. 3, and for all six cases distinguished by different colors; dashed and dotted
lines are hard to distinguish in this representation, but the continuous line (with memory) is always below the
other two. The two-sided arrows indicate the typical spatial extension in z of the ensemble for case (I) at the
given instances.
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FIG. 6. Time dependence of the variances in the horizontal (x, left panel) and vertical (z right panel)
directions in the different cases (coloring and line types as in the previous figure) on log-log scales. For clarity,
the initial σx(0) = σz(0) (=633/

√
12 = 183 in dimensionless units) is subtracted. The graphs of different

dynamics are overlaid, and dashed and dotted lines are hard to distinguished in this representation. The thin
continuous black lines have slopes 2 and 1, respectively, to guide the eye.

As seen from Fig. 4, the blob sizes are also important. To monitor their time evolution, we
determined the standard deviation (std) σ about the center of mass in the horizontal x direction,
and in the vertical direction, as Fig. 6 shows. The horizontal and the vertical behavior are different,
reflecting again that gravity prefers a certain direction. In fact, the vertical extension of all the blobs
is larger than the horizontal one at any instant. The data are plotted on a log-log scale to enlighten
the appearance of power-law behavior. The two black straight lines represent ballistic (σ 2 ∼ t2) and
diffusive (σ 2 ∼ t) spreading. A crossover to the diffusive behavior can be observed at t ∼ 20–30
time units. It is natural to understand that when the blobs are large, the ensembles become subjected
to a diffusive spreading by wandering between the largest scale vortices.

In order to explain the ballistic behavior, we recall the theory of Batchelor [64] for the separation
of pairs of ideal tracers in three-dimensional homogeneous isotropic turbulence. This theory claims
that the mean square separation should grow as t2 for times shorter than a characteristic time t0.
For times larger than t0 the well-known Richardson scaling [58] should hold characterized by a
scaling proportional to t3. This regimes extends, however, only up to the time when the effect of the
largest coherent structures becomes dominant, i.e., up to the eddy turnover time T . The characteristic
time t0 depends on the initial spatial separation �r0 between the two particles. In dimensional units
t0 = (|�r0|2/ε)1/3. Hence, for an ensemble of particles with different initial distances no unique t0 can
be found, so that only a typical t0 can be estimated.

Although the original theory applies to ideal, i.e., nonsettling tracers, it is worthwhile estimating
t0. For our initial ensemble a natural choice is the std of their positions in the initial cube of size Lbox,
which is

√
3Lbox/

√
12 = √

3σx(0)η, where σx(0) denotes the dimensionless std in the x direction,
used in the plots of Fig. 6. To estimate the dimensionless t0/τη we replace |�r0|2 by 3σ 2

x (0)η2 to find

t0

τη

=
[

3σ 2
x (0)η2

ετ 3
η

]1/3

= [
3σ 2

x (0)
]1/3 = (3 × 1832)1/3 = 46,

where we used that τη = (ν/ε)1/2 and η = (ν3/ε)1/4 [58]. This value turns out to be larger than the
dimensionless turnover time, T/τη which is about 30 (see Table II). Thus, there is no possibility for
seeing the Richardson scaling due to the broad initial distribution of the particles. The anisotropy
of the problem is reflected in the fact that the crossover to the diffusive behavior occurs somewhat
later in the vertical than in the horizontal. We have verified that the evolution of an initially strongly
localized ensemble leads to Richardson behavior (see the Appendix).

A related problem is worth mentioning. Single-particle dispersion was investigated in stratified
turbulence by van Aartrijk and Clercx in the presence of the history force [23], but with larger typical
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FIG. 7. Short-term behavior of the center of mass velocities expressed as (〈vz〉 − W )/W : empty symbols:
with memory [Eq. (4)], and full symbols: without memory [Eq. (8)]. Black stars indicate the results for
noninertial particles but only up to t = 0.3 τη in order to avoid heavy overlap. Continuous (dashed) curve
represents the still fluid result with memory (without memory) as expressed by (10) and (12).

excess densities and with Stokes numbers comparable to ours. They also found a crossover between
ballistic and diffusive spread; i.e., the history force did not change the exponents.

