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Abstract

We consider passive tracer advection in a model of a large planar basin of fluid with two sinks opened alternately. In
spite of the incompressibility of the fluid, the phase space of the tracer dynamics contains (simple) attractors, the sinks.
We show that the advection is chaotic due to the appearance of a locally Hamiltonian chaotic saddle. Properties of this
saddle and its invariant manifolds are investigated, and fractal and dynamical characteristics of the tracer patterns are
extracted by means of the thermodynamical formalism applied to the time-delay function.

PACS: 05.45.+b; 47.32.—y

1. Introduction

The passive advection of tracer particles in hydrodynamical flows is one of the most appealing
applications of the chaos theory. Assuming that inertial effects are negligible, the equation of motion
for a tracer expresses the coincidence of the tracer’s velocity # with the velocity field v(r,t) of
the flow that is assumed to be known: F(z)=0v(r(t),t). This is a simple set of ordinary differential
equations for the unknown tracer motion r(¢) with a given, typically nonlinear right-hand side. The
solution of such an equation can be chaotic.

Advection in two-dimensional incompressible flows represents an important subclass of the phe-
nomenon. The incompressibility of the flow leads then to an area conserving tracer dynamics in
the phase space that coincides with the configuration space. The case of steady flows corresponds
to a set of two autonomous equations of first order and, consequently, to integrable dynamics. The
advection in nonsteady flows is, however, described by a driven Hamiltonian dynamics with one
and a half degree of freedom. The particle motion is then typically chaotic even in the case of the
simplest time-dependence of strict periodicity. In the last decade, a comprehensive knowledge has
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accumulated in this field both for flows in closed containers [1-14] and for open flows with asymp-
totic simplicity [15-33]. The tracer dynamics takes place then in a bounded or in an unbounded
phase space, respectively. In the latter case, the asymptotic dynamics is simple and the tracer motion
can be considered as a scattering process with all the characteristics of chaotic scattering [34]. In
this paper we examine how the presence of sinks or sources influences the tracer dynamics that
is then asymptotically simple but no longer Hamiltonian. As a consequence, global time reversal
invariance does not hold, and the tracer dynamics is qualitatively different in the direct and in the
time reversed dynamics.

Piecewise steady flows have long been playing an important role in understanding chaotic ad-
vection. They are maintained by keeping the flow steady for a time interval (often half of the full
period), and then jumping suddenly to another flow kept steady for another time interval. Then a
jump follows back to the original flow, and the whole process is repeated periodically. The corre-
sponding particle motion is then a kind of kicked dynamics due to the sudden jumps in the flow field.
A pioneering example of this kind is Aref’s blinking vortex system [1]. Another famous model for
stirring in closed regions is related to the journal bearing flow [2, 3] whose experimental realisation
was also possible [3,4]. A piecewise steady model for open flows with Hamiltonian particle dynam-
ics, introduced recently, is based on a periodic repetition of a vortex action and of a homogenous
flow [27].

In order to study the effect of asymptotic dissipation in the particle dynamics of a piecewise steady
model, we shall investigate the blinking vortex-sink system of Aref et al. [17]. It models the outflow
from a large bath tub with two sinks that are opened in an alternating manner. In the course of this
process, a chaotic mixing might take place. Note that the time reversed model describes the periodic
injection of fluid into the basin via two different sources accompanied with rotation, and can be
called a blinking vortex-source system. It represents a model of mixing due to injection. We show
that, despite of the qualitatively different forward and backward global dynamics, both systems have
a common nonattracting set with Hamiltonian local dynamics. This invariant set is responsible for
the mixing in both the direct and the time reversed tracer motion.

The problem of fractal dye boundaries in open flows has recently been addressed [17,28-33] in
the context of Hamiltonian dynamics. The blinking vortex-sink system is ideally suited for studying
basin boundaries because it has two attractors (the two sinks) and a well-defined basin of attraction.
The original aim of Aref et al. in [17] was to show that this boundary can turn to be a fractal
in a broad range of parameters. We shall explain their finding in terms of the nonattracting set:
the basin boundary is the stable manifold of this set and becomes a fractal as soon as the set
becomes chaotic. Thus, the fractality of the boundary is a unique sign of chaotic advection, and
vice versa.

The paper is organized as follows. In Section 2 the advection in the velocity field of the blinking
vortex-sink system is described, and the tracer dynamics is represented by a stroboscopic mapping.
Then in Section 3 we explain the transient chaotic behaviour of the advected particles by means
of an invariant chaotic saddle governing the discrete dynamics. In Section 4 this explanation is
extended by examining the time evolution of the chaotic saddle and its invariant manifolds. Due
to the explicit form of the tracer map, we are able to study the dependence of the dynamics in
a large range of the vortex and sink strengths (Section 5). Multifractal and dynamical properties
of the saddle are determined by means of the thermodynamical formalism in Section 6. Finally, in
Section 7 concluding remarks are given along with a discussion of multicolored dye boundaries.
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2. The blinking vortex-sink model and the advection map

An ideal fluid filling in the infinite plane with a point vortex in it that is simultaneously sinking can
be a model of a shallow but infinite basin of fluid with a sink. This corresponds to the observation
that a rotational flow is formed around the sink in the course of drainage.

