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Power-law decaying oscillations of neutrally buoyant spheres

in continuously stratified fluid
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The free sinking motion of small spheres is experimentally investigated in a laboratory tank filled
up with continuously stratified salt solutions. Special attention is paid to the late stage oscillations
around the gravitational equilibrium level. Such motion is generated by slowly decaying weak
internal waves originating from the interaction of the solid sphere with the surrounding fluid. The
temporal decay of oscillation amplitudes and velocities can be best described by a power law of
exponent value close to —3/2. Up to our best knowledge, none of the existing theories can predict
a similar algebraic decay. © 2008 American Institute of Physics. [DOIL: 10.1063/1.2927461]

One of the most fundamental phenomena in three-
dimensional stably stratified fluids is the spontaneous genera-
tion of layered structures from virtually any transient distor-
tions of isopycnal surfaces, including turbulent events.' ™
The late stage of time evolution is characterized by a very
slowly decaying mode of wavy motion where the vertical
velocity and density fluctuations are in phase, and they at-
tenuate as a result of advection and molecular diffusion."®’
The appearance of almost horizontal layers can be easily
visualized by shadowgraph8 or schlieren’ methods. Here we
show that macroscopic floating bodies can also be advected
by the weak decaying waves, and quantitative information
can be extracted by following the motion for sufficiently
long times.

Initial transient disturbances in our study are generated
by the free fall and settling of small spheres in stably strati-
fied salt solutions. The free fall of solid particles is a classical
problem in hydrodynamics with a long research history. Im-
portant milestones are the concept of added mass introduced
by Bessel et al." the Boussinesq—Basset history term,"" or
the Maxey—Riley equation of motion.'> While most of the
early studies considered homogeneous fluids, the extension
to continuously stratified media'*™"® or the settling through
sharp density interfaces'*?" attracted also an interest. A gen-
eral theoretical description is complicated by the fact that
entrainment, wake formation, eddies, and waves are all dif-
ferent when the medium is density stratified. It is no wonder
that the various models can approximate the early stages of
motion through a stratified fluid but predictions generally fail
for the long-time behavior, as we demonstrate in this work.

Experiments were carried out in a glass tank of size of
75.0 X 38.0 X 50.0(length X width X height) cm?. Salt density
stratification of typical depths of 38—39 cm was produced by
a standard double-bucket equipment.”! Density profiles @ H2)
were obtained by measuring the conductivity and the tem-
perature of the salt solution as a function of height z (mea-
sured from the bottom). The local Brunt—Viisild (BV) or
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buoyancy frequency N(z)=+-g/Q¢(d@;/dz) was deduced

from the local slope of the density profile at z. The settling
motion of five different plastic spheres of diameter
d=14.6 mm and density @, [1.010;1.048] g/cm® was in-
vestigated in the tank. The density adjustment of the balls
was prepared by implanting small metal pieces close to the
surface, which helped to suppress rotations. With a given
ball, usually four repeated experiments were carried out in
the same density profile from the same initial height z,
slightly below the fluid surface. The balls were initially kept
fixed at the end of a rubber tube connected to a vacuum
pump, and the motion was initiated by gradually extinguish-
ing the vacuum. The dynamics was monitored by digital
cameras (Sony DCR-PC 115E PAL, PCO Pixelfly). The lo-
cation of the ball was determined as the center of mass for
the black pixels representing the ball on a digitalized image.
With this method, the position of the body could be deter-
mined with a subpixel resolution of 0.01 mm.

Figure 1 illustrates the initial stage of a typical experi-
ment. The observations are in agreement with earlier studies
in similar setups,zzf25 which are the following. During the
rapid downward falling of the balls, strong density inhomo-
geneities appear in the hydrodynamical wake generating ir-
regular internal waves. The characteristic separation length-
scale is approximately A=5 cm in both the horizontal and
the vertical directions [Figs. 1(c) and 1(d)]. This gives a
Strouhal number®® St=d/\~0.29, which significantly dif-
fers from the constant value St=0.175 characterizing the ve-
locity independent near-wake spiral shedding mode behind a
sphere in a homogeneous fluid.” The details of the patterns
in subsequent runs are very different, thus vertical damping,
the structure, and the peeling of the dragged boundary layer
[Figs. 1(e) and 1(f)] can also be very different. The conse-
quence of a temporally irregular (chaotic) wake formation is
that the reproducibility of repeated experiments with the
same ball in the same stratification is somewhat limited, as
demonstrated in Fig. 2.
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FIG. 1. Shadowgraph images over the first period of motion of a
sphere  [diameter d=14.6 mm, ball density ©,=1.025(8) g/cm’,
N=0.86=0.01 1/s, (z9—zeq)/d=22.0, where the initial height was
20=38.0 cm]. The times after release are (a) 4 s, (b) 6.4 s, (¢) 10's, (d) 16,
(e) 22 s, and (f) 54 s. The direct image of the ball appears on the left from
the shadow in (a)—(d).

