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A multibaker map is generalized in order to mimic the thermostating algorithm of transport models.
Elementary calculations yield the irreversible entropy production caused by coarse graining of the
phase-space density. For different systems, either in steady states (periodic or flux boundaries)
or subjected to absorbing boundaries, the specific irreversible entropy production is shown to be
u?*/D, where u denotes the local streaming velocity (current per density) Bnis the diffusion
coefficient. [S0031-9007(97)04219-1]

PACS numbers: 05.70.Ln, 05.45.+b, 05.20.-y, 51.10.+y

The connection between nonequilibrium statisticalnonattracting chaotic set (a chaotic saddle) in the phase
physics and the underlying chaotic dynamics has becomspace. In the regime of linear response, at least, relaxation
a subject of vivid interest [L-15]. The central questionsis closely related to steady-state transport. The transport
are how the microscopic reversible dynamics can appeamwefficients of Hamiltonian systems are related [1,11—
as an irreversible process on the macroscopic level, anti3] to the chaotic saddle’s escape rate In a recent
how the macroscopic transport coefficients are relategaper [17] dissipation was also taken into account, and
to microscopic characteristics of the chaotic dynamicsthe irreversible entropy production was shown to be the
A careful analysis of the rate of irreversible entropysum of the escape rate and the average phase-space
production is at the heart of this problem [16—20], butcontraction rater® on the chaotic saddle.
the relation between complementary approaches has beenAs the list indicates, complementary dynamical ap-
poorly understood. Here, we present a consistent derivgroaches have traditionally been associated with different
tion of the irreversible entropy production for three mainboundary conditions. Here we show that a thermostated
approaches to describe transport in driven systems produapproach can be defined irrespective of boundary condi-
ing currents. They model eitharonequilibrium steady tions, which, in the following, will be referred to byi()—
states(A) or therelaxationtowards steady state8) (B). Even multibaker maps [9—11,13] can be generalized

(A1) In the thermostating algorithma special force to mimic thermostating. They will be used to analytically
is introduced to avoid an uncontrolled growth of thework out expressions for the irreversible entropy produc-
kinetic energy of particles moving in external fields [2—tion from the point of view of dynamical systems.

9]. The force mimics the presence of a thermostat The multibaker map acts on a chain 8f elementary
and makes the particle dynamics dissipative on averageells of sizea X a (cf. Fig. 1). It will be subjected to
although it preserves time reversibility. The systemghe different boundary conditiond1, A2, or B. The
investigated up to now were assumed to be periodic ofliscrete time dynamics acts at integer multiples of a
large spatial extension, and hence to be closed. Thiéme unit 7. The square is divided into four vertical
long time dynamics exhibits permanent chaos on amolumns. The rightmost (leftmost) column of widih
underlying chaotic attractor. Transport coefficients ands;) is mapped onto a strip of widtih and heightsk

the irreversible entropy production are connected with thés;) in the square to the right (left). These columns
average phase-space contraction tet€ on the attractor.

(A2) By applyingflux boundary conditiongo an open
Hamiltonian system it was shown that the steady-state +—a— —a—+—a +—a—
density follows Fick's law [10], and the irreversible '|'
entropy production has been calculated [19]. In this case
the current running through the system is due to the 2 || >
boundary condition only, and the phase-space contractiorJ_
rate is zerog /) = 0. 1505184 Sn |

(B) The escape-rate formalisrof transport processes is m m1 i m i m+l
based on the |nyestlgatlon of open systems of large S.p.atIEIIG. 1. Action of the multibaker map on a single cell Four
extensions subjected to absorbing boundary Condltl0n\§ertica| columns are squeezed and stretched by the map such

[11-13]. In such cases the particle dynamics is chaotic ifhat the resulting horizontal strips exactly fit into the cell or its
the sense of transient chaos, and there exists an underlyingighbors.
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induce transport along the direction. The two middle where only cell densities are considered. This change will
columns of widths; ands, are transformed into strips of be related to the irreversible entropy production. Owing
width ¢ and respective height§ and s}, and model the to the strict self-similarity of the dynamics, the entropy
chaotic motion of trajectories not contributing to transportchangeA ™ aftern time steps i:AS™"). Therefore, it is
in a single time step. Subscript will be used to label sufficient to computéAS) only. The different boundary
the four columns or rows of a cell, and= 1,2 will conditions give rise to different densitieg, thereby
denote the inner strips only. By definition > 0 and  inducing significant differences in the evaluationA$ ).
>« sk = a, so that the local phase-space contraction ratek the following we demonstrate that, nevertheless, the
are o = —(1/7)In(s;/sx). Such maps are known to respective irreversible entropy productions are the same.
be prototypes of strongly chaotic systems [21]. They (A1) Periodic boundary conditions-All cells are
possess probability densitigg(x, y) which take constant equivalent in this case so that there is a constant sta-
values along the direction in each cell and might depend tionary coarse-grained densiyy" = p,, for all m. It is
on time. The conditional hopping probabilities from a sufficient to consider a single cell with periodic bounda-
cell to its right or left neighbors are then = sg/a  ries, implying that the strip mapped out of the cell at
and! = s;/a, respectively. For ever) = m = N the one side is injected back from the other. The density
current densityj,, flowing from cellm tom + 1isrelated is normalized so that/ o* dx dy gives the number of
to the hopping probabilities and to the cell densities byparticles in the cell. The corresponding entropy for the
Jm = r@m — 10n+1) (a/7). constant density i§* = —p*a*Ino*. An application of

