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We investigate the evolution of active particle ensembles in open chaotic flows. The active processes
of the typeA + B — 2B and A + B — 2C are considered in the limit of weak diffusion. As an
illustrative advection dynamics, we choose a model of the von Karman vortex street, and show that the
backbone of the active processes is the fractal structure associated with the passive dynamics’ chaotic
saddle. This fractal dynamics leads to singularly enhanced concentrations, resulting in a distribution of
products that differs entirely from the one in conventional active processes. This may account for the
observed filamental intensification of activity in environmental flows. [S0031-9007(97)05034-5]

PACS numbers: 05.45.+b, 47.52.+j, 47.70.Fw

There has been recent interest in the advection of activieetter that, in the limit of weak diffusion, there is &m-
particles in chaotic hydrodynamical flows [1]. By active hancemenbf activity around the chaotic saddle and its
particles, we mean tracers that undergo certain changesmstable manifold since it is there where the active trac-
due to, say, chemical or biological interactions, but doers spend the longest time close to each other. Then, as
not modify the underlying flow. By chaotic, we mean the products are passively advected, they trace out the un-
time-dependent, nonturbulent velocity fields with chaoticstable manifold. (The enhancement of activity is meant,
tracer dynamics (Lagrangian chaos) [2]. The motivationin comparison with nonchaotic, e.g., stationary, flows.)
is to understand the new features of chemical or biologicaCharacteristic quantities associated with this process are
processes induced by the underlying chaotic dynamicghe escape rate from the saddle and the unstable mani-
and their implications to environmental flows, such asfold’s fractal dimensiorDy.
ozone reactions [3] or population of microorganisms inthe In this Letter, we also show that the distribution of
sea [4]. products follows anontrivial dynamicghat can be derived

In contrast to previous investigations restricted to flowsfrom the properties of the passive advection and of the
in closed regions, our aim is to consider a class of twointeraction rule of nearby particles. In particular, we
dimensional open flows in which the velocity field in the point out that a steady state of finite productivity sets in
far upstream and downstream regions is uniform but nonafter a sufficiently long time. Moreover, the newly born
stationary in a bounded region. A well-known laboratoryactive tracers cover the branches of the unstable manifold
example is the flow around a cylinder. Similar situationsapproximately uniformly with an average wid#i in the
can be observed in environmental flows, such as the fluidteady state. This implies that, on linear scales smaller
motion in the wake of a pillar or the motion of air be- thane*, fractality is washed out, but a clear fractal scaling
hind an isolated mountain. A unique feature of such opemf the material can be observed on larger scales with the
flows with asymptotic simplicity is the pronounced and samefractal dimensiorD, as that of the unstable manifold
stable fractal character associated with the chaotic tracén the passive flow. As a consequence, the differential
dynamics [5-8], which is clearly measurable in experi-equation derived here for active tracer ensembles has the
ments [9]. This tracer dynamics is governed by a nonatfundamental and novel feature of containiirgational
tracting chaotic saddle [10] containing an infinite numberD(-dependent powers of the number of product particles,
of periodic and nonperiodic bounded tracer orbits whichsignaling asingular enhancement of productivity. This
never reach the far upstream or downstream regionsingularly enhanced rate of activity has profound practical
These regions are, however, foliated by the saddle’s stablnsequences. It may account for the observed filamental
and unstable manifolds, respectively. Although both thepatterns of intense activity in environmental flows [3], an
saddle and its manifolds are not space-filling fractal ob-effect that cannot be explained if one considers diffusion
jects, the unstable manifold is the avenue of long-timeprocesses alone.
propagation and transport of tracers in such flows [5-9]. To fix a frame of mind for our discussion and analysis,