The velocity field due to the sink is thus modelled by the superposition of the potential flows of
a point sink and of a point vortex. The complex potential [35] for a sinking vortex point located at
the origin can be written as

w(z)=—(C+iK)Inz, (N

where z is the complex coordinate in the plane of the flow. Here 2rC is the sink strength, i.e.
the amount of fluid drained by the sink in unit time, and 27K is the circulation measuring the
vortex strength. The velocity field corresponding to w(z) consists of the superposition of a radial
component v, = —C/r and of a tangential component v, =K/r. The imaginary part of the complex
potential, ¥ = —KInr — C¢ is the streamfunction [35]. The streamlines (the level lines of ¥) are
logarithmic spirals: ¢ = —K/CInr+ const.

A passively advected tracer particle follows the velocity field of the flow without any inertia. Its
equations of motion in polar coordinates are

F=0,, (/'):Uw/r, (2)
By solving these equations with initial conditions (7, ¢,), we find

r(t) = (r; —2Cn)'?, 3
o(1) = @y — (K/C)In r(t)/ro - (3)

The particles move along streamlines as the flow is stationary. By returning to the complex repre-
sentation, z =7 exp (i), we obtain that a tracer particle starting at a point z, will arrive, after time
t, at

2(t) =zo(1 — 2Ct/|zo]* )2 7H3C. (4)

Because the motion is undefined after reaching the sink center, the time in this expression has to be
limited from above:

t < |z} /20). (5)

With this condition, Eq. (4) uniquely describes the tracer motion.

The blinking vortex-sink system [17] is obtained by having two such sinking vortex points some
distance apart from each other, both being active alternately for a duration of 7/2. In this system the
velocity field is periodic with 7', but in a special way: it is stationary for half a period and stationary
again but of another type for the next half period 7/2. The velocity field corresponds to a sinking
vortex flow centered at z= —a and at z=g¢ in the time intervals (0, 7/2] and (7/2, T], respectively.
The entire flow is no longer stationary, there are jumps in the velocity field at each half period.

The tracer motion can be easily built up from Eq. (4). A trajectory starting at =0 follows the
corresponding streamline up to = 7/2, when the velocity field suddenly changes. Then, the tracer
finds itself on another streamline that will be followed for the next time interval of length 7/2. Thus,
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Fig. 1. Two different tracer trajectories in the vortex-sink system for the parameter values n=0.5, £=10 with initial
conditions differing by an amount of 1072, Breakpoints are due to the sudden jumps in the velocity field of the flow.
Black dots denote the vortex-sink centers. Black squares at the breakpoints mark the discrete time trajectories for the

fo =0 stroboscopic map. The tracers of cases (a) and (b) leave the flow through different sinks, providing an example for
the sensitive dependence on initial conditions.

on a time scale of several periods, the trajectory will have several break points and can be much
more complicated than any of the streamlines. Fig. 1 presents such trajectories.

Since the velocity field is periodic, it is convenient to monitor the particle motion on a stroboscopic
map obtained by recording the position of particles after integer multiples of 7 only. In this section
we choose the starting time of taking stroboscopic snapshots f, to be #, =0 corresponding to the
instant when the right sink is switched off. For the tracer position at 1=7/2 and =T we obtain
from Eq. (4) by a simple coordinate transformation that they are

cr \iK
2(T/2) = (20 + a) <1‘—) —a,

|zo +a|2

and

CT 172—iK2C

A1) =172 - a) (1= o) +a, (6)
2(T/2) — af?

respectively. By introducing dimensionless coordinates via z — az, one notices that the dynamics is

fully specified by two parameters:

n=CT/a* and E=K/C, (7)

the dimensionless sink strength and the ratio of the vortex to sink strength, respectively. The locations
of the sinking vortex points are z= =1 in the new, dimensionless units.

The rule connecting the coordinates on snapshots taken at t=0 and ¢+=7T is exactly the same
as for the 1 =nT and 1= (n + 1)T stroboscopic instants. By introducing z, =z(n7T) as the particle
position after n periods, we obtain the general form of the discrete time advection dynamics as

1/2—igi2
N
L +1,
)

'3
|z

=G = 1) (1-

n
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where

, 7 1/2—i8/2
GG+ (1-—y) - ®)
is a dummy variable corresponding to the particle position at 1 =(n + 1/2)T. It is the jump in the
flow field at # =7/2mod(T') that made the submaps connecting z, to z/, and z/ to z,,, different.

