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Exploring Transient Chaos in an NMR-Laser Experiment
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A time series analysis of transient chaos has been carried out in a laboratory experiment. The
process is based on the construction of a long artificial time series obtained by gluing pieces of many
transiently chaotic signals together. The strange saddle responsible for the transient chaotic behavior
of an NMR laser has been reconstructed. Characteristics like dimension, Lyapunov exponent, and
correlation function are determined showing that the motion on this set is more unstable than on

the coexisting chaotic attractor.
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Before the phenomenon of deterministic chaos was dis-
covered, strongly fluctuating, erratic experimental sig-
nals were traditionally discarded as physically uninterest-
ing noise. In the last two decades new methods have been
developed which make it possible to exploit the structure
hidden in chaotic time series in a systematic way [1]. The
present state of affairs with transient signals is very much
similar to that with permanent chaos in the past. Very
often initial transients are still considered as switching
on or warming up effects.

In this paper we demonstrate that the presence of tran-
sients is often a consequence of inherent dynamical prop-
erties of nonlinear systems, and their proper evaluation
yields basic physical information. The appearance of cha-
os on finite time scales is known as transient chaos (for
a review see [2]), and provides an example of a kind of
“nonequilibrium process” that cannot be understood as
an asymptotic behavior. In such cases one observes a
moving around of the system in an apparently chaotic
manner and then, rather suddenly, a settling down to a
steady state which is either a periodic or a chaotic mo-
tion.

Transient chaos is closely connected to many other as-
pects of nonlinear dynamics. For scattering processes in
open Hamiltonian systems chaos is inevitably of transient
type and chaotic scattering [3] has attracted great recent
interest. Diffusion and other transport phenomena can
also be interpreted as consequences of chaotic scattering
(4]. In dissipative cases, the so-called noise induced chaos
[5], when a system with simple attractors turns chaotic
in the presence of noise, has recently been explained as a
consequence of transient chaos [6]. Transient chaos can
also be a sign of permanent chaos to be born. More
generally, all types of crisis configurations, attractor de-
structions, explosions, or mergings [7], are accompanied
by long lived chaotic transients.

In physical systems exhibiting transient chaos there ex-
ists in phase space a nonattracting chaotic set, a chaotic
saddle [2,7], that in dissipative cases coexists with an at-
tractor. Trajectories starting from randomly chosen ini-
tial points then approach the attractor with probability

1. Because of the saddle’s stable foliation, however, they
might come close to the saddle and stay in its vicinity
for a shorter or longer time, before reaching the attrac-
tor. This results in the appearance of a chaotic motion
with a well defined average lifetime of 1/k where & is the
escape rate, a basic characteristic of the chaotic saddle.

The experimental investigation of transient chaos has
received, in spite of its relevance, relatively little atten-
tion (for a few examples, see [8,9]) and, with the excep-
tion of a very recent effort [9], has mainly concentrated
on determining the average chaotic lifetime. In this paper
we illustrate that transient chaos can be analyzed from
time series in very much the same manner as perma-
nent chaos. Chaotic saddles underlying transient chaotic
dynamics can be reconstructed and their characteristics
taken with respect to the natural measure can be deter-
mined from time series. To our knowledge, this is the
first realization of such an analysis in a laboratory ex-
periment where the underlying equations of motion are
not used explicitly.

We have applied a method proposed in Ref. [10] for re-
constructing chaotic saddles from experimental time se-
ries of one single variable. It is based on the creation of
a long signal with transient properties and can be sum-
marized as follows:

(a) Take an ensemble of time series containing tran-
sients to a steady state behavior.

(b) Locate the attractor of the dynamics in the variable
investigated and separate the transient parts.

(c) Construct truncated time series, i.e., drop those
points of the transient that belong to the transition either
from the initial point to the saddle or from the vicinity
of the saddle to the attractor. The truncated time series
generate a natural measure [11], and their average length
is the reciprocal value of the escape rate from the chaotic
saddle. The results obtained by an appropriate trunca-
tion should be insensitive to any additional truncations.

(d) By means of some simple matching procedure, glue
the truncated signals together, apply a low-dimensional
time-delay coordinate embedding, produce a Poincaré
section, and plot the invariant set. The gluing process is
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inevitably an excess noise source whose effect can, how-
ever, be kept under control (see Ref. [10]).

(e) Apply the usual time series analysis method to de-
termine quantitative characteristics of the chaotic saddle.

The signals we investigated have been obtained from
an NMR laser whose chaotic behavior has been studied
for over a decade [12]. The low noise and drift free data
made the system appropriate for an experimental investi-
gation of a variety of phenomena, such as periodic orbits
[13], templates [14], a heteroclinic crisis [15], noise reduc-
tion [16], or the control of chaos [17]. The detailed de-
scription of the experimental setup is available in the lit-
erature (see, e.g., [16]); here we just mention the features
most relevant for our subject. Chaotic motion can occur
in the NMR laser when the cavity quality factor Q(¢) is
sinusoidally modulated, i.e., Q(t) = Qo[1+pcos(2mvmt)],
where p (the control parameter) is the modulation am-
plitude, v, = 100 Hz is the modulation frequency, and
Qo = 300 is the quality factor of the free running NMR
laser. The laser output is a time-dependent voltage.

