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A systematic investigation of the effect of the history force on particle advection is carried out in a

paradigmatic model flow of chaotic advection, the von Kármán flow. All investigated properties turn out to

heavily depend on the presence of memory when compared to previous studies neglecting this force. We

find a weaker tendency for accumulation and for caustics formation. The Lyapunov exponent of transients

becomes larger, the escape rates are strongly altered. Attractors are found to be suppressed by the history

force, and periodic ones have a very slow, t�1=2-type convergence towards the asymptotic form.
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Chaotic advection of finite-size particles (often called
inertial particles) plays an important role in many
environment-related phenomena ranging from meteorol-
ogy to oceanography (for a recent review, see [1]). The
advection of such particles is known to be important in the
understanding of cloud microphysics [2,3]. Timely appli-
cations are pollutant-transport forecasting for homeland
defense [4] and the location of a toxin or biological patho-
gen spill (e.g., anthrax) from outbreaks in a street canyon
[5]. Other recent results indicate that inertial particles
might play a role in hurricane dynamics [6] and in the
feeding dynamics of certain marine animals [7]. Particle-
based modeling of aggregation and fragmentation has been
recently examined in [8].

The basic equations of motion for small spherical parti-
cles in a viscous fluid are given by the Maxey-Riley (MR)
equation [9,10]. Their precise form contains an integral,
also called the history (or Basset) force, which describes
the diffusion of vorticity around the particle during its full
time history. This term renders the advection equation to be
an integro-differential equation whose solution is much
more demanding than that of an ordinary differential equa-
tion. Because of this difficulty, the integral term is ne-
glected in nearly all the applications mentioned above. A
qualitative argument for this is that both the Stokes drag
and the history force describe dissipative effects, and keep-
ing the simpler one, the Stokes drag, might be sufficient to
describe the essence. The MR equation without the integral
term clearly shows that the Hamiltonian passive advection
problem is converted, due to the drag, into a dissipative
problem which can have attractors, and correspondingly,
inertial particles can have the tendency to accumulate in
certain regions of the flow [11] (a phenomenon termed
preferential concentration). Experimental and analytic ef-
forts [12,13] indicate, however, that the history force might
have significant effects for non-neutrally buoyant particles
in simple flows, and so do perturbative treatments of

weakly inertial particles in chaotic flows [14,15], as well
as investigations in turbulent flows (see, e.g., [16]).
Our aim here is to consider the nonperturbative descrip-

tion of memory effects on inertial particles in chaotic
flows. The emphasis will not be on the deviation between
trajectories with and without memory (since they deviate
anyhow due to the sensitivity to initial conditions), rather it
will be on the deviation in statistical properties. We shall
point out that properties like, e.g., the escape rate of
particle ensembles basically differ due to the history force
both for bubbles and aerosols (particles lighter and heavier
than the fluid). One important effect of memory is that
attractors can disappear, and that the tendency for caustics
formation is weaker than with Stokes drag only. The
average Lyapunov exponent of the transients is typically
larger than without memory. We find in general that mem-
ory effects may strongly alter inertial effects, so that even
qualitative changes can occur.
The dimensionless MR equation of a small, rigid, spheri-

cal particle of radius a and density �p in a fluid of kine-

matic viscosity � and density �f in velocity field uðr; tÞ
reads as [9,10]

dv

dt
¼ 3
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where v � dr=dt is the particle velocity, du=dt and
Du=Dt denote the full derivative along the trajectory of
the particle and of the corresponding fluid element, respec-
tively. In this form gravity is not included, and the initial
particle velocity should match that of the fluid: v0 ¼ u0.
One important parameter is the density ratio R ¼
2�f=ð�f þ 2�pÞ. The other one is the inertial parameter

A ¼ R=St, a dimensionless relaxation rate to the fluid in
which the Stokes number St ¼ ð2a2UÞ=ð9L�Þ denotes the
ratio of the viscous relaxation time and the characteristic
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time of the flow. In smooth flows, which we assume
here, this is estimated as the ratio L=U of the characteristic
length and velocity scales. Conditions for the validity of (1)
are that the particle Reynolds number Rep ¼ jv� uja=�
remains small during the entire dynamics and that the
Stokes number and a=L are small [9]. The last condition
assures that the so-called Faxen corrections are negligible.
The terms on the right-hand side of (1) are the force exerted
by the fluid on a fluid element at the location of the particle
including the added mass effect, the Stokes drag, and the
history force [9]. Being interested in the effect of the latter,
effects due to the lift force or corrections due to finite
particle Reynolds number are not taken into account.