We note that due to the alternating character of the flow, effective sink cores have been formed.
Tracers which are inside a circle of radius R=,/5 around any of the sinks at the instant when it
starts to be active, will leave the system in the next time interval of 7/2. We do not follow their
dynamics but take into account that particles having entered these disks disappear from the map.
This formally corresponds to having infinitely strong dissipation within the sink cores. Thus, the sink
cores are extended nonchaotic attractors of the advection map (although the time continuous tracer
dynamics possesses point attractors only, the two centers). Therefore, Egs. (8) are valid outside of
these sink cores only. Here, however, the map has Hamiltonian character: it is area-preserving and
invertible.

It is worth mentioning a simple symmetry property. The map is invariant under the transformation
t—t+T/2 and z — — z, i.e. under the time shift of a half period and the reflection with respect to
the origin. This is due to the fact that the flow is invariant under the transformation of exchanging
the vortex-sink centers and shifting the time by half a period.

For { =0 we obtain a pulsed sink system without any rotation similar to the pulsed source-sink
system introduced by Jones and Aref [16], but numerical evidence shows that the tracer dynamics
is regular for any value of #. In the limit # — 0, £ — oo, so that n& = const, we recover the blinking
vortex system of Aref [1] that exhibits chaotic advection in a closed region. In what follows, we
shall deal with the properties of the advection map Eq. (8), and its parameter dependence in the
finite # and & regime.

3. The chaotic saddle and its invariant manifolds

For a detailed investigation we choose the parameter values # =0.5 and &= 10. Two complicated
tracer trajectories have already been shown in Fig. 1. Although there is only a slight difference in
the initial conditions, the shapes of the trajectories are rather different, and the tracers finally leave
the system through different sinks.

It is instructive to look for periodic orbits since if they exist, they certainly are examples for
orbits never leaving the system, i.e., never reaching the attractors. At these parameter values we
found three period—one orbits whose forms (both continuous time and discrete representations) are
shown in Fig. 2. They turn out to be all hyperbolic with local Lyapunov exponents on the order
of 2.

The key observation for understanding the complicated dynamics is the existence of a strange
invariant chaotic set, a chaotic saddle in the system. The saddle is nonattracting, and lies in the
Hamiltonian part of the space, outside of the attractors. The saddle consists of all the countable
infinite number of unstable periodic orbits of the mapping. It also contains an uncountable infinite
number of non-periodic orbits [37], the ones never reaching any of the sinks in the direct dynamics,
and being bounded to a finite region in the time reversed dynamics. The tracers leaving the system
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Fig. 2. Three period-one orbits for the parameter values #=0.5, ¢ =10. Black dots denote the vortex-sink centers. Black
squares mark the discrete time orbits, the three fixed points of the 7o =0 stroboscopic map. The Lyapunov exponent of
the symmetric and the two asymmetric orbits is 2.03 and 1.97, respectively.

after only a long time are those coming close to the chaotic saddle. The stroboscopic picture of
this invariant set is shown in Fig. 3(a). All the points of the saddle seem to be hyperbolic, having
different stable and unstable directions.

The entire saddle has a stable manifold. This set is formed by points that can come arbitrarily
close to the saddle in the future (of the direct dynamics). The unstable manifold of the saddle is the
set along which the particles having reached the saddle with high accuracy leave it after a long time.
More precisely, the unstable manifold is the stable manifold of the time reversed tracer dynamics.
These invariant manifolds are shown in Figs. 3(b) and (c¢). The invariant set is the common part of
the stable and unstable manifolds. Since both the stable and the unstable manifolds are lines with
Cantor-set-structure in their intersections, the chaotic saddle also has Cantor-set-structure both in its
stable and unstable directions. Thus, the invariant set appears as a (slightly distorted) direct product
of two Cantor sets.

In chaotic systems, it is worth considering ensembles of particles instead of isolated ones because
the ensembles have well-defined averages. In a hydrodynamical problem the ensemble has a clear
physical interpretation as a droplet of tracers. Let us therefore briefly investigate the droplet dynamics.
If a droplet overlaps with the stable manifold, it moves in the direct dynamics towards the saddle.
Particles starting exactly from the stable manifold will hit the chaotic saddle, and thus they will
never leave the system. Particles starting near enough to the stable manifold are advected in the
vicinity of the chaotic saddle and stay there for a long time. Finally these long living tracers will
leave the system along the unstable manifold (see Fig. 4). Consequently, the shape of the droplet
after sufficiently long time traces out with a high accuracy the unstable manifold. This invariant set
becomes thus a direct observable in the droplet dynamics. In fact, the unstable manifold of Fig. 3(b)
was numerically obtained as the shape of a droplet of size 0.5 x 0.5 after n =4 steps.