The activity of the advected particles is assumed to beve consider the activity in the flow to be of chemical
a kind of “infection” leading to a change of properties if origin. To be specific, we consider simpkametic models
they come close enough to each other. Particles with ne{l] where two passively advected particles of different
properties are the products. We argue and show in thitypes undergo a reaction if and only if they come within a
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distanceo, which is the interaction range, and can also be " " ¥ "
considered as diffusion distance We study both (i) an i x 10* @)
autocatalytic procesg + B — 2B, and (ii) a collisional >0 MW 2‘2‘
reactionA + B — 2C. ComponentA will be considered
as the background material covering the majority of the - ’ .
entire fluid surface. For computational simplicity we -2 0 2 4
assume that reactions are instantaneous and take place at : X

integer multiples of a time lag. An important parameter 1f
is v = k7, the number of reaction events occurring on
the characteristic time of chaos. The case of continuous
time reaction is obtained in the limit — 0 (v — 0) and 4t
o — 0. For generality, we also investigate cases where
v is of order unity which is of relevance for biological
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processes accompanying advection [11]. 1l
The flow chosen to illustrate these phenomena is the
von Karman vortex street in the wake of a cylinder [5-9]. > Of

The radiusrk of the cylinder and the period@ of the flow
are taken as the length and time units. For simplicity, we , , , ,
use an analytic model for the stream function introduced -2 0 2 4

in Ref. [6]. This model has been motivated by direct X

numerical simulations at Reynolds number 250, and habklG. 1. Autocatalytic reaction: Time evolution of a square

itati aped droplet oB particles (black) in the background df
been used successfully to reproduce qualitative features égrticles (white) forr — 0.2 ( — 0.072), &9 — 0,01, and at

the tracer dynamics. The escape rate of particle_s in thﬁmes (@) 0, (b)2 (before the reaction). and (@ (after the
reaction free flow isc = 0.36 and the fractal dimension of yeaction). Inset in (a) shows the numbeérof B particles as a

the unstable manifold iBy = 1.61, while the background function of time.
flow velocity isvy = 14 [6].

In order to simplifynumericalcalculations, we project
the tracer dynamics on a uniform rectangular grid of lat-manifold look wider. The two pictures correspond to two
tice sizegy = o, covering both the incoming flow and the different coverages of the fractal manifold. The sudden in-
mixing region in the wake of the cylinder. If there is a crease of the coverage width at discrete times is due to our
tracer inside a cell, it is considered to be in its centermodeling of the chemical reaction as a “kicked” process.
With this projection the tracer dynamics defines a mapin the steady state, the reaction products are apparently dis-
ping among the cells. If a tracer starting from the centetributed in strips of finite width along this manifold, and the
of a cell is advected into another after timgthen the lat- B particles trace out a stationary pattern on a stroboscopic
ter cell is considered to be the image of the first one withmap taken with the period = 1 of the flow. On linear
respect to the dynamics [12]. One iteration of the mapscales larger than the average width the B distribution
ping consists of advection followed by an instantaneouss a fractal. Figure 2 shows how the area of the black re-
chemical reaction on this grid of cells. The simulation en-gions, right before the reaction, depends on the grid size
tails a repeated application of these steps. g9 = o. We find a scaling behavior with exponehné4,

(i) For autocatalytic reactionsa cell is considered to be which is consistent with the unstable manifold’s fractal di-
occupied by reagerR if it is an image of at least onB  mensionDy = 1.61 (cf. Fig. 2).
cell. Otherwise, the cell is considered to contdin In (ii) For collisional reactionsthe cells are iterateldack-
addition, if a cell contain®3 at the time of the reaction, wardintime, and the occupation of the neighboring cells is
all of the eight neighboring cells are infected By Con-  monitored. If, among the neighbors of the preimage, there
sequentlygq plays the role of the interaction rangein  exists a cell with eithed or B, differing from the con-
our simulation. Initially, we introduce a seed of reagenttent of the preimage cell, then the original cell becomes
B, typically upstream from the cylinder. Figures 1(a) andC, just as if the preimage cell itself contaigs Initially,
1(b) display the spreading d@& (black) in the course of the flow consists of material, into which we introduce
time. Note the rapid increase of tliearea and the forma- B continuously along a line segment perpendicular to the
tion of a filamental structure. The inset in Fig. 1(a) showsbackground flow in front of the cylinder. Figure 3 dis-
the number ofB particles in the computational domain as plays a typical snapshot of the surroundings of the cylin-
a function of time. After approximately four periods, the der. Strips of producC separate the areas occupied by
chemical reaction takes the period of the flow and reachematerialsA and B. These strips are pulled along the un-
a steady state. While in Fig. 1(b) tiBedistribution has a  stable manifold of the chaotic saddle behind the cylinder.
rather scanty appearance, right after the autocatalytic rea@his implies again that the reaction essentially takes place
tion [as shown in Fig. 1(c)], most of the filaments of the along this manifold. After a short transient, a saturation
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whereR"*1 is the amount of reagett appearing in the