VI. TURBULENCE: RESULTS ON VELOCITIES AND ACCELERATIONS

An investigation of the short-term behavior, up to a single time unit (one Kolmogorov time),
indicates clearly that particles for which the history force is neglected approach typically much
faster the asymptotic settling velocity than those for which the history force is taken into account.
This can very well be seen in Fig. 7, which exhibits the z component of the particle velocities
averaged over the ensemble, for all six cases, and for all three types of dynamics. At t = 0.4
the particle dynamics without memory indicates a settling with W for all the cases, without any
further change, while the results following from the Maxey-Riley equation predict a settling with
about W/2, with a difference between the cases of different Stokes numbers, and a monotonous
increase for t > 0.4. On this scale no difference can be seen between the cases with different excess
densities �ρ.

It is interesting to compare the numerical data with the analytic expression presented for the free
fall in still fluids in Sec. III. To this end, we have to rescale Eqs. (10) and (12) according to the
units used for the turbulent flow. Since the time unit in still fluid can only be τp, but in turbulence
it is chosen to be the Kolmogorov time τη, and the Stokes number is exactly τp/τη [see Eq. (6)],
the dimensionless time t ′ of those equations should be transformed into a t/St, where t is the
dimensionless time used in all our equations. Simultaneously, v′

z of the still fluid case should be
replaced by Wvz in order to be converted to our units. The different curves in Fig. 7 represent the still
fluid results (10) and (12) in these units. Since our six parameter sets are grouped around two Stokes
numbers, with which time is scaled, each type of solution appears with two curves. A surprising
observation is that all points representing the ensemble averages (symbols) of the turbulent results
fall exactly on the still-fluid curves.

To see the long-term behavior, and check if the relation with the still fluid results hold also on
this time scale, we show in Fig. 8 the difference between W and the ensemble averaged vertical
velocity up to 1020 Kolmogorov times. Since the large eddy turnover time T in Table II is about
30τη,t = 1020 corresponds to about 34 turnover times, quite a considerable time span in turbulence.
The results of two cases [(I) and (III)] are shown in Figs. 8(a) and 8(d) for the Maxey-Riley dynamics
with memory, in Figs. 8(b) and 8(e) for the dynamics without memory and in Figs. 8(c) and 8(f) for
the noninertial dynamics. With memory, the ensemble averaged settling velocity is always below W

and has not yet reached a steady value by the end of the investigated time interval. This is so even
for averages taken over finite time windows of, say, one large eddy turnover time. Such smoothed
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FIG. 8. Long-term behavior of the velocity difference (〈vz〉 − W ) for case (I), characterized by St =
0.083, β = 0.99, W = 8.21 (a)–(c) and case (III), St = 0.083, β = 0.998, W = 1.65 (d)–(f). The left column
(a), (d) shows the results of the full Maxey-Riley equation, the right column those without memory effects:
inertial without memory (top) and noninertial (bottom). Continuous red lines in (a), (d) represent Eq. (13) an
approximate form of settling in still fluid, which fits nevertheless very well to the turbulent data.

time series (not shown) are, however, remarkably close to the result valid in still fluid. In order to
check if this property is not a consequence of the relatively large settling velocities, we carried out
additional simulations with 10 times smaller W but the same Stokes numbers as in Table I. The
results in turbulent flow are found to correlate with the still fluid settling just as in Figs. 7 and 8. In
fact, the red lines represent the function:

〈vz〉(t) = W

[
1 −

√
3St

πt

]
, (13)

which follows from (11) to be valid asymptotically, and the deviation of β from unity can be
neglected since all our access densities are rather small. This indicates that the decay towards the
asymptotic settling velocity is of power-law type, decaying as one over the square root of time. Since
such functions are scale-free, no characteristic time can be associated with them (in contrast, e.g.,
to exponential decays). The extension panel of Fig. 2 illustrates this feature. From the fact that (13)
represents very well the turbulent results, we can conclude that up to the precision of our simulations

074203-12



HISTORY EFFECTS IN THE SEDIMENTATION OF LIGHT . . .

FIG. 9. Vertical (left panel) and horizontal (right panel) Reynolds numbers as a function of time for case
(V) (upper curves) and (VI) (lower curves). The gray horizontal line represents the order of magnitude estimate
Re∗

h of (1).

the asymptotic settling speed in turbulence is the Stokes velocity. This, however, sets in after an
extraordinary long transient, which practically never ends, in the presence of the Basset force. A
dramatic consequence of the extraordinary slow convergence becomes evident when we analyze the
difference of the average vertical position of particles advected with and without history force. By
integrating Eqs. (12) and (13), we can compute the difference in the vertical displacement for inertial
dynamics without memory (“w”) and the one in the presence of memory (“m”), 〈zw〉 − 〈zm〉. It is
obvious that this difference increases as

√
t , because the vertical velocities of these two dynamics

differ proportionally to 1/
√

t after a few particle relaxation times τp has passed. This property is
fully consistent with our turbulent results, too, and clearly demonstrates how drastically the transient
dynamics differ without and with the Basset force since in the latter case the extraordinary long
convergence to W is a scale-free process.

