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Motivated by applications in optics and acoustics we develop a dynamical-system approach to describe

absorption in chaotic systems. We introduce an operator formalism from which we obtain (i) a general

formula for the escape rate � in terms of the natural conditionally invariant measure of the system, (ii) an

increased multifractality when compared to the spectrum of dimensions Dq obtained without taking

absorption and return times into account, and (iii) a generalization of the Kantz-Grassberger formula that

expresses D1 in terms of �, the positive Lyapunov exponent, the average return time, and a new quantity,

the reflection rate. Simulations in the cardioid billiard confirm these results.
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The design of concert halls was probably the first prob-
lem in which the importance of the partial absorption of
energy along trajectories was fully recognized [1,2]. In
Berry’s elegant formulation, ‘‘confinement is needed to
prevent sound from being attenuated by radiating into the
open air. But if the confinement were perfect, that is, if the
walls of the room were completely reflecting, sounds
would reverberate forever. To avoid these extremes, the
walls in a real room must be partially absorbing’’ [3].
Besides acoustics [1–7], chaotic dynamical systems in
which trajectories are partially absorbed appear nowadays
in an increasing number of different areas [8], ranging from
optics (microlasers) [9,10] to environmental sciences
(resetting mechanism) [11] and quantum chaos [12]. The
analogy of the decay of the sound intensity with the
survival probability of transient chaos has early been rec-
ognized [7]; here, we add that a sharp distinction between
the attenuation of energy (absorption) and the escape of
particles (transport) is necessary.

A seemingly unrelated problem is monitoring continu-
ous time in flows represented by discrete-time maps
~xnþ1 ¼ fð ~xnÞ through a proper Poincaré surface of section.
Both problems can be handled extending the phase space
of map f [13] to include the true physical time tn and the
ray intensity Jn at the nth intersection with the Poincaré
section as

fextended:

8><
>:

~xnþ1 ¼ fð ~xnÞ;
tnþ1 ¼ tn þ �ð ~xnÞ;
Jnþ1 ¼ JnRð ~xnÞ;

(1)

where the return time �ð ~xÞ � 0, chosen as the time between
intersections ~x and ~x0 � fð ~xÞ, and the reflection coefficient
0<Rð ~xÞ � 1 are functions of the coordinate ~x on the
Poincaré section. Probably the most prominent systems
incorporating both properties are billiards such as the one
in Fig. 1. Concert halls can be modeled as 3D billiards [1].

Trajectory-based simulations (ray tracing [4,9]) in these
systems are performed from Eq. (1) by tracking t and J
along each trajectory.
In this Letter, we show that absorption and true time lead

to surprising modifications of fundamental results of cha-
otic dynamics. This is done by introducing an operator-
based formalism. We use it to derive an expression for the
escape rate � as a function of the natural conditionally
invariant measure of the system. As a consequence, we
show that � depends on the entire distributions of �ð ~xÞ and
Rð ~xÞ and not only on their averages. In terms of the
spectrum of fractal dimensions Dq of the invariant sets,

we show that � and R typically enhance multifractality and
that D1 can be expressed as a function of �, the average
Lyapunov exponent, and a new parameter.
We start with the well-known operator formalism for

open maps [13–16]. The escape rate � of an open (possibly
noninvertible) map f is related to the largest eigenvalue
e�� of the Perron-Frobenius operator acting on the density
of trajectories %,

%nþ1ð ~x0Þ ¼
X

~x2f�1ð ~x0Þ
e�

%nð ~xÞ
j Dfð ~xÞ j ; (2)

where Dfð ~xÞ is the Jacobian at ~x. Equation (2) expresses

that the probability in a small region around ~x at step n is
the same as the f image of that region at step nþ 1, when
compensating for the escape. � follows from the require-
ment that the integral of %n over a fixed phase space region
containing the underlying nonattracting chaotic set (a
repeller or a saddle) remains finite for n ! 1. In this limit,
%n ! %c concentrates on the unstable manifold of the
chaotic saddle according to the conditionally invariant
measure (c measure) [14].
We now introduce an operator formalism for the

extended map [Eq. (1)]. Imposing a uniform decay of

PRL 111, 144101 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

4 OCTOBER 2013

0031-9007=13=111(14)=144101(5) 144101-1 � 2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.111.144101


trajectories in time t, instead of the number n of iterations,

it is natural to replace e� in Eq. (2) by e��ð ~xÞ. The reflection
coefficient Rð ~xÞ corresponds to an immediate loss of inten-
sity and is therefore introduced also on the right hand side
of Eq. (2). Altogether, the density function � of map
[Eq. (1)] evolve as

