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Chaos is an inherently dynamical phenomenon traditionally studied for trajectories that are either

permanently erratic or transiently influenced by permanently erratic ones lying on a set of measure zero.

The latter gives rise to the final state sensitivity observed in connection with fractal basin boundaries in

conservative scattering systems and driven dissipative systems. Here we focus on the most prevalent case

of undriven dissipative systems, whose transient dynamics fall outside the scope of previous studies since

no time-dependent solutions can exist for asymptotically long times. We show that such systems can

exhibit positive finite-time Lyapunov exponents and fractal-like basin boundaries which nevertheless have

codimension one. In sharp contrast to its driven and conservative counterparts, the settling rate to the

(fixed-point) attractors grows exponentially in time, meaning that the fraction of trajectories away from

the attractors decays superexponentially. While no invariant chaotic sets exist in such cases, the irregular

behavior is governed by transient interactions with transient chaotic saddles, which act as effective, time-

varying chaotic sets.
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As popularized by Gleick [1], ‘‘chaos is a science of
process rather than state, of becoming rather than being.’’
But the final state depends on the process and this has been
widely explored in previous studies of transient chaos,
where the object of analysis is not the (possibly simple)
final behavior but instead the necessarily complicated tran-
sient dynamics leading to that outcome. A canonical ex-
ample is a periodically forced damped pendulum with two
periodic attractors and a fractal basin boundary separating
them [2]. A phenomenon of continued interest [3–9], tran-
sient chaos is determined by the presence of an invariant
set that, like in other manifestations of deterministic chaos,
is formed by an uncountable number of aperiodic orbits
that never settle down to periodic behavior and a dense set
of unstable periodic ones [10–12]. This invariant set is
nonattracting and represents a zero-measure subset of the
phase space whose stable manifolds form the fractal
boundaries between regions converging to different final
states. It is thus the temporary approach to this chaotic
saddle that gives typical orbits transiently irregular dynam-
ics, which in turn limits our ability to predict the final state.

However important, these systems exclude a large and
broadly significant class of other systems that cannot have
such an invariant set of time-dependent solutions. They are
the dissipative but undriven (hence autonomous) systems
that underlie numerous physical processes [13], including
approach to thermodynamic equilibrium and various forms
of self-organization and structure or pattern formation.
Moreover, undriven dissipative systems exhibiting com-
plex dynamics are common not only in general physics,

where a damped autonomous double pendulum is a proto-
typic example, but also in areas as diverse as chemistry,
fluid dynamics, and astrophysics.
In undriven physical systems subject to nonvanishing

dissipation, the energy can only decrease and the long-
time behavior is necessarily very simple: each trajectory
converges to one (out of possiblymany) fixed point(s) in the
case of the closed systems considered here.More important,
this behavior is guaranteed for all orbits, not only for typical
ones, indicating that typical orbits cannot experience the
temporary influence of permanently chaotic ones. Yet, the
dynamics can be very complex for a transient period of time
and the basin boundaries can be very intricate—properties
that have often been associated with the concepts of
transient chaos and fractals [12,14]. These are in fact
related to the properties that give rise to the randomlike
behavior of coin tossing and die throwing [15,16]. Figure 1
shows the example of a magnetic pendulum with three
fixed-point attractors, where the different colors mark the
initial conditions associated with the different attractors.
Magnifications seem to reveal intermingled structures at
smaller and smaller scales, which is suggestive of fractal
basin boundaries and sensitive dependence on initial con-
ditions. But can the boundaries be fractal and the dynamics
be transiently chaotic even though all motion eventually
ceases?
In this Letter, we investigate the nature of the transient

dynamics in undriven dissipative dynamical systems. We
show that, due to the lack of long-time motion, the behav-
ior is of a completely different type compared to the one
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previously established for driven systems. Our principal
results are that in undriven systems: (i) the measured
dimension of the basin boundaries can be noninteger and
the finite-time Lyapunov exponents can be positive over all
finite scales but neither holds true asymptotically; (ii) the
basin boundaries have (asymptotic) fractal codimension
one; (iii) the survival probability away from the attractors
decays superexponentially, as

PðtÞ � e�ð�0=�Þe�t ; (1)

leading to a settling rate �ðtÞ ¼ �0e
�t, which grows expo-

nentially in time; (iv) while no invariant chaotic set exists
on which long-time averages required for chaos character-
istics can be defined, the transient behavior is governed by
a transient chaotic saddle that is prominent over a specific
energy interval. We refer to this phenomenon as doubly
transient chaos.