A map modeling driven thermostated systems has to bthe map introduces microscopic inhomogeneities into the
area contracting (expanding) if the trajectory moves in thesystem: the densities after timeon the different strips
direction of (against) the driving force in order to model will be the constant valueg, = @*s;/s;. Thus, there is
the work done by the thermostat on particles movingan entropy changAs = o*a[— Y, s¢ In(@*sx/sk)] —
parallel to the external field (cf. [1,2,7]). Furthermore, S*. Averaging the density over the cell leadsgd again.
the local contraction rate, should coincide with—o, Thus, the loss of information due to coarse graining is
because for a trajectory goingcells to the right and then —AS(". Since the entropy computed from the coarse-
n cells to the left, the overall dissipation should be zerograined density remains constant, the irreversible entropy
In addition, the mapping of the phase space must be oneyoductionP.”’ per particle isP\”) = —ASV/p*a?r =
to-one in order to preserve time reversibility [22]. Inthe[S" s, In(s¢/s;)]/a7. In accordance with previous state-
multibaker model this is fulfilled by the choice ments [2,4,7], the right-hand side is nothing but the aver-

s) = g, Sho= L, and s, =s/. (1) @age phase-space contraction raté) on the attractor.

Using Eqg. (1) one obtains for the irreversible entropy

The local phase-space contraction rates are thgn= production in the thermostated case

—oy, ando; = o, = 0, expressing that thermostating is _ |+ v
needed only for trajectories contributing to transport. pi(r’;) S ALy PR ST 2D
We emphasize that results comparable with thermo- T ! a 1=
dynamics can be obtained only if, in the macroscopic v? 1 (a)?
limit « — 0 and 7 — 0, the hopping probabilities = - D [1 12 <Z> } 4)

sg/a andl = s, /a, which define a random walk along yere we have introduced a characteristic length scale
the chain, are compatible with a diffusion process [13]; = p/y and used (2). Since®> and v are macro-

Irrespective of the thermostating condition (1), this |ead%copically relevant quantities, is a macroscopic length.

to the following restrictions [23] on the parameters Hence, the second term in the square brackets is a finite-
27 T size correction, and the macroscopic entropy production is

Il +r=—D, r—I1=—wv. (2) v2/D

a a .

Here,D andv, respectively, denote the diffusion and drift  (42) Flux boundary conditions—We assume Fick's

coefficients of the associated advection diffusion (Fokkerlaw to hold in the steady state with a density gra-

Planck) equation [13]. They are assumed to be constandieént €,8, and consider a celln in the interior (Sf
Let us consider the Gibb's entropy defined with & long chain. In general the entropy change

respect to the phase-space densgify, v) as is due to the mixing of the densitp, with ¢, =
P P P ity. y) o.(1 + 8a) and gz = ¢,,(1 — 8a) in the neighbor-

S = _] o(x,y)Ine(x,y)dxdy, (3) ing cells, and to the phase-space contraction. For an
unbiased dynamicg =1’ = r = v/ = rD/a? the lat-

where the Boltzmann constakl has been suppressed. ter effect is not present, implyings" = 7o, D[—(1 —

We shall assume that a stationary state has set ifia)In(l1 — 8a) — (1 + 8a)In(1 + Sa)] (for the biased
characterized by constant cell densitigs Nevertheless, case cf. Ref. [24]). By construction, the average density
after a single time step there will be a changy§") of  g,, in the cell is unchanged, so that it is coarse graining
S because inhomogeneities developdfx,y). AS" is  that causes the information lossAS") about the micro-
unobservable, however, in a coarse-grained descriptioscopic state of the system. Consequently, the irreversible
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entropy production per particle is by the normalization eXjg7) [13]. Forl = m = N this
—ASD p 1+6 implies the eigenvalue equation
o _ —AsT —[In(l — 824 + Saln 76’}
Oma’t  a? 1 — 8a r 1 ~ - ~
| € Om = ; Zsi Om T rOm—1 + lem+l~ (6)
= Daz[l + g(aa)2 + } (5) :