�nþ1ð ~x0Þ ¼
X

~x2f�1ð ~x0Þ
e��ð ~xÞ

Rð ~xÞ�nð ~xÞ
j Dfð ~xÞ j : (3)

This operator generalizes the true-time formalism of
Gaspard [17] and Kaufmann and Lustfeld [18] by intro-
ducing reflection in a similar spirit as in Tanner’s work on
driven acoustic systems [4,5]. Among the different gener-
alized transfer operators [19] and other possible general-
izations of Eq. (2), Eq. (3) is the one that remains faithful to
the physical picture used in the extension of maps f to
extended maps fextended in Eq. (1). Indeed, the operator we
recently introduced [8] differs from Eq. (3) precisely
because of the different convention of � (defined as a
function of the endpoint ~x0) in Eq. (1). Equation (3) is an
extension to noninvertible maps of this previously defined
operator. For n ! 1, �0 approaches a limit distribution �1
(of finite integral), which is �c associated to the c measure
�c of the extended map [Eq. (1)], normalized over the
region of interest � on the Poincaré map. The support of
�c and %c from Eq. (2) coincide, but the densities are
typically different. In open systems there is a region of
escape E � � in which trajectories escape � within one
iteration of the Poincaré map f. Because this escape is not
due to absorption and happens instantaneously, we choose
Rð ~xÞ ¼ 1 and �ð ~xÞ ¼ 0 for ~x 2 E.

We can now derive a relation for � as a function of �c.
By integrating, for n ! 1, both sides of Eq. (3) over� we
obtain

1 ¼
Z
�
d~x0e��ð ~xÞ

Rð ~xÞ�cð ~xÞ
j Dfð ~xÞ j j

~x¼f�1ð ~x0 Þ

¼
Z
f�1ð�Þ

d~xRð ~xÞe��ð ~xÞ�cð ~xÞ

¼
Z
�
d~xRð ~xÞe��ð ~xÞ�cð ~xÞ �

Z
E
d~x�cð ~xÞ: (4)

We used jDfð ~xÞj ¼ jd~x0j=jd~xj, and the fact that f�1ð�Þ \
� ¼ � n E. After rearrangement

hRe��ic ¼ 1þ�cðEÞ; (5)

where h. . .ic �
R
� . . . d�c ¼

R
� . . .�cð ~xÞd~x. This new

implicit formula for � involves the c measure of map (1)
and contains both �ð ~xÞ and Rð ~xÞ. It generalizes the
Pianigiani-Yorke formula [14] � ¼ � ln½1��cðEÞ� valid
for usual maps, for which �, R � 1 for ~x 2 � n E while
� ¼ 0, R � 1 for ~x 2 E. To see this, notice that Eq. (5)
can be written as hRe��ic ¼ e�½1��cðEÞ� þ�cðEÞ ¼
1þ�cðEÞ.
We now explore the implications of Eq. (5). As an

approximation of a closed concert hall, consider the case
of closed systems (E ¼ [) with homogeneous absorption
[Rð ~xÞ ¼ R< 1] and nontrivial �’s, in which case (5)
becomes he��ic ¼ 1=R. Consider the cumulant expansion
lnhe��ic ¼

P1
r¼1ð�ÞrCrð�Þ=r!, where Cr are the cumulants

of � with respect to the c measure. The r ¼ 1 approximant
of � is �1 ¼ � lnR=h�ic. For R ! 1, we obtain h�ic ! h�i
and �1 � ð1� RÞ=h�i, which corresponds to Sabine’s
celebrated formula for the reverberation time [1], where
h�i is the closed billiard average return time. The r ¼ 2
approximant is

�2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih�i2c � 2�2

c lnR
p � h�ic

�2
c

� �1

�
1� �1

2

�2
c

h�ic
�
; (6)

where the approximation is valid for small variance�c of �
and was obtained in different contexts [1,6]. The accuracy
of these expressions depends on the rate of convergence of
�r ! �; see Supplemental Material [20] for details and
general cases.
The importance of our general and exact formula (5)

becomes clear in view of Joyce’s pessimistic conclusion
from 1975: ‘‘It is further proven that the functional form of
Sabine’s expression cannot be modified so as to become
correct for large absorption’’ [2]. While this negative result
is an unavoidable consequence of the argumentation being
restricted to the properties of closed dynamics, Eq. (5)
provides the answer to Joyce’s search based on the modern
theory of open dynamical systems [14,16].
We now turn to the effect of R and � on the spectrum of

fractal dimensions Dq. In a closed system (E ¼ ;) trajec-
tories visit the whole phase space and thus D0 equals the
phase space dimension. We argue below that a nontrivial
Dq (multifractality) is obtained even in this case, and that

