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We study the dynamics of chemically or biologically active particles advected by open flows of
chaotic time dependence, which can be modeled by a random time dependence of the parameters on a
stroboscopic map. We develop a general theory for reactions in such random flows, and derive the
reaction equation for this case. We show that there is a singular enhancement of the reaction in random
flows, and this enhancement is increased as compared to the nonrandom case. We verify our theory in a
model flow generated by four point vortices moving chaotically.
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The study of chemical and biological activity of par-
ticles advected by fluid flows is of fundamental impor-
tance to the understanding of the dynamics of important
environmental systems, such as the population dynamics
of plankton in the sea [1], the depletion of the ozone layer
[2], and the dynamics of pollutants in the atmosphere [3],
to name only a few. In many situations, the flow in which
activity occurs can be considered to be open, meaning
that there is a net current flowing through the region of
observation. An example is the flow in the wake of an
obstacle. In most cases, open flows display chaotic scat-
tering [4,5], where the dynamics of advected particles is
dominated by a chaotic saddle, which is an infinite fractal
set of nonescaping unstable orbits. For some simple flows,
it has been found [6,7] that the presence of the cha-
otic saddle has important consequences for the reaction
dynamics.

These previous results were obtained by assuming that
the time dependence of the flow is periodic. In nature,
however, very few periodic flows are found. Although it
seems difficult to find a theory of reactions for completely
turbulent flows, there is a class of flows to which a theory
can be established, which is in between the regular and
the fully turbulent cases. Many flows display well-defined
coherent structures, that is, well-defined persisting space-
time patterns, such as the large persistent vortices found
in many real flows [8]. The theory we develop in this
Letter applies to flows in which the coherent structures
are the dominating feature. We assume that the number of
these coherent structures is fixed, but their position and
shape vary chaotically. It makes then sense to model the
advection dynamics on snapshots taken with some pe-
riod, as a map with randomly varying parameters. The
advection dynamics is thus described by a random map
[9], in which the random parameters are assumed to be
taken from a stationary ensemble. From now on, we use
the term random flows to designate such flows. In this
Letter, we develop a general theory for the dynamics of
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active processes in random flows. We obtain the reaction
equation, and show that there is a singular enhancement
of the production. Hence, we get the important and far-
reaching result that the enhancement of productivity is
not restricted to periodic flows, but in fact holds for a far
more general class of flows, which includes many impor-
tant real-life systems, as already mentioned.

We consider, as an example of activity, an autocatalytic
reaction A + B — 2B, where the stable phase B “invades”
the unstable phase A. We consider a kinetic-type model, in
which B is assumed to be made of particles advected by
the flow, and A is assumed to be a uniform background.
This means that we do not have to deal with reaction-
diffusion equations directly. We consider a two-
dimensional incompressible flow [10]. We assume that
the border between the phases A and B is sharp, which
means that a well-defined reaction front exists. This is
true when diffusivity is small enough, and the Péclet
number is large. The front moves from B towards A
with constant velocity vg. In an open flow, B particles
are carried away due to outflow, and a nontrivial steady
state configuration is reached. If the advection dynamics
is chaotic, the B particles converge to the unstable mani-
fold of the chaotic saddle, as the system evolves in time.
This unstable manifold is made up of a Cantor set of one-
dimensional curves [5]. In a random flow, both the chaotic
saddle and its unstable manifold are fractal objects of
well-defined dimensions which do not repeat their shapes
in time [9]. The advection carries an initial distribution of
B particles into thin stripes of typical width e(¢) sur-
rounding the unstable manifold. If there were no reac-
tions, escape would cause €(?) to decrease to 0 as t — o,
and there would be practically no B particles left in the
system after a long enough time. However, the loss due to
escape is counteracted by the production of new B par-
ticles in the autocatalytic reaction. The advection makes a
B stripe of width € contract at a rate given by — A€, where
A 1s the local contraction rate. Hence, the total time
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evolution of €, with the reaction taken into account, is
given by € = — A€ + cvy [6], which can be conveniently
rewritten as dIne/dt = — A + vgic/ €. Here ¢ is a geomet-
ric factor of order 1 which depends on the particular shape
of the unstable manifold and on the overlapping of neigh-
boring stripes. In random flows, A and ¢ are not constants:
they are random variables. By averaging over the sta-
tionary distribution of the randomly varying parameters
of the flow, we get [11]

dlne

< = A+ @UR. (1)

€

There is no average on v, since it is an intrinsic property
of the reaction.