) o ) . . With the boundary conditiong, = 0y+; = 0 this leads
This expression is equivalent to the local irreversibleg, B = Ze@" silrm/(N + 1)], whereZ is a normal-

entropy production initially found in [19]. More- jzation constant ande = (1/2)In(r/I). The associated
over, for an unbiased dynamics and a dens'tyeigenvalue is

fulfilling Fick's law, the streaming velocity [2] is
Up = jm/Om = —D(Vo)/0m = —D8. Thus, we find kT 5( T )
that the macroscopic term of Eq. (5) agrees with those ¢ L= 1=r+2Virco N+1/) 0
obtained for the periodic case [EqQ. (4)], where= v.

(B) Absorbing boundary conditions-Owing to es-
cape, the phase-space densityis decreasing in time.
Therefore, the change of the entropy (3) contains a co
tribution of entropy flow into the surroundings in addition

to irreversible entropy production. It is worth concentrat-o ' ¢ contributions from every single cell. In cell
ing only on the effect of the fractal foliation induced by m the change of specific entropyis® in on.e time
the dynamics (cf. [17]) by considering a specific entropyg;e, is que to the distribution of conditional densities
s (entropy per particle) defined in the same form as (3),; = _ O 51/5 EXPKT), Omr = Om-1 5k/sk EXpKT)
except thato is replaced by the conditional phase-spacea;]”éé L'”: lé l+1sL/S'L ’eXF(mI;T) on n’éhe stripsl, 2, R I
density9 (x,y). This density represents the probability to resperg;[ively, mwhere the factors éxg) ensure  nor-

find a particle around a phase-space point under the COn= . lization [cf. Eq. (6)]. Consequently, the change is

on tat s ot yet escapod. 115 ceined on ey’ = 2, 5. g, g + o'g. g, The nor
[64d dp — 1 F?Afteralon time. the conditignal dezsit fnation loss due to coarse graining -'rsAs,(,P in cell m,
@ dxdy : . 9 e Y and the rate of irreversible entropy production is obtained
of cell m tends to the invariant conditional densgy,, for @ ) ) i i
which the flux through the boundaries is counterbalamfe&SPirr = —As,’/(@ma’7). Inserting the expressions for
Om.« and taking into account Eq. (6), one obtains

Here « is the escape rate from the chaotic saddle
underlying transport. In the present paper, we only
discuss the large-system respt> 1, where the cosine
Yunction can be replaced by unity.

The total irreversible entropy production is the

(a) ASI(’I‘}) 1 2 S S ~m—l rém—l ém+1 lém+1
Piw = — 75—k + — e Z—In—,+ —rin —— + ——1In — .
Oma-t T i=1 4 S Om r'Om Om o

Except for a narrow boundary layer around the two enLjsl;hermostated model
the evaluation of{s is elementary since fal > 1 we @ _ 2D va ) "?
can used,,+1/0, = expla)[1 + O (N~1)], obtaining Piw = =—11=11={3,

a? 2D
KT 2 2
@ _ oy ¢TSS, S 2y AT ZU_[HL(g) N } o
Pir = Kk + — |:§aln s,'-+(lr) In l’r’j| D e ., (9)
=k + @ (8) wherel, is defined as in (4). The term in square brack-

ets corresponds to a finite-size correction. Consequently,

Here, @ represents the average phase-space contractithe irreversible entropy productions expressed in terms
rate [25] on the saddle. The rightmost equality of (8)of the drift parametep is by a factor of4 smaller than in
was argued to be the irreversible entropy production fothe steady states. Observe, however, that the local cur-
general open systems [17]. Here, we have illustrated thieent densityj,, = 0,(r — 10n+1/0m) (a/T) = 0,(r —
by an explicit calculation for the long baker chain. lexpa)(a/7) = onr[1 — (1/r)"/?] tends tog,,v/2 for

Notice that owing to (1) the terr@ vanishes for the a — 0; i.e., the local streaming velocity,, = j,./@, is
thermostated model. As a consequence, the thermostay2. Consequently, by fixing the streaming velocity one
is ineffective for the motion on the chaotic saddle. Thisobtains thesameamount of irreversible entropy produc-
surprising result is directly related to the requirementtion in all approaches.
that the thermostated equations of motion preserve phase-In spite of the simple model several findings exposed
space volumglobally. above are apparently of general validity.

Expressing (7) with the drift and diffusion coefficients (i) Open systems subjected to absorbing boundary
(2) and taking the small- limit, one obtains for the conditions and to the same thermostating algorithm as
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