Equation (1) is a second order integro-differential equa-
tion for the trajectory rðtÞ of an inertial particle. To any
initial condition (r0;v0) at time t0 there is a unique trajec-
tory, but the transition between infinitesimally close neigh-
boring time instants t and tþ dt does not only depend on
the state ðrðtÞ;vðtÞÞ, but also on all the previous instants.
Therefore a stroboscopic map taken at integer multiples of
some time unit turns out to be nonautonomous. This is a
nonstandard problem, in which novel features can show up
also from a dynamical systems point of view.

There are several difficulties arising when one tries to
treat the history force numerically. On the one hand, the
integral term contains dv=dt, which makes the MR equa-
tion implicit. On the other hand, an integral over the whole
history has to be evaluated for every time step of the
integration scheme, so that the computational costs grow
with the square of the number of time steps. For large
particle ensembles they become so high that the computa-
tional time can be kept feasible only with parallel compu-
tation. Here we sketch the solution of one problem only,
namely, the treatment of the singular kernel appearing
in the integral term. The idea we present is crucial in the
development of higher order numerical integration
schemes. The singularity appearing at � ¼ t is integrable
but cannot be treated well by ordinary Newton-Cotes

schemes, as these always produce an error of order h1=2

for time step h. We need to treat the singularity analyti-
cally. To this end we slice up the integral into time intervals
½�i; �iþ1� of length h and approximate only the function
fð�Þ ¼ dðv� uÞ=d� by a polynomial, but not the kernel.
The remaining integrals can be solved analytically, leading
to a quadrature which does not contain any singular
expressions. When using a first order polynomial, i.e.,
fð�Þ ¼ fð�iÞ þ ð�� �iÞ½fð�iþ1Þ � fð�iÞ�=h, we obtain a
first order scheme

Z t
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This scheme is equivalent to the one in [17] even though
this is not easily seen. We have also developed schemes of
second and third order (with errors proportional to h3 and
h4), which we omit here because of their complexity. The
third order quadrature scheme combined with a third order
Adams-Bashforth-Moulton predictor-corrector scheme has
been used to obtain the results presented here. The order of
the whole integration scheme has been verified using the
analytical solution to the problem of a particle in a single
vortex [13].
We consider a spatially smooth, two-dimensional time-

periodic flow for the velocity field u. As a paradigmatic
example, we consider the von Kármán flow in the wake of a
cylinder as described in [18]. This analytical flow was
shown to faithfully represent the Navier-Stokes dynamics
at Re � 250 and has been used in recent studies of inertial
particles as well [19,20]. The radius of the cylinder is
chosen to be the length unit L, and velocity is measured
in units of U ¼ L=T where T is the period of vortex
shedding. The stream function of the model is taken from
the literature [21]. An important flow parameter is the
dimensionless strength w of the vortices (for comparison
with [21] we first take w ¼ 192=� and later use w ¼ 24).
First, we consider trajectories starting with the same

initial condition and compare different approximations
(Fig. 1). One immediately observes that the trajectory
with memory is in between the other two. The force acting
on the particle can be decomposed into the three contribu-
tions on the right-hand side of (1). The terms, called the
pressure force, the Stokes drag, and the history force, are
marked by different arrows at subsequent time instants in
Fig. 1. As the legend indicates, only one quarter of the
pressure force is given, for better visibility. We thus clearly
see that the pressure force always dominates the other two,
but the history force is often larger than the drag. A
comparison of the full trajectory with that obtained without
memory shows that the direction of separation of these
trajectories coincides with the direction of the history
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FIG. 1 (color online). Trajectories of a bubble (i.e., R > 2=3)
with and without memory (R ¼ 1:7, A ¼ 40, w ¼ 192=�) and
an ideal tracer, all starting at t0 ¼ 0, r0 ¼ ð�0:5;�1:1Þ. The
forces acting on a particle with memory are shown as arrows.
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force. We have found similar tendencies for aerosols, e.g.,
for R ¼ 0:5.

