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We investigate chemical activity in hydrodynamical flows in closed containers. In contrast to open
flows, in closed flows the chemical field does not show a well-defined fractal property; nevertheless, there
is a transient filamentary structure present. We show that the effect of the filamentary patterns on the
chemical activity can be modeled by the use of time-dependent effective dimensions. We derive a new
chemical rate equation, which turns out to be coupled to the dynamics of the effective dimension, and
predicts an exponential convergence. Previous results concerning activity in open flows are special cases

of this new rate equation.
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We are witnessing an increasing interest in the experi-
mental investigation of chemical reactions in time-periodic
two-dimensional flows whose advection dynamics is cha-
otic. After an early attempt [1], recent studies investigate
reactions in the blinking vortex flow [2], in a cellular flow
[3], and in an electrolytic flow [4]. The type of reactions
ranges from excitable media, via autocatalytic, to acid-
base reactions. This development has been preceded by a
series of theoretical works (see, e.g., Refs. [5—12]).

Although the experiments take place in closed contain-
ers, the theoretical understanding indicates that some fea-
tures appear in a much cleaner form in open flows (for a
review see Ref. [13]). In open flows there is a current
flowing through the region of observation to which parti-
cles, once escaped downstream, cannot return within the
observation time. There is a basic dichotomy between the
advection dynamics in open and closed flows, as shown in
Table L. In the first case (open flows) there is a very clean
and time-independent fractal dimension associated with
the chaotic advection dynamics. The chaotic advection
dynamics itself is, however, unavoidably transient, i.e., of
finite lifetime. In the second case (closed flows) chaos is
permanent, but produces structures whose degree of fila-
mentarity changes in time. Hence filamentarity is of tran-
sient character.

In open flows, the unstable manifold of the chaotic set is
a filamentary fractal of zero measure, and this manifold is
the skeleton of active processes [6]. In closed flows, how-
ever, the unstable filamentation is dense over the full
domain, and there is no invariant set which had a well-
defined dimension strictly lower than that of the flow. In the
absence of fluid transport barriers in closed flows, autoca-

PACS numbers: 47.52.4j, 05.45.—a, 47.53.4n

and hence much less interesting than in the open case. This
is fully consistent with the observation that the product is
distributed along the unstable manifolds [5]. Before reach-
ing the asymptotic state, the chemical product appears,
however, to have filamentary features [§—10,14] (see inset
to Fig. 1).

A recently developed theoretical concept which we shall
apply to describe the transient chemical product dynamics
is that of effective dimensions. Such space or time-
dependent dimensions have been used to understand the
effect of transport barriers in chemical reactions [15,16]
and of the overall structure of Hamiltonian phase spaces
[17] as well. In the context of diffusive line dispersion in
homogeneous turbulence, the concept of a time-dependent
dimension has been proposed in Ref. [18]. Our approach is
an extension of that of Ref. [19] in accordance with
Ref. [13]. In [19], the growth of filamentary microbial
colonies have been modeled by a time-dependent fractal
dimension. We propose here to describe the dynamics of
chemical reactions in closed flows by means of a time-
dependent effective dimension, D¢(7). This concept gives
a novel set of coupled equations for the time evolution of
the chemical products and of the effective dimension, and
allows a treatment analogous to that applied to the open
flow case. We point out that the convergence towards the
homogeneous steady state, in a broad range of reactions, is
exponential with an exponent that might be different from
the Lyapunov exponent of the advection dynamics. The

TABLE I. Basic difference between properties of open and
closed flows.

talytic [8] or excitable reactions [9,10] or even acid-base open flow closed flow
reacti9n§ le.ad to a ste.:ady state in which the full ﬂui.d chaos transient permanent
domain is either occupied by the product or no product is filamentarity permanent transient
present at all. The asymptotic state is thus homogeneous,
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FIG. 1. Concentration of reactant B in an autocatalytic reac-

tion in the sinusoidal shear flow [22]. Time is measured in
periods of the flow. The simulations were performed on a grid
of size 8192 X 8192. The Lyapunov exponent of the flow is A =
0.61 £ 0.02. Crosses represent results obtained from the simu-
lation, the straight line is predicted by (18). The relaxation
exponent from the plot is o = 0.628 £ 0.01. The inset shows
a snapshot of the autocatalytic particles’ distribution (black) at
time # = 8 on a grid of size 1024 X 1024.

initial growth depends on the dimension of the initial
product distribution. For distributions which are essen-
tially one-dimensional, the initial growth is typically linear
in time.

Much insight can be gained into any kind of reaction
dynamics by analyzing the so-called Lagrangian filament
slice model [9]. The idea is to investigate a long, straight
segment of the unstable manifold and follow the reaction
perpendicular to this segment only, since due to a fast
stretching, the distribution can be assumed to be homoge-
neous along the manifold. The effect of the flow transversal
to the manifold is a local exponential contraction governed
by the contracting Lyapunov exponent. We shall use the
simplest version of this model when the dynamics can be
described by ordinary differential equations [20].