Our investigations were carried out at a control param-
eter value just below the crisis point [15] and at a pump
magnetization M, = —0.74 A/m. It must be stressed
that we chose the system parameters Qg and M, different
from Qo = 330 and M, = —0.78 A/m used in previous
publications [13,17]. The heteroclinic crisis at p = p, re-
sults in an attractor explosion. At p < p., close enough
to the crisis point, the original (small) attractor coex-
ists with a chaotic saddle; consequently, the steady state
motion on the attractor occurs after a chaotic transient.
Above the crisis point an enlarged strange attractor ap-
pears which incorporates both the former chaotic saddle
and the attractor. The data for our analysis have been
taken in the range p < p..

The laser transients were generated by changing the
quality factor Qo in the following way: After reaching
the chaotic steady state with some value Qg = Q;, the
quality factor was lowered to a given value @, resulting
in a quenched state and kept at this value for a time of
approximately t; = 5 ms. Then, the quality factor was
switched back to its original value Q); and the laser output
was recorded as a normalized, dimensionless scalar time
series {£1,€2,...,&n}, 0 < & < 1 of length n = 1024.
The sampling frequency was 2500 Hz. The time series
analysis was then carried out by following the steps of
the scenario described above.

Step (a): An ensemble of 9599 short records has been
generated. The length of these records (¢t = 0.4096 s) was
chosen to be about 4 times the average chaotic lifetime, so
that we have just a few signals exhibiting transient chaos
during the full record. Another, smaller ensemble of only
several hundred longer (¢ = 1.9968 s) transient records
was used to prove that the probability to find transients
on longer time scales was negligible. To characterize the
chaotic steady state, a long series of 256000 data was
also recorded.

Figure 1(a) shows a typical segment of the steady
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FIG. 1. Typical time series segments {(t) = & with
t =i(4 x 10)™* s consisting of 1024 data points (a) represent-
ing the steady chaotic motion on the attractor, (b) illustrat-
ing a typical transient, and (c) showing a piece of the artificial
long time series representing the motion near the chaotic sad-
dle. The dotted line represents the maximum measured value
of the laser signal in the chaotic steady state.

chaotic signal. The dotted line denotes the maximum
observed peak height in this state. Figure 1(b) illus-
trates a typical transient behavior. Switching back the
quality factor at ¢ = 0, a few peaks of relatively large
amplitude arise after a delay time of approximately 0.02
s. The laser action between subsequent pulses is almost
quenched. The various transient pieces will be glued to-
gether at this very low laser amplitude, the laser back-
ground level. The apparently chaotic motion outside the
attractor then settles down to the steady state. Note that
between the large transient impulses there are no peaks
of intermediate amplitude characterizing the motion on
the inner loop of the attractor [see Fig. 3(a) below].

Step (b): To separate the transient parts, we have ap-
plied the following empirical rule: Find the last peak of
amplitude larger than the maximal observed amplitude
at the steady state [dotted line in Fig. 1(b)] and keep the
segment ending with this peak and a short piece of the
laser background after. (The average distance between
the peaks of the transient is =~ 0.04 s with a random dis-
tribution; thus, the length of the short pieces added to
the last peak was chosen to be 0.02 s.) Some informa-
tion has been lost in this way because the last transient
impulse may be smaller than the cutting level.

Step (c): The empirical rule we used also ensured dis-
carding the transients from the vicinity of the saddle to
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the attractor. In order to obtain truncated time series,
the transients toward the saddle are also to be discarded.
Because of the rather large modulus of the first negative
Lyapunov exponent governing this decay (see below), it
was sufficient to drop a little piece before the first large
peak only. A careful investigation of the truncated time
series shows that the probability to find a piece of length
T decreases exponentially with T'. The number D(T') of
truncated signals of lengths T is plotted in Fig. 2, after
applying a local averaging. An exponential fit gives the
escape rate kK = 9.27 £ 0.06 s~1.

Step (d): To decrease the noise coming from the gluing
procedure, short truncated signals were discarded. Those
longer than three effective periods of evolution (= 0.12 s),
which is on the order of 1/k, have been glued together at
the background signal level between the peaks. Figure
1(c) shows a segment of the long artificial time series
of 2037577 data points obtained from 5608 truncated
signals in this way. The differences between the steady
state [Fig. 1(a)] and this motion are clear.