In the time reversed system the role of the stable and unstable manifolds is interchanged. Since
the time reversed system can be interpreted as a blinking vortex-source model, the stable (unstable)
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Fig. 3. Invariant sets of the tracer dynamics in the vortex-sink system on the 7 = 0 stroboscopic map, Eq. (8), for n =0.5,
¢=10. (a) The chaotic saddle is the set of orbits never reaching the attractors either in the direct or in the time reversed
dynamics. It is the direct product of two Cantor sets. (b) The saddle’s unstable manifold is the set of initial conditions
leading to the saddle in the time reversed dynamics. The circle around the (—1,0) sink encloses the attractor on the left
half-plane, i.e., the area leaving the system in the next half-period. (¢) The saddle’s stable manifold is the set of initial
conditions leading to the saddle. It coincides with the basin boundary of the two attractors.

manifold of the original system corresponds to the unstable (stable) manifold of the latter, while the
chaotic saddle is the same for both systems. A droplet originally overlapping with the stable manifold
of the time reversed dynamics will thus trace out the unstable manifold, i.e. the stable manifold of
the vortex-sink system (Fig. 5). The stable manifold of Fig. 3(c) was numerically determined as
the n=6th image of a droplet of size 0.5 x 0.5 in the time reversed dynamics. The chaotic sets
shown in the paper (as e.g. Fig. 3(a)) were obtained as common parts of stable and unstable
manifolds.

Finally, we connect the concept of invariant manifolds to that of the basin boundaries whose study
was the original motivation of the authors of Ref. [17]. A natural definition of a basin in the vortex-
sink problem is the set of all points leaving the system via a given sink. The boundary between
the basins of the left and right sinks has to contain, therefore, points never leaving through any of
the sinks. Boundary points must thus tend to the chaotic saddle. Consequently, the basin boundary
is the saddle’s stable manifold. A comparison of Fig. 3(c) with the basin boundary generated in
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Fig. 4. Time evolution of a droplet of 300 x 300 particles uniformly distributed over the region [—0.25,0.25] x [—0.5,0]
on the 7, =0 stroboscopic map, Eq. (8) (parameter values #=0.5, £ =10). The pictures show the shape of the droplet at
discrete times 0, 1, 2, 3, 4 and 5 (a,....f). After already n =4 steps the droplet traces out the unstable manifold with an

accuracy of resolution better than 1 percent.

Ref. [17] for the same parameter setting supports this statement. In the vortex-source system, a basin
can be defined as the set of all points injected into the flow via a given source. Consequently, the
basin boundary is the saddle’s stable manifold in this system, i.e., the saddle’s unstable manifold
in the vortex-sink system. In any case, the fractality of the basin boundary is a unique sign of
the chaoticity of the tracer dynamics. We shall see later (in Section 5) that for certain parameter
values the chaotic saddle does not exist, the nonattracting set is a single periodic orbit with smooth
manifolds. The basin boundary is then indeed a nonfractal curve.
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Fig. 5. Time evolution of a droplet of 300 x 300 particles uniformly distributed over the region [—0.25,0.25] x [—0.5,0] on
the time reversed fo =0 stroboscopic map (parameter values # =0.5, £ =10). The pictures show the shape of the droplet
at discrete times 0, 1, 2, 3, 4 and 5 (a,...,f). The convergence towards the stable manifold is slower due to its large
extension but even so inside a circle of radius 1.5 the deviation between the droplet and the manifold is less than 1%
after 5 steps already.

4. Time dependence of the invariant sets

The stroboscopic snapshots can be taken not only at #p=0mod(7). One can choose arbitrary
starting times ¢, and record the tracers’ positions at the time instants t =n7 + 1 as z,(tp). Varying
f, between 0 and T we get different discrete-time representations of the tracer dynamics. A series
of pictures showing the invariant sets on the stroboscopic map taken at different times # can be
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Fig. 6. The chaotic saddle’s temporal evolution for the parameter values #=0.5, &=10. The pictures show the chaotic

saddle at times 1 =0, 1, &. . 1 and {z mod(1) (a,....f). The saddle for t>1 is the mirror image of the one at

T — § taken with respect to the origin.

considered as the (periodic) time evolution of these sets. Without loss of generality, we can assume
that 7, < T/2 because the symmetry properties of the system guarantee that the behaviour after a time
shift of 7/2 is the same if a reflection is applied with respect to the origin.

Using the results of the previous sections, we can easily determine the position of a tracer after
a time-period T, if it starts from z, at time n7T + f,. First, we determine its position at (n + 1/2)T
from Eq. (4) as

1/2-i¢n2

_nd 21)). . )

" =(z, .+ 1)1
Zn‘r (Z’ " )( lZn,t"‘lIz
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Fig. 7. Temporal evolution of the saddle’s unstable manifold in the vortex-sink system for the parameter values
n=0.5, {=10. The time instants correspondmg to the pictures are the same as in Fig. 6. The manifold for t>1 3 I8
the mirror image of the one at 7 — 1 taken with respect to the origin. The manifold was obtained with the droplet method
after n =4 iterations. Note that the most drastical changes occur in the first interval of length one sixteenth because there
are points very close to the newly opened sink at (—1,0), and the angular velocity of the rotation increases as » ~2 where
» is the distance from the sink. The effective sink cores (attractors) are shown as circles around (—1,0).