For concreteness, we focus on the magnetic pendulum as
a model system, which captures the generic properties of
interest. The system consists of three identical magnets at
the corners of a regular horizontal triangle of unit edge
length and the pendulum itself, formed by an iron bob
suspended from above the center of the triangle through
a massless rod [Fig. 1(a)]. The bob is subject to the
influence of gravity, attractive magnetic forces, and drag
due to air friction. For simplicity, we further assume that
the length of the pendulum rod is long compared to the

distance between the magnets, which allows us to describe
the dynamics using a small-angle approximation.
Following Refs. [12,14], we assume an inverse-square
law interaction between the bob and the magnets as if
they were point magnetic charges. The resulting dimen-
sionless equations of motion are

€x ¼ �!2
0x� � _xþX3

i¼1

~xi � x

Dið~xi; ~yiÞ3
; (2)

€y ¼ �!2
0y� � _yþX3

i¼1

~yi � y

Dið~xi; ~yiÞ3
; (3)

where (~xi, ~yi) are the coordinates of the ith magnet, !0 is
the natural frequency, and � is the damping coefficient;

here Dið~xi; ~yiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið~xi � xÞ2 þ ð~yi � yÞ2 þ d2

p
and d are

the distances from the pendulum bob to the ith magnet
and to the magnets’ plane, respectively. The coordinates of
the magnets are ð~x1; ~y1Þ ¼ ð 1ffiffi

3
p ; 0Þ, ð~x2; ~y2Þ ¼ ð� 1

2
ffiffi
3

p ;� 1
2Þ,

and ð~x3; ~y3Þ ¼ ð� 1
2
ffiffi
3

p ; 12Þ. In our simulations we set !0 ¼
0:5, � ¼ 0:2, and d ¼ 0:3 (except when stated otherwise),
which is representative of all cases for which the fixed
point at the origin is unstable. The magnetic pendulum then
has three stable fixed points, and hence three attractors, as
shown in Fig. 1(b) for the bob released from positions
(x0, y0) with zero initial velocity.
First consider the average rate �E of energy dissipation

due to damping. The energy decays on average as EðtÞ �
expð��EtÞwith �E � 0:16 for random initial conditions in
the Oð10�4Þ vicinity of the basin boundaries in Fig. 1(b)
[Supplemental Material [17], Fig. S1(a)]. Two nearby tra-
jectories in different basins tend to separate from each other
over a relatively short period of time but they do so expo-
nentially fast [Supplemental Material [17], Fig. S1(c)].
During the period of exponential separation, a small initial
distance � diverges as � expð ��tÞ, where �� � 0:68 is the
average finite-time (largest) Lyapunov exponent, which is
approximately constant over a relatively long time for the
aggregate of trajectories close to the basin boundaries
[Supplemental Material [17], Fig. S1(b)]. The average
energies of the trajectories during exponential separation
fall within a narrower range than the initial energies
[Supplemental Material [17], Fig. S1(d)], indicating that
initially close trajectories tend to move together when the
energy is high and are already in the vicinity of their
attractors when the energy is low. The deviation of the
average dissipation rate �E from � during the period of
exponential separation indicates that fast separation takes
place when the speed of the pendulum is low, as it would be
expected when an orbit approaches an unstable fixed point
such as those often embedded in chaotic saddles.
Our system does not have a chaotic saddle; it has in fact

only a handful of unstable periodic orbits and all of them
are fixed points. They include the fixed point at the origin
and three others along the symmetry axes connecting the
attractors to the origin. The basin boundary points are
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FIG. 1 (color). (a) Autonomous magnetic pendulum as de-
scribed in the text. (b) Color-coded basins of attraction of the
three fixed-point attractors of the system (white dots) for trajec-
tories initiated with zero velocity. (c)–(d) Successive magnifica-
tions of the attraction basins shown in (b).
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expected to belong typically to stable manifolds of un-
stable fixed points that are locally stable along three direc-
tions in the 4D phase space. The unstable fixed point at the
origin does not satisfy this condition since it has only two
stable directions for the parameters we consider. The three
unstable fixed points along the symmetry axes, however,
have three eigenvalues with negative real parts. We argue,
nevertheless, that this description alone does not capture
the complexity of the observed dynamical behavior and
propose that, during the period of rapid separation, the
trajectories wander erratically in the vicinity of a set that
plays the role of a chaotic saddle. This set can be estimated
from the positions where the trajectories separate exponen-
tially from each other. The result is shown in Fig. 2 and is
strikingly similar to the usual chaotic saddles governing
transient chaos. However, this set consists of only pieces of
trajectories in the phase space and as such is not an
invariant set of orbits. Moreover, this set manifests itself
only during the period of exponential separation, which
motivates us to refer to it as a transient chaotic saddle.