Regarding the right column of panels, in Fig. 8, note the very small scale on the vertical axes. In
all cases the average is zero, meaning that the average settling velocity over the investigated time
interval is W , as in still water. The graphs of the noninertial and memoryless dynamics are somewhat
different, but they basically represent a random process around zero. Fluctuations in all panels are
on the order of 0.05. These features also hold for the results of the other four cases not shown here.

We also evaluate the slip velocities of the particle ensemble as time series with and without
memory and based on these define an instantaneous vertical and horizontal Reynolds number Rez(t)
and Reh(t) in an analogous way as Re∗

z and Re∗
h are defined in Eq. (1), but this time with the average

of the modulus of the instantaneous slip velocity 〈|�v(t) − �u(t)|〉. The results obtained for cases (V)
and (VI) are summarized in Fig. 9. With memory, the vertical Reynolds number converges according
to a power law to a long-term limit, which is close to Re∗

z = Wa/η, a value the other dynamics
reach practically immediately. The order of magnitude of the limiting Reynolds number is unity in
all the cases (the values coincide with those given in Table I). The horizontal Reynolds numbers are
much smaller than unity. They depend on the access density and differ a little bit with and without
memory. In any case they happen to be close to the estimated value Re∗

h = St a/η. The difference is
changing with W , and we can discover a simple relation

Rehw − Rehm

W
= const (14)

to hold, where index m and w stand for memory and without memory, respectively. The value of
the constant is found to be about 0.005 and 0.0006 for St = 0.083 and St = 0.03, respectively. It
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FIG. 10. PDFs of the accelerations �ai due to different forces (i = pressure, drag or memory) for case (IV)
(a) z component at time t = 10.5 τη, (b) z component at t = 1020 τη, (c) y component at t = 1020 τη. Vertical
dashed lines indicate the ensemble averages. 〈atotal〉 denotes the ensemble average of the modulus of the resultant
acceleration.

reflects that for W → 0 the particles have smaller and smaller excess densities, and their dynamics
approaches that of ideal fluid elements with the zero initial slip velocity condition used in this paper.

It is worth also considering the distributions (PDFs) of the different types of accelerations. In
Fig. 10 the acceleration due to the drag, pressure and history force are plotted, for case (IV), at time
instants t = 10.5 τη and t = 1020 τη for the vertical, and only for the last instant for the horizontal
components. In the vertical, the drag dominates and has a rather narrow distribution. This is due
to the fact that the slip velocity becomes quickly of order W . On the other hand, the PDF of the
acceleration from the pressure term is rather broad and hardly changes with time after t = 10.5 τη.
These two PDFs are found nearly identical with those in the memoryless equations. Only the PDF
of the history force (red) changes with time rather dramatically: at t = 10.5 τη it is sharp and has a
much larger average than the pressure contribution. By the end of the observational period, however,
the PDF broadens and becomes shifted towards smaller values. Its average remains only slightly
larger than that of the pressure. In the horizontal, the distributions are similar and do not change too
much in time; the averages are ordered as drag, pressure, and history with not very much differences.
These PDFs are rather different from those obtained without gravity in Ref. [12]: all distributions
are broad there, the pressure contribution is the largest, those of drag and history are comparable,
and the averages are not separated by several orders of magnitudes. The closeness of the averages
in Ref. [12] resembles Fig. 10(c).

FIG. 11. Time dependence of the mean of the different PDFs shown in Fig. 10. Left panel: vertical, right
panel: horizontal components. The thin black line in the left panel is of slope −1/2 to guide the eye.
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To gain insight into the full time dependence, we plot in Fig. 11 the ensemble average of the
PDFs shown above. A striking feature in the vertical components (left panel) is the monotonous
decay of the history force. Sooner or later, the average of the history force is likely to become
smaller than that of the pressure force. This internal degradation of the history force seems to be
specific to the sedimentation dynamics with all the parameters investigated. Horizontally (right
panel), however, everything is stationary after t = 10.5. The relatively small values of the history
acceleration explain why no sign of a slow convergence is seen in Fig. 9(b). The stationarity of the
average pressure acceleration indicates the stationarity of our turbulent flow. Its order of magnitude
is indeed uη/τη = η/τ 2

η . It is worth noting that the averages of the accelerations themselves without
taking the modulus would all be zero with the exception to the vertical drag and vertical history
acceleration.