(n + I)streaction. The reaction takes place along the bor-
derline between materiald and B. Let £ denote the
-1.64 length of this borderline. The newly borB territory

is then of areal o. A sufficiently long time after the
10° onset of reaction the area & is pulled into strips of
more or less constant widths along the unstable manifold.
Let ¢ (r) denote the average width of the strips. By
covering the full area occupied by at any time instant
by squares of linear size, the number of boxes needed
for this coverage behaves a§e) = H e P for & =
e"(r). Here, H is the Hausdorff areaof the manifold

of dimensionD,. The area oB is then Az = H &2 Do,

10° : Since the number of boxes covering the perimeter is

2
107 c 10 proportional toN (e) due to the filamentary structure, the

length of the borderline separatimgandB is, at the same
FIG. 2. The area occupied by in the steady state scales as :
Al ~ g2 D0 at different values of the time lag (o, 7 = 1; instant of time,£ = cH &'"P. Here,c is a number
%, 7 =2, +, 7=3) with Dy = 1.64, which is in good mc:orporatlng mfo_rmatlon about thhgpeof t.h('e fract.al,'a
agreement with the fractal dimension of the unstable manifoldjuantity which might depend om but, if so, it is periodic
of the reaction free flow. Several runs were carried out withwith the period of the flow. By eliminating, we obtain
differento = . that the perimeter length and the mass are related to each
other via a power lawL = ¢ 3 /2= A with g =
_ . (Dy — 1)/(2 — Dg). Since the manifold’s dimension lies
has been observed in the numbeBadr C particles on the  petweenl and2, the exponens is positive. The reaction
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stroboscopic map. term in (1) is then
Next, we present ¢heory,valid for not too large time
lags, which supports these observations. For simplicity, ROTD — o1 = ch_[l/(z—po)ﬂgﬂ(ﬂfﬁ. )

we treat the autocatalytic reactiod + B — 2B only.
Let A% (1) denote the area occupied W inside the
mixing region. Herer € [0, 7] is the time after theith
reaction, and the total physical time is + 1. During
the time intervalr, only advection takes place, ac@'(r)
decreases with the escape ratef the chaotic saddle. If
the material is distributed along sufficiently narrow strips
around the unstable manifold at= 0, d A(z)/dr is

proportional tonZl ")(¢), and the area occupied kB/at

the end of the |nterva+ is AW(r) = AW(©O)e . A A = AW 4 e AW 3)
this time instant, a sudden reaction takes place, and the

area of5 becomes where we have used the rescaliA§’(r)/ H — ﬂgl) to
eliminate the dependence on the Hausdorff area. This is
a recursion (a discrete dynamics) tﬁtg’), expressing the
amount ofB before theln + 2)nd reaction in terms of the
amount before thén + 1)st reaction. Since the map is
one dimensional and strongly dissipative, it must possess
attractors, in spite of the Hamiltonian particle dynamics.
The advection by the flow (first term) and the reactivity
(second term) are in permanent competition.

, , In steady states of the active process the two competitive
-2 0 2 4 terms balance each other. dfis constant, a fixed point
Aj is found for the area occupied . It is easy to
FIG. 3. Collisional reaction at time = 2 (before the reac- check that this fixed point is the only attractor. In the
tion). Initially the flow consisted of materiad, into which  ,5re general case whenis periodic with the period of

reagent B was introduced along a line segment= —2, - .
—0.05 < y < 0.05 (o = 8, = 0.01, 7 = 0.05). White de- the flow, a limit cycle is the attractor. In other words,

notes the backgroundi, grey is B, while black is the the active process becomgmchronizedo the underlying
productC. flow. The area occupied b® in the steady state turns

Thus we conclude that the reaction term contaimega-

tive power of the area occupied [B; The lessB material
present, the more effective the reaction is, because the
resolved perimeter is the larger. Thisgular behavior

is due entirely to the fractality of the manifold, and it
disappears for smooth manifolds (nonchaotic flows) when
Dy = 1. Therefore, the reaction equation (1) becomes

A0 = AP @) + RO, (1)
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