A central aspect of dissipative systems concerns the time
the trajectories take to reach (a predefined neighborhood of)
any of the attractors, which is referred to as the settling time.
Figure 3(a) shows the settling time for trajectories of our
system initiated on a straight line with zero initial velocity.
This function exhibits a set of infinitely high peaks deter-
mined by the intersections of the initial line with the stable
manifold of the nonattracting invariant set (which are
typically basin boundary points). In a driven hyperbolic
chaotic transient, these singular points would form a
Cantor set that is statistically self-similar. In our case the
settling time is fundamentally different, exhibiting no self-
similar structures. The singular points still form a set that
resembles those of driven systems over several decades, but
subsequent magnifications indicate that this set (and hence
the basin boundaries) become increasingly sparse at suffi-
ciently small scales (see Supplemental Material [17],
Fig. S3).We now quantify this systematic scale dependence.

Various dynamical quantities of a chaotic set can be
determined from a single generating function—the free
energy function Fð�Þ [10,18]. This function is defined as

�Fð�Þ¼�limt!1ð1=tÞlogIð�;tÞ for Ið�;tÞ¼PNðtÞ
i¼1 ½‘iðtÞ��,

where NðtÞ is the number of intervals on a line of initial
conditions (intersecting the stable manifold of the saddle)
whose orbits have a settling time larger than t, and ‘iðtÞ are
the lengths of these intervals. Quantities such as Lyapunov
exponents, settling rates, dimensions, and entropies, which
are by definition time independent and asymptotic, can all
be calculated directly from this function and its derivatives.
In undriven dissipative systems, the t ! 1 limit is of little
interest since all motion eventually ceases. But based
on the settling time distribution of Fig. 3(a), we can intro-
duce a finite-scale free energy function as �Fð�; tÞ ¼
�d logIð�; tÞ=dt. This function is now time dependent,
which means that the resulting dynamical quantities can
be scale dependent.
We thus define the settling rate as the instantaneous rate

�ðtÞ of decay of the fraction PðtÞ of still unsettled trajecto-
ries at time t: dPðtÞ=dt ¼ ��ðtÞPðtÞ. This corresponds to
�ðtÞ ¼ �Fð�; tÞj�¼1 when expressed using the free energy

function. As shown in Fig. 3(b), the settling rate �ðtÞ
increases exponentially as a function of time, where the
scaling exponent is � ¼ 0:21, 0.43, 0.56 for � ¼ 0:1, 0.2,
0.4, respectively. This represents a superexponential decay
of PðtÞ, as summarized in Eq. (1), which becomes increas-
ingly more pronounced as the damping coefficient � is
increased. This is fundamentally different from the con-
stant settling rate and power-law decay reported in the
existing literature of hyperbolic and nonhyperbolic tran-
sient chaos, respectively [10–12]. An explanation for the

FIG. 2 (color). Transient chaotic saddle of the magnetic pen-
dulum (black), represented through the Poincaré section defined
by x ¼ 0 and _x > 0. The colored shades correspond to projec-
tions of the set on the different coordinate planes.
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FIG. 3 (color). (a) Settling time as a function of the initial y
coordinate for trajectories initiated with zero velocity on the line
x ¼ �1 to reach a phase-space distance 10�4 from any of the
attractors. The top bar indicates the corresponding basins of
attraction, as color coded in Fig. 1. (b) Settling rate � for different
values of the damping coefficient �, which increases exponen-
tially as a function of time. (c) Estimation of the basin boundary
(fractal) dimension using the uncertainty algorithm at succes-
sively smaller scales " along the line considered in panel (a).
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superexponential decay is that (due to the exponential loss
of energy) the difference between the settling times of two
different trajectories scales with the difference of the
logarithm of their initial energies, as �t � ð1=�EÞ� lnE0,
which causes them to reach the respective attractors after a
comparable time. While we used the average dissipation
rate in this simplified argument, note that the dissipation
rate of individual trajectories is increasingly smaller for
trajectories with the same E0 initiated increasingly closer
to the basin boundaries.

The unbound, exponential increase of the settling rate
has an important implication for the basin boundaries: their
codimension is one. For an illustration, consider a single-
scale Cantor set construction in which the proportion of the
interval length removed at step i is �i. At step n, there are
2n intervals of length "n¼ln=2

n, where ln¼�n
i¼1ð1��iÞ.