VII. ESTIMATING THE RELEVANCE OF THE FAXÉN CORRECTIONS

The Faxén corrections are corrections to (4) due to the finite size of the particle and to the curvature
of the flow. They appear as terms proportional to a2��u which are added to the slip velocity in the
Stokes drag and in the nominator of the memory integral, as well as to the fluid velocity in the added
mass term [14,15]. They appear with a coefficient 1/6 and 1/10, respectively. We concentrate here
on the correction to the slip velocity and consider the ratio of the average modulus of the correction
to that of the slip velocity

Cj = a2

6

〈|��uj |〉
〈|�vj − �uj |〉 , (15)

where index j stands for the Cartesian components x, y, or z in this correction factor. Because of the
anisotropy due to gravity, it is worth treating the horizontal and vertical components separately. Their
difference becomes clear from a simple estimation. Since the characteristic length and velocity scale
of the turbulent flow are η and uη, respectively, the Laplacian in any component can be estimated as
uη/η

2. The slip velocity in the vertical is approximately Wuη, while that in the horizontal is St uη,
as used in Eq. (3). We thus find the estimates for the vertical and horizontal correction factors

C∗
z = 1

6

(
a

η

)2 1

W
, C∗

h = C∗
j=x or y = 1

6

(
a

η

)2 1

St
.

Since W is larger than unity in our cases, but St < 1 (see Table I), the relative importance of the
Faxén corrections is expected to be much smaller in vertical than in horizontal direction. For our
largest particles a/η = 1/2 and St = 0.083, thus the estimate C∗

h amounts to a value 0.5.
We numerically determine the correction factors Cj as functions of time. The results in the

presence of memory are shown in Fig. 12 for Cz and Ch for cases (V) and (VI) with and without
memory. The vertical corrections [Fig. 12(a)] appear to be at most 0.1% consistently, with hardly
any difference with and without memory. For smaller excess density [case (VI)] the correction is
larger. The measured values are about a factor 5 smaller than the estimates C∗

z . In the horizontal,
the corrections factor reaches nearly 20%, but is about a factor 3 smaller than what the estimate
C∗

h predicts. There is a measurable difference in the correction with memory and without, and the
former one is consistently larger by about 10%. The effect for lighter particles is here stronger again.
A comparison with Fig. 9 reveals that the tendencies in the Reynolds numbers and in the correction
factors are roughly the opposites.

We thus find that in the vertical Faxén corrections can safely be neglected. In the horizontal,
the Faxén corrections might be on the same order, but yet smaller, as the slip velocity. We found,
however, the horizontal slip velocity to be small compared to unity [see Fig. 9(b)]. Modifying this
difference by a factor smaller than unity does not change the basic observation of the paper that the
horizontal Reynolds number is small, i.e., that the particles follow in the horizontal direction the
fluid motion very closely.
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FIG. 12. Time-dependent correction factor Cz (a) and Ch (b) for cases (V) and (VI) with memory and
without memory.

VIII. CONCLUSIONS

Inspired by the sedimentation of marine snow particles in the ocean, we have studied the impact
of the history force on the sedimentation of almost neutrally buoyant spherical particles in a three-
dimensional turbulent flow. Our study is based on the Maxey-Riley equation, and we have compared
our results with the dynamics of particles when neglecting the history force, as well as with noninertial
particles. We have analyzed six parameter sets for marine snow particles corresponding to typical
situations in estuaries and the open ocean. We have shown that the history force, which introduces
a memory, cannot be neglected. While it leads to large deviations of the trajectories of individual
particles from the ones without memory or of noninertial particles, the differences in the horizontal
dynamics and spatial extensions of ensemble of particles are not that large. The most striking effect
concerns the vertical dynamics: when the history force is taken into account, the vertical velocity
of the center of mass of the cloud approaches extraordinary slowly a constant settling velocity,
according to a one-over-square-root of time law.

Furthermore, our results indicate that for all three approaches the settling of small particles,
possessing a density not much larger than the one of the fluid, is surprisingly well described in
turbulence by the settling in a still fluid. The history force leads, here too, to an extraordinary slow
convergence to the settling velocity, and the limit has not even be reached after more than 1000
Kolmogorov times. This convergence is of power-law type, and we demonstrated a simple, general
expression in the form of (13) to hold.