Consider first reactions with front propagation, e.g., an
autocatalytic reaction A + C — 2C. In such cases material
C is spreading into the medium of material A with a
constant front velocity v and behind the front the concen-
tration of C is approximately a constant, ¢. The width of the
band in which material C is distributed along the unstable
manifold increases therefore with the speed of 2v. A
typical band of instantaneous width &(¢) is also shrinking
at the rate — A8, where A is the average positive Lyapunov
exponent of the chaotic advection dynamics of the two-
dimensional incompressible flow. In a domain of linear
size L, the dynamics of the relative width d = /L is thus

d=—Xd + 2v/L. (1)

This equation is expected to be valid for any reaction with
frontal propagation. According to Luther’s law [21], the

front velocity is proportional to the square root of the
reaction rate k and of the diffusion coefficient D y:

v = a(kDgg)'/% (2)

With « of order unity, this law holds for an amazing variety
of reactions ranging from bistable and excitable ones to
flames [21].

In the case of an acid-base-type reaction A + B — 2C,
we imagine that components A and B are distributed uni-
formly on the two sides of the manifold and reaction takes
place within bands of average width 8(¢). Inside this band
the C concentration is assumed to be a constant ¢. The
width is changing due to diffusion with a rate D g/ 5. Note

that & = Dygy/8 has the usual 8 = /82 + 2Dyt solu-

tion, but this is counteracted by the simultaneous presence
of exponential contraction due to the chaotic flow. The full
dynamics of the dimensionless bandwidth d = &/L is now
governed by

d = _/id + Ddiff/(de)' (3)
We can unify and generalize these cases by writing
d = —Xdg(d), )

where function g(d) is dimensionless. Based on the ex-
amples, we assume that there is a steady state solution d* >
0 for which

g(d) =0, (&)

and the steady state is stable [g/(d*) > 0]. Note that in a
reaction free case g = 1 and no nontrivial steady state
exists.

The steady state bandwidth for the particular reactions
(1)and (3)is d* = 2U and d* = Pe~'/2, respectively. Here
Pe = L?>A/Dyy is the (Lagrangian) Péclet number, and
U = v/(AL) is a dimensionless front velocity, which can
be written in view of (2) as U = a(Da/Pe)"/? with Da =
k/A as the (Lagrangian) Dahmkéhler number [13]. These
forms show that acid-base-type reactions are basically
diffusion limited, while in the frontal case the reaction
rate also plays an important role.

We are applying now the width dynamics to an unstable
manifold segment which is growing in time. Because of
area preservation (incompressibility) the typical rate of
contraction [A in (1)] towards the unstable manifold must
be the same as the stretching rate of typical line segments,
which should grow initially as exp(A?).

The increase of the length £ of a material line of finite
width is exponential over short times only, later saturation
sets in at some L* since the width dynamics reaches its
steady state d*. In a container of area JH L? (for a dish of
radius L = R the prefactor is, e.g., H = ), the total
length is L£* = L/d*. As a simple though general
form we write the equation for the dimensionless length
= L/L as
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In contrast to g, we do not specify the functional form of
f(L/L*) >0, but require £(0) = 0and f(1) = 1 to ensure
an initial exponential growth and a saturation.

The fractal dimension of curves can be considered as a
measure of their foldedness. Since a long line can fit into a
finite area only if it is strongly folded, we define an instan-
taneous effective dimension D.g(?) by counting the num-
ber N of boxes needed to cover all the bands containing
product C with boxes of size d(r), and requiring that it
scales as a power of d: N(d) = Hd P (1 = Doy < 2).
To total length can then be written as

I(t) = Hd(r)'—Perr), (7

The product content in the container is C(f) = ¢ L6 =
cH L2d(1)>~ P where ¢ is the concentration inside the
bands. The average dimensionless concentration is then
c(t) = C(t)/(¢H L?), and we find from (7) that

c(t) = d)i(1)/ H = d(£)>~Peu®), (8)

By taking the time derivative of the left equality and
using (4) and (6), we obtain

¢ =cA[1—g(c"B) — f(c™Bd")], &)
where
B(1) = Deg(1) — 1 (10)
2 - Deff(t).

It is remarkable that a negative power ( — ) of the average
concentration occurs in the chemical rate equation, just
like in open flows [6,13].

Differentiating the right equality of (8), and using (4),
(9), and (10), an equation for the effective dimension
follows:

_ Degyr
(2 = Degr)?