The box-counting dimension of the limit set then is D0 ¼
limn!1ðln2Þ=½ln2� ðlnlnÞ=n�. In a self-similar Cantor set,
as often used to model hyperbolic chaotic systems, �i ¼ �
(i.e., the fraction removed is the same for all i) and hence
ðlnlnÞ=n ¼ lnð1� �Þ, leading to a dimension 0<D0 < 1.
An example of a non-self-similar Cantor set, used to model
nonhyperbolic chaotic systems [19], is the one for which
�i ¼ 1=ðiþ �Þ (i.e., the fraction removed decreases
with i) and hence ðlnlnÞ=n ¼ ln½�=ðnþ �Þ�=n; this leads
to D0 ¼ 1 even though the Lebesgue measure is zero.
The case of an exponentially increasing settling rate

corresponds to ln¼e�ð�0=�Þðe�n�1Þ and hence ðlnlnÞ=n¼
��0ðe�n�1Þ=�n. The dimension then is D0 ¼ 0 even
though the set is uncountable. But since ln"n �
�ð�0=�Þe�n for large n, the convergence is in this case
logarithmically slow with respect to the length scale, which
requires going to very small scales for the accurate esti-
mation of D0; in this case, finite-scale calculations will
always overestimate D0. Similar results hold for any
increasing settling rate such that ln ¼ �ns for s > 1, which

includes as a particular case ln ¼ ð23Þn
2
, generated by taking

�i ¼ 1� ð23Þ2n�1. Numerical calculation of the dimension

of the basin boundaries in our system using the uncertainty
algorithm [20]—which exploits the scaling "� of the frac-
tion of points within a distance " of a basin boundary of
codimension �—shows that the estimated � becomes
increasingly close to 1 at smaller scales (corresponding
to basin boundaries of dimension 3 in the full 4D phase
space) [Fig. 3(c)]. This should not be taken as an indicator
of minimal sensitive dependence on initial conditions,
however, since sensitivity is minimal only when the
asymptotic value of � is approached, which, as suggested
by our Cantor set construction and effectively demon-
strated in Fig. 3(c), requires extremely small ".

How general is the behavior described here? When
driven by an external force, the magnetic pendulum exhib-
its the already known properties of driven dissipative sys-
tems (see Supplemental Material [17]). Thus the novel
behavior identified here is indeed due to the undriven

nature of the dynamics. As a rule of thumb, we suggest
that systems that would be chaotic if the dissipation could
be turned off are expected to exhibit doubly transient chaos
for small but nonzero dissipation rates; the dissipation rate
sets the time scale over which trajectories will get inter-
mingled by transient chaotic saddles. In particular, this is
expected for Hamiltonian systems with mixed phase space,
where the addition of dissipation generally converts the
local minima of the energy at the center of Kolmogorov-
Arnold-Moser islands into fixed-point attractors [21].
For completeness, we contrast doubly transient chaos

with other nonlinear phenomena in which signatures of
chaos are observed in the absence of an invariant chaotic
set. An important case concerns strange nonchaotic
attractors [22] and repellers [23], which are dynamically
generated fractal invariant sets whose largest Lyapunov
exponents are nevertheless zero. Such properties are usu-
ally induced by quasiperiodic driving, and hence concern
systems significantly different from those considered here.
Another important case is stable chaos [24], which is a
spatiotemporal phenomenon in which the topological en-
tropy can be positive even though the largest Lyapunov
exponent is negative. Stable chaos is usually studied in
coupled map systems and the phenomenon itself is rigor-
ously observed in the thermodynamic limit. Our character-
ization of undriven dissipative systems applies, however, to
low-dimensional dynamics.
The doubly transient chaotic behavior analyzed here is

both surprising and significant. Many authors have por-
trayed the dissipative magnetic pendulum and other such
undriven systems in the same class as driven dissipative
systems, for the excellent reason that at first glance their
basin boundaries and transient dynamics do seem similar.
As shown here, however, they are fundamentally different
and this is reflected both quantitatively and qualitatively. A
remarkable distinction is that undriven dissipative systems
exhibit exponentially growing rather than constant settling
rates and, consequently, fractal basin boundaries whose
complexity become increasingly diluted upon magnifica-
tion. These properties are expected to be common to many
natural and man-made systems and, in particular, to those
whose conservative counterpart is chaotic. The implications
are thus rather general given the prevalence of chaos in
conservative models and of undriven dissipative systems
in the real world. Our characterization of doubly transient
chaos is relevant, for instance, in the study of ‘‘transitional
chaos’’ in closed chemical reaction systems evolving
toward thermodynamic equilibrium [25,26], of chaotic
interacting vortices when dissipation due to viscosity is
accounted for [27,28], and of spinning gravitational binary
systems as energy is lost due to gravitational waves [29,30].
The authors thank T. Nishikawa, J.-R. Angilella, and

V. Kalogera for illuminating discussions. This research was
supported by OTKA NK100296 and K100894, and NSF
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Kapitaniak, Dynamics of Gambling: Origins of
Randomness in Mechanical Systems Lect. Notes Phys.
Vol. 792 (Springer, Berlin, 2009).

[17] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.111.194101 for

additional analyses of the undriven magnetic pendulum
and comparison with its driven counterpart.
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