FIG. 1 (color online). Billiards naturally incorporate both par-
tial reflection at the boundary and nontrivial return times be-
tween collisions. (a) Cardioid billiard, whose boundary in polar
coordinates is rð�Þ ¼ 1þ cosð�Þ [24]. The intensity J of the
rays decays due to Rð ~xÞ ¼ R� < 1 in the gray boundary interval
at the top (Rð ~xÞ ¼ 1 otherwise). (b) Return time distribution �ð ~xÞ
in the cardioid billiard (velocity modulus is chosen to be unity).
Birkhoff coordinates ~x ¼ ðs; p ¼ sin�Þ are used where s is the
arc length along the boundary and � is the collision angle.
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Dq depends on both R and �. We illustrate this through four

examples (I–IV) with increasing complexity.
I. Consider the tent map fðxÞ ¼ ax with a > 2 for x <

1=2, and fðxÞ ¼ að1� xÞ for 1=2 � x � 1. We extend
fðxÞ by adding return times �ðxÞ and reflection coefficients
RðxÞ which, for simplicity, are chosen to be constant on the
two elements i ¼ 1, 2 of the generating partition: ð�1; R1Þ
on I1 ¼ ½0; 1=a�, and ð�2; R2Þ on I2 ¼ ½1� 1=a; 1�. The
escape region is E ¼ ð1=a < y < 1� 1=aÞ [where
ð�; RÞ ¼ ð0; 1Þ]. Direct substitution into the steady state
of Eq. (3) with jDfj � jf0j ¼ a shows that �c ¼ 1 on x 2
½0; 1�, and that the relation for � is

P1 þ P2 ¼ 1; with Pi � Rie
��i=a: (7)

To see that Eq. (7) is consistent with Eq. (5), notice that
there are only three intervals (I1, I2, and E) with different
Re�� and, due to the constancy of �c, their cmeasure equal
their length. It follows that �cðEÞ ¼ 1� 2=a and
hRe��ic ¼ R1e

��1=aþ R2e
��2=aþ ð1� 2=aÞ ¼ 2� 2=a

¼ 1þ �cðEÞ, where Eq. (7) was used. Pi in Eq. (7) can be
interpreted as the proportion of weighted trajectories,
initiated uniformly in Ii, after one iteration of Eq. (3).
Analogously, the weights on the preimages of Ii of length
1=a2 are P2

1, P2P1, P
2
2, and P1P2. As will be clear from

example II, the continuation of this procedure provides a
multifractal measure, � different from �c, which corre-
sponds to the weights on small intervals covering the never
escaping points (chaotic repeller).

II. Consider general noninvertible expanding maps fðxÞ
defined on x 2 ½0; 1� with general �ðxÞ and RðxÞ. In the
most typical single humped family, the nth preimages, of
number 2n, of the unit interval are the so-called cylinders

IðnÞi [16]. In general, �c is not constant, but is continuous
and covers x 2 ½0; 1�. A fractal measure� can be found by
considering the analogues of the weights P1 and P2 for

cylinders PðIðnÞi Þ. For shrinking cylinders, P approximates

the measure � of the repeller �ðnÞ
i � �ðIðnÞi Þ � PðIðnÞi Þ. To

compute this, consider the n fold iterated map fn and the
corresponding Eq. (3). For large n the logarithm of the
slope of fn at x is approximately constant in a cylinder

and therefore PðIðnÞi Þ ¼ en��
ðnÞ
i en lnR

ðnÞ
i �ðnÞi , where �ðnÞi ¼

1=jðfnÞ0ðx0Þj � e�	ðnÞ
i n with x0 2 IðnÞi . In turn, �ðnÞi and

lnRðnÞ
i are sums of �1;2 and lnR1;2, respectively, over a

typical trajectory ðx0; . . . ; xj; . . . ; xn�1Þ of length n divided

by n. Here xn�1 is arbitrary, but fixed, and x0 ¼
f�nðxn�1Þ 2 IðnÞi for all cylinders. Altogether,

�ðnÞ
i 	 enð��

ðnÞ
i þlnRðnÞ

i �	ðnÞ
i Þ 	�n�1

j¼0

e��ðxjÞRðxjÞ
j f0ðxjÞ j ; (8)

which hardly depends on xn�1 (because of the shrinking

cylinders) and differs from �cðIðnÞi Þ (which is proportional

to �ðnÞi ).