Next, we turn to the dynamics of ensembles of non-
interacting particles. A large number N0 � 1:8� 106 of
particles is distributed uniformly around the cylinder. All
particles are followed up to a certain time when we plot
their position. The results are shown in Fig. 2. A filamen-
tary pattern can be seen with and without memory. This is
in itself an indication for the chaoticity of the advection
dynamics in both cases. Since the problem is dissipative,
attractors might also be present, but the emptying process
is always of transient type when the underlying chaotic set
is a chaotic saddle [22,23]. The two distributions shown
trace out the unstable manifold of the saddle with and
without memory. They differ both in large and small scale
structures. A characteristic feature of the case without
memory is the appearance of caustics [2,24], i.e., the
intersection of different branches in the configuration
space. This is due to the fact that what we see is a projec-
tion of the full pattern in the four-dimensional (x; y; vx; vy)

phase space to a plane. Caustics appear with a much lower
probability in the presence of memory, indicating that the
dependence on the velocity coordinates is weaker in this
case. A similar result has also been found for other R
values, e.g., for R ¼ 0:3; 0:5; 1:0; 1:2; 1:5. A quantity
closely related to caustics is the collision rate. For the
parameters given in Fig. 2 and a collision distance equal
to the particle size, we have found the time-averaged
collision rate [25] with memory to be reduced to 1=4 of
that without memory.

The decay dynamics is best followed by monitoring the
total number of particles that have not yet escaped a given
region. We distribute N0 � 1:5� 106 particles uniformly
in the domain ½0:6; 4� � ½�2; 2� outside the cylinder. A
quantitative measure characterizing the emptying of the
wake is the escape rate � that can be obtained from the
number NðtÞ of nonescaped particles at time t. After some
time, it decays exponentially, i.e., NðtÞ � expð��tÞ. A
particle is considered to have escaped if it crosses the
line x ¼ 5 or it enters a circle of radius r ¼ 1:014 around

the cylinder. Using a circle larger in radius than the cylin-
der is motivated by excluding very slow (nonhyperbolic)
decay characterizing the boundary layer, as done in [4,21].
The escape rate depends on both dimensionless parame-

ters of the advection problem, R and A. The A dependence
for fixed density ratios is shown in Fig. 3. It is clear that the
escape rate of bubbles without memory is much below the
escape rate of ideal tracers. Moreover, in a broad interval of
A values attractors appear where the escape rate formally
takes on the value 0 (see [21] for details). For the escape
rate of bubbles with memory we find a considerable in-
crease, � still remains below the ideal value, but never goes
down to zero. The latter implies that attractors are much
less typical for the full problem than for the one without
memory. Figure 3 also shows the escape rate for aerosols,
for which attractors are not found in any case. The main
effect of memory is the reduction of escape rate. The new
escape rate is, however, always larger than for ideal tracers.
Thus aerosols leave the wake on average faster than in the
ideal case, but slower than without memory. Memory
effects have been found to be essential for all the R values
mentioned earlier. The increased (decreased) escape rate
for bubbles (aerosols) with memory can be explained by
the fact that the history force generates a countereffect to
the centrifugal force. For bubbles, it points away from the
center of the tangent circle drawn to the trajectory, as Fig. 1
indicates (see also [13]).
As a quantitative measure of chaos, we determine the

average Lyapunov exponent. Since in the cases investi-
gated no chaotic attractors have been found, we deal with
the Lyapunov exponent of transient chaos. To this end, we
consider particles with lifetime longer than 20 time units.
The initial position of such particles should lie close to the
stable manifold of a chaotic saddle. To any particle with
lifetime longer than 20 in the domain ½�1; 4� � ½�2; 2� we
associate a test particle of small initial distance. The loga-
rithmic distance between the original and test particles is
followed up to escape and averaged over all initial con-
ditions. We have found that the inclusion of the history
force leads to an increase of the average Lyapunov