because the particle is advected by the sinking vortex at z= — 1 for a duration of T/2 — ¢, only.
Here we have introduced the dimensionless time (or phase) parameter ©=1t,/T. The position of this
tracer at = (n+ 1)T is obtained according to the first line of Eq. (8) as

1/2-ig/2
2= -1 — +1. (10)
. ' lZ:z.r_ 1l2
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Fig. 8. Temporal evolution of the saddle’s stable manifold in the vortex-sink system for the parameter values
n=0.5, £=10. The time instants corresponding to the pictures are the same as in Fig. 6. The manifold for 7> 1 is
the mirror image of the one at 7 — % taken with respect to the origin. The plot was obtained by means of the tlme
reversed droplet method after n =6 iterations. Reading the pictures in reversed order (fee,...,a), the evolution of the black
line corresponds to the evolution of the boundary separating particles injected into the flow via different sources in the
blinking vortex-source system. Picture (f) corresponds to an instant when the right source stops and the left one starts

injecting.

Then the tracer is advected again by the left sinking vortex for the remaining time interval of length
ty, and arrives finally at

1/2—1&/2

25t -
= |- 1. 1
Zp+1, (Zn,r + )< ‘Z,I;T_*‘ 1|2> ( )
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The time evolution of the chaotic saddle is presented in Fig. 6 for the parameter values 5 =0.5,
¢ =10. Since this is the set of points staying in a finite region forever and never reaching any of the
attractors in both the direct and in the time reversed dynamics, its behaviour has entirely Hamiltonian
character. The shape of the saddle changes periodically in time. It does not mean, however, that
all the points of the set return to their original position after a certain time. There are uncountably
many points of the saddle with chaotic trajectories. In fact, the entire set moves as if the points
of Fig. 3(a) were advected by the flow. Since the advection is a smooth transformation, the fractal
dimension of the saddle is the same on all snapshots.

Similarly, we can determine the time evolution of the saddle’s unstable manifold (see Fig. 7).
It is special in the sense that the number of points starting on this set decreases exponentially,
although the geometrical shape is moving periodically. We note that after the right sink is closed
at to =0, there is an interval in t when the unstable manifold of the map is not connected with
any of the sinks. This fact is again due to the sudden jump in the velocity field of the flow. The
evolution of the saddle’s stable manifold is illustrated in Fig. 8. Just like the chaotic saddle itself,
its manifolds change their shape as if they were advected by the flow.

5. Parameter dependence

Tracers with long life times typically approach the system’s nonattracting set (that can be either
a chaotic saddle or some unstable periodic orbits) along its stable manifold, then remain in the
vicinity of this set for a transient period and follow the dynamics on it. Later they leave the set
along its unstable manifold and reach one of the attractors. Therefore, the tracer behaviour in the
blinking vortex-sink or vortex-source system strongly depends on how the nonattracting set changes
when the two dimensionless parameters # and ¢ are varied. Fig. 9 shows the nonattracting invariant
sets for 16 different pairs of n and ¢ on the ¢, =0 stroboscopic map. From the top to the bottom
1, the sink strength, decreases, while from the left to the right £, the ratio of the vortex to the
sink strength, increases. For parameter values where the system is non-chaotic (small # or ¢ values,
lower left triangle region), the nonattracting set has numerically been found to consist of one point
only, a hyperbolic period-one orbit. Our numerical investigations suggest that the chaotic saddle
appears suddenly as the parameters are changed. Periodic orbits are born in a very tiny region
around the unstable period-one orbit in a similar way as in the course of the abrupt bifurcation in
chaotic scattering [36]. We can also observe in Fig. 9 that after chaos has appeared, the size of
the chaotic saddle grows with & For some (typically large) ¢ values there are also extended areas
surrounded by the chaotic saddle. Such regions are present e.g. in the upper right picture of Fig. 9
and are due to the fact that stable periodic orbits (elliptic points) have appeared surrounded by KAM
tori.

Three different types of tracer behaviour thus can occur depending on the parameters, simi-
larly as in other models [28, 30]. The first is a simple nonchaotic motion with only one point
as the nonattracting invariant set. This point is hyperbolic with two real eigenvalues. The second is
a chaotic behaviour with a fully hyperbolic chaotic saddle. This nonattracting invariant set has a
structure of the direct product of two Cantor-sets. The third type of behaviour is also chaotic, but
with an invariant set consisting both of a hyperbolic and a nonhyperbolic component. The latter
component appears around the KAM tori. In this region the local Lyapunov exponents can take on
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Fig. 9. The # =0 stroboscopic section of the nonattracting set for different parameter values. The [—5,5] x [-35, 5] region
of the (x, y) plane is shown; the vortex-sink centers are denoted by black dots. For small # and  values the nonattracting
set consists of one single hyperbolic fixed point only, in other regions chaotic saddles exist.

arbitrarily small positive values. Consequently, tracers coming close to the torus will stay there for
anomalously long times. (Note that tracers starting inside a torus cannot escape, they remain to be
trapped there forever. KAM tori — if they exist — form the boundary of fluid blobs of finite area
that never become drained from the system.)