Step (e): A time series analysis of this artificial sig-
nal has been carried out. First we show in Fig. 3(a)
the return map of the time series representing the mo-
tion near the chaotic saddle. A single peak (between
the rising and falling edges) consists of typically 20-30
data points; thus the correlation is very high between
consecutive data points. Therefore An = 5 was chosen
in a two-dimensional time-delay embedding. This is to
compare with Fig. 3(b), in which the return map of the
coexisting chaotic attractor is plotted. Figures 3(c) and
3(d) display the Poincaré section of the saddle and the at-
tractor, respectively, in a three-dimensional embedding.
Careful inspection shows that the inner structures of the
Poincaré sections are not identical at all; however, the
branches of the saddle are close to the attractor. The
presence of a low dimensional invariant set is clear in all
cases. Note that the chaotic saddle has a larger extent
than the attractor.

The effect of the gluing procedure on the Poincaré map
{Fig. 3(c)] can be estimated by noticing that gluing takes
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FIG. 2. Coarse grained lifetime distribution of the tran-
sients.  The solid line shows the exponential fit: D(T)
= 34.23 exp[—~T"/(0.1078 s)]. Time is measured in seconds.

place at the laser-background level. The artificial gluing
points thus lie in a narrow region close to the origin of the
pseudo phase space, and do not appear on the Poincaré
plane. As a consequence, there might be a slight shift
of the Poincaré points because of the fluctuations of the
laser-background level but this induces a relative error
of less than 1% only. The reliability of the computation
of other characteristics based on the artificial time series
(see below) is also due to this fact.

For the reconstruction of the static picture of the sad-
dle, as appropriate for a dimension analysis, it is not
necessary to glue together the truncated transient pieces
forming a long time series. The advantage of this pro-
cess appears definitely when one tries to characterize
the chaotic saddle, since the standard algorithms devel-
oped for analyzing permanent chaos are applicable with-
out any problem. As an example, we have used the
Grassberger-Proccacia method [18] to obtain the correla-
tion dimension. The embedding process, carried out up
to ten dimensions, gives for the saddle D¢orr = 2.3040.1
which coincides with the attractor dimension within er-
ror bars. The results also support the view that the sys-
tem can be faithfully described in a three-dimensional
phase space. As an independent check, we also deter-
mined the box dimension of the chaotic saddle appearing
on the Poincaré plane obtained without gluing the trun-
cated signals together. The result was indistinguishable
from Do within error bars.

We also computed the Lyapunov exponents applying
the Jacobian method [19] embedding the time series into
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FIG. 3. Reconstruction of the invariant sets by the time
delay embedding method. Return map for the saddle (a)
and for the attractor (b). Poincaré section taken with the
z = 0.25 plane in a three-dimensional time-delay embedding
{x,—,yi,zi} = {Ei,§i+20;£i+40} for the saddle (C) and for the
attractor (d).
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three dimensions. For the mazimum Lyapunov exponent
we obtained 225 + 15 and 126.5 4+ 1.7 s™! for the saddle
and the attractor, respectively. The higher value on the
saddle shows that the divergence of nearby trajectories is
much faster than on the attractor. The modulus of the
negative Lyapunov exponent for both the saddle and the
attractor is of order of 300 s™!.

There is a famous formula {11] expressing the infor-

mation dimension D%u) along the unstable manifold in
terms of the escape rate x and the maximal Lyapunov
exponent A; of the saddle in three-dimensional flows as
Dg“) = 1 — k/A; which is expected to be close to the
partial fractal dimension. With the values determined
above, we obtain Dgu) = 0.958 &+ 0.003. Since this num-
ber is close to 1, the structure of the invariant set is not
“airy”; i.e., it does not contain large holes.

As another illustration of the advantage of using long
artificial time series, we plotted in Fig. 4 the autocor-
relation function given by A(t) = (£(t')&(t' +t)). The
most striking feature is that the motion on the chaotic
attractor is more coherent than on the saddle. This is
due to the presence of a densely populated inner and
outer loop [see Fig. 3(b)] which is much less pronounced
in the case of the saddle [Fig. 3(a)]. Consequently, a
quasiperiodic behavior superimposed on the chaotic mo-
tion is observed, along with a much slower correlation
decay than in the case of transient chaos. The situation
is very much similar to the one found in a periodic win-
dow of the Hénon map where a 7-piece chaotic attractor
coexists with a single chaotic saddle [10].

With these studies we hope to contribute to the estab-
lishment of transient chaos as an experimentally accessi-
ble phenomenon. It is very likely that many experimen-
tally observed transient chaotic signals were considered

1.0 )

A(t)

FIG. 4. Autocorrelation function A(t) for the saddle (a)
and for the attractor (b). Time is measured in seconds.
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in the past to be uninterpretable and were therefore dis-
carded. This might be due to the fact that the asymptotic
feature of chaos has been overemphasized, and the use of
long time averages has been more common in the defini-
tion of chaos than that of ensemble averages. Moreover,
the results obtained for the Lyapunov exponents or for
the correlation decay strongly indicate that the motion
on a chaotic saddle is more chaotic than the one on the
coexisting strange attractor.
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FIG. 4. Autocorrelation function A(t) for the saddle (a)
and for the attractor (b). Time is measured in seconds.