{ﬁg<c1+ﬂ> + (1 + BLf(cBd) - 1]}. (11)

B

_A
Inc

Equations (9) and (11) give a coupled set of equations for
the concentration ¢ and the dimension-dependent exponent
B.
For short times, t << 1/A, we can assume that f=0
since saturation is not yet in effect. If the product is
distributed along a line initially, so that the effective di-
mension is Dggo = 1, implying By = 0, we find from (9)

¢ = A1 — g(o)]. (12)

Substituting here from (1) the form g(c) =1 —2U/c of
frontal reactions, we find ¢ = 2UA, implying a linear
growth:

c(t) = ¢y + 2UAL (13)

For an acid-base-type reaction [see (3)], g(c) =
1 —1/(c? - Pe), thus ¢ = A/(c - Pe), leading to a diffusive

growth
S At
c(t) = 4[ct + 2At/Pe = ¢q + . (14)
co * Pe

Note that an exponential growth would only follow from
(12) if g would be constant, which is not the case.

In order to see how the trivial c— 1, D — 2, d — d*
final state is reached, we take into account that ¢! T8 = 4
and ¢ Ad* = cd*/d, and linearize Egs. (4), (9), and (11),
as

d = —bAd*(d — d*), (15)

¢=—aAc—1)— Xb —a/d*)d — d*), (16)

ali A
=% -+
of =g TV T g

respectively, where D, is used instead of 3, and notations
a = f'(1) and b = g'(d") have been introduced. We im-
mediately observe that the dynamics of the effective di-
mension D simply follows the dynamics of the average
concentration ¢ as we approach the steady state: comparing
(16) and (17) we see that D = —¢/ Ind*. The exponen-
tial convergence ¢ — 1 is governed by the largest of the
eigenvalues of the Jacobian in Egs. (15) and (16). The
eigenvalues turn out to be —aA and —bd* A, hence we have

(b—a/d)d—d), (17)
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FIG. 2. Time dependence of the effective dimension, in the
same numerical experiment as in Fig. 1. Crosses represent the
measured D values, while the straight line is predicted by (18).
The relaxation exponent is o = 0.628 = 0.01. Exponent D, is
obtained from a box-counting algorithm carried out by counting
the number N(e) of squares of linear size € [over a range € >
d(t)] needed to cover the product-occupied region at different
times. An example is shown in the inset, where the data corre-
spond to time ¢ = 8.
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¢ — 1 ~exp(—or), Do — 2 ~exp(—ot1), (18)

with
o = min{aA, bd* A}. (19)

It is easy to check from the definition of g(d) that for
autocatalytic reactions bd* = 1 (o = min{aA, A}), while
for acid-base reactions bd* = 2 (o = min{aA, 2A}).

The exponential convergence (18) has been verified in
numerical experiments. The flow we used is a sinusoidal
shear flow in alternating directions in a unit square with
periodic boundary conditions [22]. The unit square was
covered with a grid. Initially, one reacting particle was
placed in each grid cell of a narrow band across the fluid.
Autocatalytic reaction events occurred after each half time
period of the flow, when the flow changes direction. At
these instances all occupied grid cells “infected’ all their
neighbors. The average concentration of the autocatalytic
particles as a function of time is well predicted by (18), as
illustrated in Fig. 1. The inset shows a snapshot of the
active particles. In Fig. 2 the prediction (18) for the effec-
tive dimension is verified in the large ¢ regime, and o = A
was obtained. The inset illustrates how the instantaneous
effective dimension was estimated. For very large times we
observed a deviation from (18) which might be interpreted
as a result of numerical diffusion. Similar results have been
obtained for the acid-base reaction in the same flow with
o = 1.34A. This is an example where the relaxation ex-
ponent is different from the Lyapunov exponent.

We mention briefly what the theory predicts for a dye
droplet in a closed container when both diffusion and
reaction are absent. In this case, g = 1 and f = 0, since
there is no saturation in filament length. From (9) ¢ =0
follows, as it should in a closed container. From (11) we
find that 8 = —A/Inc = const, consequently 8 = B, —
(A/Inc)t. From (10) D = (1 +28)/(1 + B), i.e.,

2 = D
1- (2 - Deff,(]))_‘t/ lnc'

Dyg(t) =2 — (20)

The time evolution of the effective dimension is much
slower in passive advection than in reacting cases since it
is governed by a power law.

We note that Egs. (9) and (11) also contain the equation
obtained previously for autocatalytic reactions in open
flows. In that case, the effective dimension is the time-
independent information dimension D of the unstable
manifold, De; = D, D, =0, implying 8 = 0. From
(11) f =1 — (D — 1)g must hold. With this, (9) yields

¢=—cA2—D)g(c'"B). (1)

For frontal reactions g(c'*#) =1 —2U/c'*#, and by in-
troducing the escape rate k = (2 — D)\ we find

¢ = —ck+2Ukc™ B, (22)

the result of [6,13].

In conclusion, the predicted asymptotic behavior and the
initial nonexponential growth of the chemical product in
closed containers can directly be checked in experiments.
An extension of the theory towards including the distribu-
tion of the local Lyapunov exponents might lead to further
details without changing the features obtained here for the
average behavior.
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