Averages of an observable A over the repeller measure�

are obtained as �A � limn!1
P

2n

i¼1 A
ðnÞ
i �ðnÞ

i (e.g., the aver-

age Lyapunov exponent is �	þ ¼ limn!1
P

i	
ðnÞ
i �ðnÞ

i ). The
information dimension of the repeller D1 follows from the

general relation D1 ¼ limn!1
P

i�
ðnÞ
i ln�ðnÞ

i =
P

i�
ðnÞ
i ln�ðnÞi

[16,21]. Substituting Eq. (8), we find

D1 ¼ 1� � ��þ lnR
�	þ

: (9)

Due to the reflection rate lnR, this is a generalization of the
Kantz-Grassberger relation (D1 ¼ 1� �= �	þ) [22] to any
chaotic 1D map with absorption. For the tent map of

example I, 	þ ¼ lna, �� ¼ P1�1 þ P2�2, lnR ¼ P1 lnR1 þ
P2 lnR2, and the order-q dimension can be calculated

(from
P

i�ið�Þq 	 �ðq�1ÞDq [21]) as

Dq ¼ lnðPq
1 þ Pq

2Þ
ð1� qÞ lna : (10)

III. We now apply our operator formalism (3) to an
invertible 2D map, the analytically solvable baker map;
see Fig. 2 [16,21]. Consider initially �0 � 1. In the next

step, �0 is multiplied by Rie
ð��iÞ=ðabÞ, i ¼ 1 or 2, leading

to two columns of width b parallel to the x ¼ 0 and x ¼ 1
axes with measures P1 and P2, respectively, as given in
Eq. (7). The construction goes on in a self-similar way.
Prescribing that the c measure corresponds to a case when
the full measure ðP1 þ P2Þn after n 
 1 steps remains
unity, Eq. (7) is recovered (the dynamics along unstable
manifolds of 2D maps is faithfully represented by 1D
maps). In addition, Pi’s are the c measures of the columns
of width b and of unit height.
Concerning the dimensions of the c measure Dq;c, we

concentrate on the partial dimensions Dð2Þ
q along the stable

(x) direction because �c is constant along y and therefore

Dq;c ¼ 1þDð2Þ
q . After n steps, the boxes in the x direction

are of length bn and therefore Dð2Þ
q ¼ Dq	þ=	�, where

	� ¼ � lnb is the modulus of the contracting Lyapunov
exponent and Dq is given by Eq. (10). Although Eq. (10)

was obtained as Dq of the tent map repeller, an analogous

FIG. 2 (color online). Open baker map with absorption and
return times. Intensity J decays due to R< 1. Trajectories leave
the system (unit square) when ðx; yÞ 2 E. The extended map
[Eq. (1)] is ðx0; y0Þ ¼ ðbx; ayÞ for y<1=2, ðx0;y0Þ¼
1�bð1�xÞ;1�að1�yÞ for y � 1=2, ð�; RÞ ¼ ð�1; R1Þ if y<
1=a and ð�2; R2Þ if y > 1� 1=a. b � 1=2, a � 2; Df ¼ ab.
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procedure applied to the horizontal bands of height ð1=aÞn
yields that the order-q dimension of the baker saddle’s
stable manifold is 1þDq [23]. Dq of Eq. (10) can there-

fore be considered to be the partial dimension Dð1Þ
q along

the unstable ðyÞ direction of the baker map Dð1Þ
q ¼ Dq. The

dimension of the saddle is Dð1Þ
q þDð2Þ

q .
As an example, consider the closed area preserving map

(a ¼ 1=b ¼ 2) with weak absorption 1� Ri � 1, for
which � is small. Assuming � to be of the same order as
1� Ri, in leading order, Pi ¼ ½1� ð1� RiÞ þ ��i�=2
and, from Eq. (7), � ¼ ð1� R1 þ 1� R2Þ=ð�1 þ �2Þ.
Inserting P1 ¼ ð1� �Þ=2 and P2 ¼ ð1þ�Þ=2 into
Eq. (10), we obtain

Dð1Þ
q ¼ 1� q

�2

2 ln2
and Dq;c ¼ 2� q

�2

2 ln2
; (11)

valid for 0 � q < 1=�2, where � ¼ ½ð1� R1Þ�2�
ð1� R2Þ�1�=ð�1 þ �2Þ, and Dð2Þ

q ¼Dð1Þ
q because 	þ¼	�.