By contrast, the ad hoc dynamics obtained by neglecting the memory converge to the settling
velocity even within one Kolmogorov time unit. The turbulent motion of the fluid manifests itself in
both cases only in fluctuations around the settling velocity, which are determined by the properties of
the flow. We illustrate this finding by showing in Fig. 13 the time dependence of the vertical velocity
std for all the cases in a single panel, marked with different colors. On the scale of 1000 Kolmogorov
units they hardly differ, and the overall shape is very similar both in the Maxey-Riley equation with
memory [Fig. 13(a)], and for inertial particles without memory [Fig. 13(b)]. One hardly sees any
difference with naked eye, and this also holds for the result obtained with noninertial particles (not
shown). Given that the velocity std is 5.4 Kolmogorov units in the turbulent flow (see Table II),
we observe that it is mainly the flow that determines fluctuations in the particle dynamics, as the
particles are very close in their densities to that of the fluid. The std due to particle properties and
advection dynamics appears only in the width of the plotted curves. This width is about 1% on this
scale, which is in line with the observed velocity fluctuations being less than 0.05 in Fig. 8. Changes
in the std as well as in the vertical velocity difference happen on a time scale, which is comparable
to the large-eddy turnover time of about 30 Kolmogorov times.

There has been an extensive study of settling of inertial particles in turbulent fluids by Wang
and Maxey [65] although without memory effects. Though their analysis differs from ours in
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FIG. 13. Time dependence of the vertical velocity std of the ensembles, of the different cases marked with
different colors: (a) with memory, (b) without memory. The horizontal dashed lines mark the temporal average
σ of these quantities averaged over all cases. These values happen to be identical for the two dynamics and
close to the velocity std of the turbulent flow.

several aspects, we find it interesting to compare our results with theirs. Wang and Maxey [65]
have considered only the Stokes drag and the gravity as the forces acting on their particles; i.e.,
their study applies to very heavy particles (ρp � ρf ) instead of the light particles on which we
focus here. One of their main achievements consists in the finding that turbulent motion leads to an
additional acceleration of the particles resulting in an enhanced settling velocity. Their explanation
is based on the strongly inhomogeneous distribution of their heavy particles due to the formation
of preferential concentrations in the flow. Due to inertia the heavy particles are expelled from the
vortices in the flow, and whenever they encounter a vortex during settling they will be accelerated
in the direction of its rotation, which moves them into the direction of the downwards motion of the
fluid. In our case of very light particles we do not observe preferential concentration; the particles
are almost homogeneously distributed. These light particles, experiencing additionally the pressure
and the history force, exhibit a dynamics which after an asymptotically long time is closer to that of
noninertial particles, for which such a net effect on the average settling velocity cannot be expected.
The latter conjecture has already been formulated by Wang and Maxey [65,66], and our study seems
to confirm that. To be able to observe preferential concentration for such light particles we would
have to go beyond the scope of the Maxey-Riley equation.

Introducing gravity into the dynamics of inertial particles reveals that the settling velocity appears
as another important parameter besides the Stokes number. One could argue that the effect of the
turbulent fluid flow on the settling of particles could be more pronounced when the settling velocity
is larger than the one for our light particles. However, looking at the particle Reynolds numbers it
turns out that one can distinguish between a vertical particle Reynolds number Rez and a horizontal
one Reh. Because the horizontal one scales with the Stokes number which is very small for our
cases, the particle Reynolds number is largely determined by the vertical one, which scales with the
settling velocity. These estimates for the two components of the particle Reynolds number reveal
the difficulty in studying particles with larger settling velocities due to larger densities: the vertical
particle Reynolds number would increase in such a way that the Maxey-Riley equation would not
be valid anymore. This equation is known to be valid [12] under the assumption that the particle
Reynolds number is at most on the order of unity, which would be violated for heavy particles.

A different effect characteristic for large particles was predicted recently by Fornari et al. [11]
for light particles whose size exceeds the Kolmogorov scale. From numerical simulations, the
authors conclude that in the presence of a finite volume fraction the history force acts to reduce
settling speeds. Furthermore they have observed that relevance of this force increases in a turbulent
environment.
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We find striking differences between the horizontal and the vertical components of the forces
acting on the particle. While the horizontal components of the drag, the pressure, and the history
force are almost constant after some transient time, this applies to the vertical components of drag and
pressure only. The vertical component of the history force, however, becomes smaller and smaller
as time goes by. This can be interpreted as an indicator that this force does not have an essential
influence on the asymptotic settling velocity (which has been found to remain the Wsettling).