The saddle’s unstable manifold is qualitatively different for the parameter values corresponding to
chaotic and nonchaotic cases. This is clearly visible in Fig. 10. The unstable manifold is a simple
curve in the lower left pictures associated with nonchaotic behaviour corresponding to the single
period-one orbit as the nonattracting set. For the parameter values where the nonattracting set is
a fractal, the unstable manifold is also a complicated winding curve. As the parameter values #
or ¢ grow, the extension of the unstable manifold increases. The circle around the left sink shows
the attractor on the advection map. Clearly, for all cases this circle contains a certain part of the
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Fig. 10. The o =0 stroboscopic section of the nonattracting set’s unstable manifold in the vortex sink—system for different
parameter values in the same region as in Fig. 9. The circles around (—1,0) indicate the left attractor of the advection
map. For small 5 and ¢ the unstable manifold consists of a line segment only. In other regions it is a complicatedly
winding fractal curve.

unstable manifold corresponding to the fact that the unstable manifold directs the particles into the

attractor(s).

The saddle’s stable manifold is shown in Fig. 11 for the 16 different parameter pairs considered.
They are again simple line segments for the nonchaotic cases, where the nonattracting invariant set
is a single point, and complicated fractal curves where a chaotic saddle is formed.

6. Extracting fractal and dynamical properties

Almost all the tracers leave the system after a certain time (apart from those starting from islands
surrounded by KAM tori). This escaping property assures that the chaotic behaviour is restricted to
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Fig. 11. The # =0 stroboscopic section of the stable manifold in the vortex-sink system for different parameter values in
the same region as in Fig. 9. For small 5 and ¢ the stable manifold consists of a line segment only. In other regions it
is a complicatedly winding fractal curve. The large black areas are due to the finite resolution and the finite number of
steps (n =28) taken in the time reversed droplet method to generate the manifold.

a finite domain both in space and time. Therefore, by applying the results of the theory of transient
chaos [37] and chaotic scattering [34], it is possible to define a natural measure on the nonattracting
chaotic saddle. Calculating the average Lyapunov exponent with respect to this measure, it can be
positive. Other relevant characteristics of chaos can also be determined.

A quantity of central importance is the time-delay function. It is defined as the number of steps
the tracers need to reach any of the attractors as a function of their initial coordinate along a line
segment. For the parameter values n=0.5, =10 Fig. 12 shows this function for initial coordinates
taken along a straight-line segment. It has a well defined, hierarchical structure with singularities on
a Cantor set formed by the intersections with the saddle’s stable manifold. Taking into consideration
that the whole saddle is contained in the Hamiltonian region of the flow, the properties of the saddle
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Fig. 12. A discrete time-delay function in the vortex-sink system for n=0.5, {=10. The picture shows the number of
periods (n) the tracers, starting from the line x € [—0.73,0.35], v=1, need to leave the system through any of the sinks.

The fractal structure emerges in the limit of extremely long exit times.

must be the same along both the stable and unstable directions. Thus, it is sufficient to examine the
statistical features on the intersection of the stable manifold with a straight line — the time-delay
function — to get relevant information about the entire chaotic saddle. The use of the thermodynamical
formalism [38] is very well suited for this purpose.

The scaling behaviour of the time-delay function and of the chaotic saddle can be fully charac-
terized by the so-called free energy function [37-39]. Let us consider the intervals of the initial
conditions on the time-delay function where the delay is larger or equal to n. We denote the length
of the ith such interval by /", By increasing n, one finds more and more intervals with shorter and
shorter sizes. Taking the limit # — oc resembles thus to performing the construction of a Cantor set.
It is therefore natural to expect that fractal and other properties can be extracted from the interval
hierarchy.

The free energy function F(f3) is defined by

N{n)

Z(l;n))[iNe—/iF(li)n , (12)
i=1

for n> 1, where N(n) is the number of intervals on the nth level of the hierarchy, and f is any
real number. The free energy characterizes the length scale distribution of the intervals covering
the singularities in the time delay function. These intervals are transported away by the flow along
the stable manifold, are slightly deformed, and after a certain time approach the saddle. The chaotic
saddle’s coverage with short intervals along its unstable manifold has thus the same scaling properties
as the intervals in the time delay function. Therefore, the same free energy characterizes the chaotic
saddle, too [39].