In order to derive the reaction equation, we turn our
attention to the area B(r) occupied by the B particles at
time ¢t. A fundamental result in the theory of random
maps is that there is a well-defined fractal dimension d
independent of time [9]. For a particular realization of the
flow parameters (that is, for one element of the ensemble
of dynamical systems), we have the well-known relation
B = J €4 for the area covering a fractal object with
dimension d at a resolution € [12]. J{ is another geomet-
ric factor. From this expression, we obtain

d d d
— InB=2 —d)—Ine + —1 . 2
0 n ( d)dt ne 7 nH )

The above formula is valid for a particular element of the
ensemble. As the fluctuations of the flow parameters and
hence of H are taken from a stationary ensemble, the
average of H is time independent. From (1) and (2) we
find [11]

d— _ — ()
ZInB = ~A2 - d) + (2 d)vR<€>. 3)

Since the generalization of the Kantz-Grassberger rela-
tion [13] is also valid for random maps [14], the dimen-
sion d of the chaotic saddle’s unstable manifold can be
expressed as d = 2 — «/A. We therefore identify the first
term on the right-hand side of (3) as —«, where « is the
escape rate from the random chaotic saddle.

To get an equation for B in a closed form from Eq. (3),
we need to derive a relation between B and €. We do this
by assuming weak relative fluctuations. We now write
€ = € + 8¢, where e satisfies 6e = 0. We write a similar
expression for the geometric factor: ¢ = ¢ + dc¢, with
8¢ =0. In view of the aforementioned weak relative
fluctuations, the averaged terms in Eq. (1) are well ap-

proximated by
E)=(E)a+n @
€ €

where p = (8€/€)> < 1is the strength of the randomness
in the flow dynamics. Notice that the variance of ¢ does

— 1
Ine = In€e — = p,
ne = In€ — - p
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not appear in these expressions, and we assumed that the
cross correlation céde is zero [15].

Substituting Eq. (4) into Eq. (1), we get the equation for
the time evolution of €:

1_d —
% —Ezd—’;= — A€ +vge(l + p). (5)

The effect of randomness on the average width is a multi-
plicative correction on the production term, which can be
thought of as an increase in the effective reaction velocity
vy [16]. In other words, randomness enhances productiv-
ity, as compared to the nonrandom case.

Next, we average the expression B = H €27, and use
the expansions H = H + H (8 =0)ande = € +
6€. The result is

B= ﬁzz-d[l L 2-a-d d)z(l — d)p:|, (6)

where, for simplicity, we also assumed that the cross-
correlation term d€6 H vanishes. Within thizs @ngoxima-
tion InB=InB — (2 —d)?p/2—1/26H " /H" [17].
Substituting this result and (6) in Eq. (3), we get the final
form for the time evolution equation for the area B of
reacting particles:
dB (2 —d)*_dp = —7< 3-d )
2 = — B—=—-kB+uggB A1l +——
dt 2 dt BT VRS 2 P
(7

up to first order in p where g = (2 — d)E.’]-[l/(z_d) is an
average overall geometric factor [16,18], and the power 8
is given by
d—1
= =

B=5—4=0. (8)
Since 1 < d <2, the production term in Eq. (7) has a
singular dependence on B, and it diverges for B — 0. The
relation (8) between 8 and d is formally the same as in
the time-periodic case [6], but here d is the dimension of
the unstable manifold of the random flow. Thus, we have
obtained the crucial result that the singular enhance-
ment of production is present even in random flows, and
hence cannot be dismissed as an effect of artificial time-
periodicity assumptions. It follows from (7) that the
steady state B-content B* scales as B* ~ v ¢ with the
reaction velocity.

We did not mention diffusion in the above, because
we have considered the case of flows with a very large
Péclet number, which allows us to neglect diffusion ef-
fects. For finite diffusivity, there is a lower cutoff scale €
below which the distribution is two dimensional, and
therefore, density gradients cannot appear on arbitrarily
fine scales [19].

Comparing Eq. (7) with the corresponding equation
for time-periodic flows [6], the random nature of the flow
is manifested in the fact that d > d,, where d, is the
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dimension of the nonrandom flow (in the limit p — 0)
from which 8 > B, follows [20]. This confirms the fact
that productivity is enhanced by randomness.

In order to test our theory, we numerically simulate the
autocatalytic reaction generated by four point vortices
[20]. This is one of the simplest open 2D flows that has
a chaotic time dependence [20]. Although this system is
deterministic, its stroboscopic map can be modeled by a
random map, due to the irregularity of the dynamics. The
vortices of the model represent the coherent structures
mentioned above. This chaotic vortex system can also be
considered as a local model of 2D turbulence over a finite
period of time [21]. The Hamiltonian equations of motion
for an advected particle are written in terms of the stream
function ¥ = W(x,y,t), given in our case by ¥ =
—13% Tilnr(s). Here I, is the strength of the ith
vortex, and r; is the distance of the advected particle
from the ith vortex. The positions (x;, y;) of the vortices
evolve in time according to the equations I';x; =
(0H/dy;); I';,y; = —(0H/dx;), where the Hamiltonian H
isH=—1%_.I'T;Inr;, and r;; is the distance between
vortices i and j.