Let us add a remark on cases when marine aggregates of different sizes and of different excess
densities are considered simultaneously, as a superensemble, with some size and density distribution.
To understand their typical settling dynamics, it is worth rewriting the leading term in Eq. (11) in
dimensional units. After averaging, this leads to〈

Wsettling − 〈vz〉(t)
Wsettling

〉
s

≈ 〈a〉s√
πνt

.

In the turbulent context, 〈vz〉 means the average vertical velocity of the particle cloud of a
given size and density, and 〈〉s stands for the average taken over the superensemble of different
marine aggregates. Since the right-hand side is independent of the density [67] (and also of the
fluid properties), the average of the relative deviation from the asymptotic settling velocity will be
proportional to the average size in the superensemble. The larger this size, the slower the convergence.
For an average size of 1 mm, and with the viscosity of water, ν = 10−6 in SI units, for example, the
deviation remains more than 1%, for t < 104/3 s, i.e., for practically one hour. The convergence to
a uniform settling velocity is thus expected to be extraordinary slow also in a superensemble, due
to the history force. As a consequence of the 1/

√
t type of convergence, the difference between the

vertical position in superensembles with and without the Basset force is expected to ever grow in
time, according to a

√
t law.

Finally we would like to briefly turn to the settling of plankton. These can be considered as
particles of more or less the same excess density as marine snow, but a factor of 10 smaller in size,
with a typical radius of 10 micrometers. A well-known experimental result of Ruiz et al. [37] claims
that there is a considerable increase in the settling velocity due to turbulence. A careful reading
of their paper reveals, however, that the effects for ε = 10−6 are minor, and the largest deviation
appears only for ε = 10−4. Furthermore, the effect of a finite volume fraction, whose importance
from the point of view of settling has been emphasized by Fornari et al. [11], might also be present
in the experiments.

The effect of the history on the settling of plankton was numerically studied by Olivieri [24].
He chose two parameter sets, both with very small St and W . The weak effect of gravity leads to
dynamics where the action of all forces is almost isotropic, and the difference between the horizontal
and the vertical directions is small. Although he observes some deviations from W for the vertical
velocity, he attributes them to statistical fluctuations and concludes that these small microorganisms
will be carried by the flow as noninertial tracers. This is in harmony with our findings since a change
to a = 10 μm (corresponding to a typical plankton cell) a factor 30–50 smaller than our aggregates,
would make even the effect of the one-over-square-root type decay to be very small.
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APPENDIX

In order to test how an initially strongly localized ensemble behaves, we carried out a single
extra simulation with Np = 5 × 104 particles uniformly distributed at time t = 0 in a box of size
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FIG. 14. Time dependence of the variances in the horizontal [x, (a)] and vertical [z, (b)] directions in the
different cases (coloring and line types as in the previous figures) on log-log scales. The ensemble is initiated
in a box of L = 1 η. For clarity, the initial std [σx(0) = σz(0) = 1/

√
12 = 0.287 η] is subtracted. Straight lines

with slopes 1, 2, and 3 are overlaid to lead the eye.

L = 1 η centered at the origin, with zero initial slip velocities. Since the differences among the
three types of dynamics are minor for the ensemble variances, here we chose noninertial and inertial
particles without memory only, since they require lower computational demand. The simulation is
carried out up to 300 τη. The variances are shown in Fig. 14. In contrast to Fig. 6, here a clear
intermediate time scaling with t3 can be found, i.e., Richardson’s scaling becomes observable. A
difference between the horizontal and the vertical dynamics is that in the latter (panel b) ballistic
behavior is not observable in the data.

It is worth determining the dimensionless crossover time t0/τη for this case, too. Along the lines
applied in Sec. V, we find

t0

τη

= [
3σ 2

x (0)
]1/3 = (3/12)1/3 = 0.630. (A1)

This corresponds precisely to the time where a crossover from the quadratic to the cubic, Richardson
scaling takes place. Note that the second crossover from the Richardson to a diffusive behavior
occurs at about 30 τη, i.e., at the eddy turnover time T . The lack of the Richardson regime in Fig. 6
is due to the fact that the turnover time t0 is larger than T , and hence there is no “space” for the cubic
behavior.
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