The total length of the intervals /"’ on the nth level is proportional to the number of the tracers
staying in the flow after n iterations of the map. Thus, the escape rate x characterizing the exponential
decay of the tracers remaining in the system is calculated as F(f) taken at f=1. The reciprocal
of x is the average lifetime of the chaotic tracer dynamics. The topological entropy K, describing
the exponential growth of the number of the intervals N(n) with n (as exp(Kon)) can be deduced
again from Eq. (12) taken at =0. Two other important dynamical properties can be derived from
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Table 1

Basic chaos characteristics determined from the thermodynamical formalism for different parameter values. The table shows
the values of the escape rate «, the average Lyapunov exponent 4, the partial fractal dimension dq and the topological
entropy Ko for the 16 pairs of parameter values of Fig. 9. From these quantities the information dimension and the metric
entropy can easily be obtained as d; =1 — k/4, and K, = 4 — &, respectively, [37, 38]

<
0.1 5 10 20
K 2.20 0.8 0 0
2 2 2.20 2.67 0 0
do 0 0.59 1 1
Ko 0 1.25 230 421
K 1.03 1.08 0.54 0
1 A 1.03 3.46 2.19 0
dy 0 0.56 0.69 1
n Ko 0 1.60 1.30 2.50
K 0.51 1.20 0.66 0.41
0.5 A 0.51 3.00 2.44 2.16
do 0 0.53 0.74 0.79
Ko 0 1.13 2.11 1.90
K 0.10 0.50 0.92 0.30
0.1 / 0.10 0.50 0.92 2.00
do 0 0 0 0.83
Ko 0 0 0 1.86

the free energy function: the average Lyapunov exponent 7 on the nonattracting set is the derivative
of BF(f) at f=1, while the fractal dimension d, of the singularities in the time-delay function is
the value of  where F vanishes. Since the singularities are projections of the nonattracting set on
a curve roughly parallel to the unstable manifold, d, is also called the partial fractal dimension of
the saddle. These most important characteristics can thus be extracted from the free energy as'

k=F(1),  Koy=—(BF(BNls=0,  A=dBF(B)/dBly=1.  F(dg)=0. (13)

The quantities given by (13) are summarized in Table 1 for the parameter values investigated in
the paper. Note that the escape rate, the average Lyapunov exponent, and the topological entropy
typically have a local maximum in &, while the fractal dimension has a tendency to increase with .

"In order to better understand Eq. (13), it is worth considering a simple example. Assume that at level n there are 4"

(b>1) intervals of equal length l(") =4a" (a<1) in the time delay function. Then Ko = Inb and x = — Inab immediately
follows. The intervals expand in the time reversed dynamics after » steps to a length of order 1, thus — ln(l(”))/n is a
kind of local Lyapunov exponent. Since all the intervals have equal length, A= — Ina. The intervals of the nth level

can be covered by N(¢)=b" boxes of size é=qa". Thus the fractal dimension is do = Inb/In(1/a). On the other hand,
from Eq. (12) BF(B)= — Inb — BIna. The validity of the general rules are easy to verify in this simple example. Note,
that the graph of BF(f) is now a straight line corresponding to a behavior governed by one local expansion rate and a
monofractal invariant set. In particular, the case of nonchaotic advection due to a single hyperbolic orbit of Lyapunov
exponent 4o >0 is described by a free energy SF(f8)=fil, and hence Ko =do =0, k = A= /.
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Next, we show that the invariant set’s dimensions follow from d,. Using the fact that the dimension
of a direct product of two fractals is the sum of the components’ fractal dimensions [41], we get
that the chaotic saddle’s fractal dimension is dy = 2d, on the stroboscopic map. The manifolds are
the direct product of a line and a Cantor set, therefore, daniroq = 1 + do. Thus fractal dimensions of
the singularities in the time-delay function uniquely determines the fractality of the chaotic saddle
and of its invariant manifolds.

The free energy is, in general, a nonlinear function. In fact, the curvature of BF(f) contains
information concerning multifractal like properties. First, we introduce scaling indices / by writing

A= —(1/m)In 1" (14)

They tell us how rapidly the length scales decrease with # and can be considered as local Lyapunov
exponents. The range in which the values #; lie is typically a finite interval.

As n grows, there are more and more intervals of the same exponent A. Their number W(#n, 4) also
grows exponentially, and we can define an entropy function S(4) of the local Lyapunov exponents
as the growth rate of WW:

W(n,.)~est"m (15)

valid for large n. Alternatively, it can be obtained as the Legendre transform of the SF(f) function:
S(4)= Ap—=BF(B)s= piy» where B(2) is defined by 2 =d(BF(f))/dp. Whenever F(f) is not constant,
S(4) is a smooth single humped function.