This illustrates that both inhomogeneous absorption
(R1�R2) and return time (�1��2) distributions lead to

DðiÞ
q �DðiÞ

0 ¼1. Multifractality becomes stronger with in-

creasing absorption. In contrast, for the usual closed area

preserving baker map �¼0 andDð1;2Þ
q ¼1, illustrating how

the results from the traditional operator (2) and the gener-
alized operator (3) can differ even for the same map f.

IV. Our final example is the fully chaotic cardioid bil-
liard [24] with an absorbing segment of the boundary
where R ¼ R� < 1; see Fig. 1. Figure 3 shows �c for two
values of R�, computed using ray simulations (1) [8]. Dq;c

for q ¼ 0, 1, and 10 are reported in Table I and exhibit
R-dependent multifractality like in the baker map. A com-
parison with the R� ¼ 0 case (trajectories escape) shows
that the slightest nonzero R� without trajectory escape
leads to a space-filling unstable manifold (D0;c ¼ 2) whose
D1;c is close to D0;c of the R� ¼ 0 case. The difference

betweenD0;c andD1;c quantifies the enhancement in multi-

fractality due to absorption.

In summary, we argued that chaotic systems with ab-
sorption should be considered as a class of dynamical
systems on its own. Absorption converts the closed dy-
namics of trajectories into an open dynamics of weighted
rays which we have shown to have fundamentally differ-
ent chaos characteristics when compared to those of tradi-
tional open systems (in which trajectories escape). Among
such properties are the new Perron-Frobenius operator
[Eq. (3)], an implicit formula [Eq. (5)] for the escape
rate, a generalized Kantz-Grassberger relationship
[Eq. (9)] for 1D maps, and an enhanced multifractality
of invariant measures. We anticipate that absorption also
has important consequences in other operator approaches
based on Markov partitions, which received renewed
interest with the concept of almost invariant sets [25]
and Ulam’s method [26]. Furthermore, we conjecture
that, provided the direct product structure seen in the
baker example holds, for invertible chaotic 2D maps
with absorption

D1;c ¼ 1þ
�
1� � ��þ lnR

�	þ

� �	þ
�	�

(12)

(see Table I for a numerical test). Our results apply to any
chaotic system with absorption or partial reflection, pro-
vide new relations that have been looked after for decades
[2], have direct implications for wave-chaotic systems
[10,12,27], and are directly accessible to experiments
(e.g., measuring the spatial distribution of decaying states
in optical and acoustic systems).
We are indebted to G. Drótos, H. Kantz, Z. Kaufmann,

R. Klages, P. Grassberger, and T. Weich for useful discus-
sions. This work was supported by OTKA Grant
No. NK100296, the von Humboldt Foundation, and the
Fraunhofer Society. E. G.A., J. S. E. P, and T. T. contrib-
uted equally to this work.

FIG. 3 (color online). Conditionally invariant density �c for
the cardioid billiard with absorption. As shown in Fig. 1, R ¼ 1
everywhere except in fs 2 ½0:4; 0:6�; p 2 ½�1; 1�g where R ¼
R� < 1. (a) R� ¼ 0:1; and (b) R� ¼ 0:75. Structures in
(b) amount to 0.2% difference between D0;c and D1;c; see

Table I.

TABLE I. Escape rate � and order-q dimensions Dq;c of the c
measure of the cardioid billiard described in Figs. 1 and 3 for
different R�.Dq;c is measured from the cmeasure of partitions of

the phase space (Fig. 3) and D
Eq:ð12Þ
1;c from the saddle’s measure

and Eq. (12) (we found that �	þ ¼ �	� � 0:35 �� for all R�; see the
Supplemental Material, Fig. S1 [20]). � is measured by fitting
the survival probability and �0

r are approximants obtained di-
rectly from �c; see the Supplemental Material (text and Figs. S2
and S3) [20].

R� 0.01 0.05 0.25 0.5 0.75 0

D0;c 2.00 2.00 2.00 2.00 2.00 1.84

D1;c 1.84 1.87 1.94 1.981 1.996 1.82

D10;c 1.79 1.80 1.86 1.923 1.975 1.75

D
Eq:ð12Þ
1;c

1.83 1.86 1.94 1.980 1.996 1.81

� 0.06470 0.06155 0.04663 0.02954 0.01410 0.06559

�0
1 0.06434 0.06131 0.04641 0.02945 0.01408 0.06520

�0
2 0.06468 0.06163 0.04660 0.02953 0.01410 0.06557
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