We numerically implement the autocatalytic reaction
in the following way. We choose a rectangular region R
such that initially all the four vortices are in R. In order to
make the numerics feasible, we define a spatial grid in the
flow. Our numerical procedure is a discretized (in both
space and time) approximation to the continuous reaction
used in our theory. We partition R into n,n, rectangular
grid cells corresponding to the division of the x and y
axes into n, and n, segments, respectively. As the system
evolves in time, the average position of the vortices under-
goes an overall drift [20]. For this reason, we define R in
the comoving coordinates x, and y,, defined by x, = x —
I3% \x;and y, =y —13%  y, In these new coordi-
nates, the motion of the vortices is confined to a finite
volume of the x-y plane if the total vorticity is zero, i.e., if

4 ,T; =0. Region R is chosen so that if a particle
leaves R, it will necessarily escape towards infinity. A
given particle in R is considered to be located in the
center of the corresponding grid cell of R. Each particle
evolves in time for a certain reaction time lag 7, and ends
up within another cell. In this way, a cell-to-cell mapping
is defined (in the comoving coordinates). If the mapping
takes a particle outside R, the particle is discarded. After
advection, the particles undergo the autocatalytic reac-
tion: if a given cell contains a B particle before the
reaction, all eight surrounding cells will also contain B
particles after the reaction. If a cell already has a particle,
it remains unaltered. The complete dynamics of the sys-
tem is thus composed of an advection phase followed by a
reaction phase, and this is repeated indefinitely. Denoting
the grid size by o, this discrete approximation goes over
into the continuous theory in the limit 7 — 0 and o — O,
with the ratio o/7 = vy remaining finite. For fixed 7 we
therefore expect B* ~ v4 ¢ ~ o>~ 4. Therefore, all the
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results of our discretized numerical model can be rewrit-
ten in terms of variables of the continuous system.

We use vortex strengths I'y =1, =15 =1,1, = —3,
and choose R = [—1.3, 1.3] X [—0.2, 1.4]. The initial vor-
tex positions are x; = x, = x3 = x4, = 0, and y; = 0.1,
v, = 0.6, y3 =1, y; = 0.4. The reaction time is kept
constant, at the value of 7 = 2. We start with a uniform
initial distribution of B particles on the grid. After a few
reaction steps, the system reaches a state of dynamical
equilibrium, which is independent of the initial distribu-
tion. Because of the flow’s aperiodicity, the number of B
particles does not stay constant in time, but fluctuates in
a randomlike fashion; see the right inset in Fig. 1. Our
theory predicts that after the transient period is over, the
B particles should be distributed in a filamentary fashion,
shadowing the unstable manifold of the advection dy-
namics. In other words, the B distribution is a fractal
for scales larger than the width €. In Figs. 1 and 2, the B
distribution is shown at different times when the transient
phase is over. It is clear that the B distribution is very
intricate and filamentary. In order to test our theory
quantitatively, we compute the equilibrium distribution
for several values of the grid size o, keeping all the other
parameters constant. Let Ry be a subregion of the rect-
angle R. If N(o) is the number of B particles in the steady
state distribution within R, [22], it should scale as
N(o) ~ o9 [12], where dj is the fractal dimension of
the B particle distribution [note that N(o)o> = B*]. The
insets of Figs. 1 and 2 show the numerical result for N(o)
in R at different times. It is seen that N(o) does indeed
follow a power law, from which we find dg = 1.96 = 0.01
and dz = 1.94 = 0.01, respectively. Comparing this with
the value d = 1.95 of the unstable manifold dimension of

1 05 0 05

FIG. 1. Distribution of B particles at time ¢ = 14, right after
the 7th reaction step. The upper left inset illustrates the scaling
of N(o) for the region given by Ry =[—1.5,—0.26] X
[0.2, 1.2]. The result is a well-defined power law, with a fractal
dimension of 1.96. The upper right inset shows the time
evolution of the number of B particles towards the steady state,
where the time ¢ is measured in units of the reaction time 7.
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FIG. 2. Distribution of B particles at time ¢ = 16, right after
the 8th reaction steps in the counting region R,. The inset
shows the scaling of N(o) for Ry = [—0.8, —0.28] X [0.1, 0.8].
The measured fractal dimension is 1.94, which is within
statistical errors equal to the result of Fig. 1.

the advection dynamics, calculated in Ref. [20], we see
that they agree within numerical uncertainties, as pre-
dicted by our theory.

We have tested the theory in other systems, including
the alternating sinusoidal shear flow [23] and the baker
map. In all cases, the scaling of N(o) obtained from the
simulations were in accordance with the theory.

In conclusion, we have studied the autocatalytic re-
action dynamics in randomly varying 2D open flows.
Other reactions, such as, e.g., A+ B— C [6], or a com-
petitive population dynamics [24], are described by dif-
ferent rate equations, but they all contain singular terms
of power By = (dy — 1)/(2 — d,). Because this is a result
due solely to the presence of a chaotic saddle in the
advective dynamics, our theory implies that this struc-
ture for the rate equation remains unchanged when the
flow is random. This implies that the singular enhance-
ment of the reaction (dynamical catalysis) must be a
feature of several flows found in Nature.
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