One can define a natural distribution on the chaotic saddle describing how often different pieces
of the set are visited by tracer trajectories. For hyperbolic saddles, the measure of a box taken with
respect to this natural distribution is proportional to its linear size. More precisely, the measure P
of each interval covering the saddle along its unstable manifold is proportional to the length of the
interval. Normalization implies that

PI('H)NeKn[fn)Ne(k—Z,)n (16)

can be considered as the interval measure. It is then easy to see [39] that the value of 4 that belongs
to the point where the slope of S(4) is 1 specifies the average Lyapunov exponent 4 of the dynamics.
Furthermore, all multifractal spectra, like the f(a) spectrum [42] or the set of generalized entropies
K, [38] can be shown [39] to be expressible by means of F(f) or S(/). For the parameter values
along the diagonal of Table 1, some of these functions are exhibited in Fig. 13. Notice that in
nonchaotic cases the spectra S and f consist of one point only (S(49)=0, f(0)=0); K, =0, and
F(B) is a constant (cf. footnote 1). In chaotic cases, the f(x) spectra are shifted with increasing ¢ to
larger values of o, while their height is increasing. The change of the other characteristic functions
is not monotonous with &, partially due to the fact that 4 and K, have local maxima at =35 and
& =10, respectively.

We briefly mention that for the parameter values where the chaotic saddle is not fully hyperbolic
and the asymptotic behaviour is affected by KAM surfaces, the exponential statistics is no longer
valid for very large n. The escape is slower than exponential and can be described by an algebraic
decay as N(n)=n"° as n— oo. This is due to the sticky surface of the KAM tori, where the tracers
spend a long time following some approximately quasiperiodic motion. Thus, the escape rate x is
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Fig. 13. Geometrical and dynamical multifractal spectra characterizing the tracer dynamics for n =2, ¢ =0.1 (diamond),
n=1, &£=5 (triangle), n=0.5, =10 (square), #=0.1, =20 (black dot). (a) The free energy functions are determined
from time-delay functions like the one in Fig. 12. (b) The spectrum S(Z) of the local Lyapunov exponents A obtained
as the Legendre transform of BF(f). (c) Generalized entropies [38] K, defined via Zi Pﬁ")qw exp((1 — g)Kyn). They
can be expressed with the free energy as K, =q(F(g) — k)/(g — 1). (d) Multifractal spectrum f(a) [42] of the partial
dimensions of the nonattracting set. It can be expressed with the entropy function as f(2)=S(4)/Al; = xi1—x» Where « is
the crowding index. f(a) is the fractal dimension of intervals of the time delay function with the local scaling property
P~

expected to be zero together with the average Lyapunov exponent A [43]. The fractal dimension
dy should converge to dy=1 by using very fine resolution [44]. In Table 1 we indicated these
asymptotic values where KAM tori are present. In such cases the free energy is identically zero for
f>1 but has a nontrivial branch in the range of < 1. These two contributions are associated with
the nonhyperbolic and hyperbolic components of the chaotic saddle, respectively. At f=1 a “phase
transition” occurs. Since such nonanalyticities have been thoroughly investigated in general settings
[45], we do not discuss here further details.

Finally, we note that local Lyapunov exponents and other multifractal-like properties can also be
determined directly by following the deformation of material lines [46]. Our approach based on the
analogy with chaotic scattering provides, however, a simpler method since it requires the analysis
of only straight-line segments of an interval, extracted from the time delay function, instead of
two-dimensional deformations.

7. Conclusions

The vortex-sink system, or its time reversed version, the vortex-source system, belong to a new
class of open flows: they contain singular points with nonzero divergence. As a consequence, fluid
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disappears or is created in the course of time. For the advected passive particles this means that the
global dynamics is not time reversal invariant. The forward and backward dynamics is different but
both are physically realisable. We have shown that the nonattracting invariant set of both dynamics
is, however, in common, and of Hamiltonian character.

If the tracer dynamics is chaotic, a strange saddle underlies both the direct and the time reversed
dynamics. The invariant manifolds of the saddle play also important roles: the unstable one is
traced out by droplets, while the stable one define the fractal basin boundary in both types of
dynamics. The structure of dye boundaries in open flows has been the subject of recent papers
[28-31, 33]. These boundaries are defined as borderlines between different colours injected into the
flow somewhere in the inflow region. It has been shown [29] that in systems where the tracer
dynamics is chaotic, the dye boundary has a fractal and a nonfractal part, and the former coincides
with one of the invariant manifolds of the chaotic saddle. The question arises, why the basin boundary
of our system is entirely fractal and does not contain nonfractal parts. We could, of course, paint
the points according to the sink which they exit through or, in the blinking vortex-source problem,
according to the place of injection. This type of colouring corresponds to qualitatively different
dynamical behaviour (reaching different attractors, or emanating from different repellers). 1f, however,
we subdivide the disk around the vortex centers (the attractor for the repeller of the advection map),
say into the upper and lower semidisks, and paint differently with 4 dies, the dye boundary will
have also nonfractal components in our system. The preimages (images) of the dividing line segment,
however, converge to the saddle’s stable (unstable) manifold, and such a manifold will thus be the
fractal part of the boundary. Just like in other open flows [33], the fractal dye boundaries will
have a surprising topological property, the so-called Wada property [40]. In any neighbourhood of
any point on the fractal part of the boundary particles of all colours used are present. Thus, not
only the chaotic saddle, but also the neighbourhood of its invariant manifolds is strongly mixing in
such flows.
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