FIG. 2. Distribution of an ensemble of N0 � 1:8� 106 bub-
bles (R ¼ 1:7, A ¼ 40, w ¼ 192=�) at t ¼ 1:1, started in the
domain ½�1; 4� � ½�2; 2� around the cylinder at t0 ¼ 0:2. The
left (right) figure shows the case with (without) memory. See
Supplemental Material [28] for an animation of the ensemble
dynamics.
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FIG. 3. Escape rate for bubbles (R ¼ 1:7) and aerosols
(R ¼ 0:5) as a function of the inertial parameter A (w ¼ 192=�).
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exponent for both bubbles and aerosols, but the Lyapunov
exponent always stays below the one for ideal tracers
( �� ¼ 0:92). To give some examples: For parameters
R ¼ 1:7, A ¼ 80 (R ¼ 0:5, A ¼ 80), we find �� ¼ 0:91
( �� ¼ 0:79) with memory and �� ¼ 0:84 ( �� ¼ 0:70) with-
out. As a function of A we have found the average
Lyapunov exponent to increase monotonically in the range
A 2 ½20; 100� in both cases.

Let us now turn to vortex strength values where attrac-
tors are still present with memory, as is the case for
w ¼ 24. When comparing the attractor with and without
memory, we see that both attracting objects appear to be
periodic orbits (with the period of vortex shedding), and
are of similar form, as Fig. 4(a) shows. We investigate
the convergence of the trajectory through the quantity
jxðnÞ � x�j, where xðnÞ and x� are the x coordinates of
an approaching trajectory and the attractor at multiples of
the period. Figure 4(b) shows a very slow algebraic con-
vergence with memory in contrast to an exponential con-
vergence without memory (not shown). The power law

convergence t�1=2 is obviously related to the power law
behavior of the kernel in (1). The fact that a precisely
periodic attractor sets in can be explained by the observa-
tion that after a very long time the memory of the approach
to the attractor decays away, and the dynamics remembers
only what has been in the close vicinity of the attractor and
a convergence becomes thus possible. Note that the history
force on the attractor does not vanish.

Among the aspects we investigated but cannot present in
detail, we mention that the periodic attractors found have
considerably smaller basins than their memoryless coun-
terparts. The chaotic saddles and their manifolds differ
essentially. Surprisingly, in a narrow region around
w ¼ 31:2, R ¼ 1:47, A ¼ 40 even a chaotic attractor has
been found where only a periodic attractor exists without
memory, a phenomenon deserving further investigation.
Neutrally buoyant particles (R � 2=3) are known to form

a distinct case [19,26,27]; the study of the memory effects
in such cases is beyond the scope of this Letter.
In summary, memory effects have an essential influence

on inertial particles. They lead to a suppression of chaotic
attractors and, more generally, to a weaker tendency for
preferential concentration and caustics formation. The
dynamical instability remains strong. Our findings suggest
that memory effects cannot, in general, be neglected. In
certain cases they ‘‘push’’ the dynamics towards the ideal
case, but let it nevertheless be different in many interesting
aspects.
It is worth noting that one often argues that the history

force becomes negligible for heavy particles, i.e., in the
limit R ! 0. Equation (1) seems to support this view,
provided A remains constant. Note, however, that A is
proportional to R, and thus, for fixed St, the ratio of the
integral and the Stokes term is independent of the density.
We can thus say that statements from the literature on
inertial particles, that have been considered well grounded,
should be reconsidered from the point of view of memory
effects. These include the transport of pollutant and toxic
materials, and also of heavy particles, which play an
essential role in cloud microphysics.
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