The main characteristics of the vertical oscillations for
longer times are illustrated in Fig. 3. The strong initial damp-
ing during the first few periods does not quickly lead to a
static gravitational equilibrium, weak oscillations survive for
remarkably long periods. The inset in Fig. 3 clearly shows
that the amplitude of late stage oscillations does not decrease
monotonously. The appearance of intervals characterized by
large amplitudes suggests repeated transits of internal wave
packets. We observed that the apparent gradual upward shift
is also a generic feature in our setup, however, its (extremely
slow) speed is very unpredictable. We attribute this rising to
the nucleation and accumulation of tiny gas bubbles on the
surface of the plastic spheres. The gas bubbles became vis-
ible after several hours of waiting, over which we were able
to trace the continuous ascent of balls. Repeated attempts to
minimize this side effect by washing the beads in different
chemicals remained unsuccessful. Note that standard deaera-
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FIG. 2. Reproducibility test with a given sphere in the same stratification.
The normalized vertical displacement (z—z,)/d is plotted as a function of
dimensionless time tN/2. The different curves are shifted horizontally to
achieve the best fit in the period 2<tN/2mw<3. The parameters are
2p=37.5 cm, d=14.6 mm, ¢,=1.047(2) g/cm® and N=1.23+0.02 1/s.
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FIG. 3. Normalized vertical displacement (z—z,)/d as a function of
dimensionless time tN/2r; the inset has a magnified vertical scale after 15
buoyancy periods [zo=38.0 cm, d=14.6 mm, @,=1.016(5) g/cm?,
N=0.86+0.01 1/s].

tion procedures do not work in our experiments because the
filling of tanks by the double bucket method unavoidably
dissolves some air in the salt solution.

Irrespectively of the imposed stratification and the gravi-
tational equilibrium height z., of the spheres, the empirical
frequency of oscillations w, obtained by Fourier analysis are
found to be very close to the local BV frequency N. The
summary of measurements is shown in Fig. 4. The average
relative frequency anomaly (wy—N)/N is approximately
—2%, and we could not resolve any tendency as a function of
potential control parameters. This observation agrees again
with the reported behavior for larger bodies in similarly
stratified fluids.”> An important corollary of this result is that
the added mass effect is apparently negligible because it van-
ishes when w,=N for the solid body oscillations.””** As for
the role of the history force term, we do not expect it to be
significant at the late stage of the motion. This is because the
average particle Reynolds number (see below) is not infini-
tesimal throughout the observations, therefore a fast decay of
history forces is anticipatc:zd.29_31 Nevertheless, we checked
numerically that the incorporation of a Boussinesq—Basset
history term in the equation of motion always precluded to
reproduce even the basic oscillation frequencies.

In order to describe the decay of oscillations, we cut the
time series z(r) into pieces of a few buoyancy periods and
removed the creeping background trends by local fitting of
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FIG. 4. Relative percentage frequency anomaly as a function of local BV
frequency N for the various measurements. Error bars are estimated from the
width of spectral peaks. The average BV frequency values for the profiles

are (1) N=0.59, (2) 0.86, (3) 1.12, (4) 1.21, and (5) 1.23 1/s, respectively.
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FIG. 5. Temporal decay of the normalized absolute residual amplitudes
la,|/d, see text. The gray line is the estimated noise level, black line illus-
trates a power law with exponent of —3/2. (z9=38.0 cm, (zg—ze,)/d=11.7,
0,=1.025(8) g/cm®, N=1.248 1/s). Symbols show theoretical predictions
by the Larsen (Ref. 13) (crosses), Winant (Ref. 14) (circles), and the com-
bined (Ref. 14) (squares) equations, only successive maxima are plotted.

exponential or third order polynomials (the choice of the
functional form proven to be quite indifferent). The normal-
ized absolute value of the residual amplitudes |a,|/d is shown
in Fig. 5 (symbols with dotted line) as a function of nondi-
mensional time tN/2r, together with a few theoretical pre-
dictions (see below). In this experiment, we recorded the
position of the sphere for almost 400 buoyancy periods (with
breaks of 2 min at the latest stage) which provided a tool to
a direct estimate of the noise level (horizontal gray line in
Fig. 5). Note that the Fourier analysis could not resolve clear
oscillations over ~200 buoyancy periods. The envelope of
the decaying amplitudes can be approximated by a power
law of exponent of —3/2 over two orders of magnitude
(black line in Fig. 5).

An alternative standard method for removing slow
trends is based on numerical derivation. This is known to
produce large noise, nevertheless, we used it for consistency
tests. Figure 6 shows two examples, where the time evolu-
tion of the particle Reynolds number Re=|z|d/v is plotted
(v=~1 mm?/s is the kinematic viscosity and the absolute
value of the instantaneous vertical velocity || was estimated
by numerical derivation). The approximate power-law decay
is apparent again.

Figures 5 and 6 illustrate that the decay is not a pure
power law, smaller or larger deviations are apparent. The
evident wobbling of the maxima is most probably due to
passing internal waves reflected from the boundaries of the
container and from the fluid surface. Future experiments are
intended to reveal feasible important effects of the side walls.
Fits for the data of other experimental runs resulted in expo-
nent values in the interval [1.3—1.8] centered around 1.5,
nevertheless, we cannot formulate any solid statement about
a possible universal value. We found, however, that other fits
by, e.g., a set of exponential functions with changing time
constants, or stretched exponentials, etc., provide a much
lower quality description for the decay of the envelope for
the oscillation amplitudes and velocities.
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FIG. 6. Decay of the estimated particle Reynolds number Re=|Az|/Atd/ v
for two experiments. The gray lines (not fitted) illustrate power law with
exponent of —3/2. (a) zy=38.0 cm, (zp—z.,)/d=16.8, ¢,=1.038(0) g/cm?,
N=1.23%+0.02 1/s. (b) 25=37.5 cm, (z9~2,e)/d=12.9, 0,=1.016(5) g/cm’,
N=0.86*0.01 1/s.

In the search toward a possible explanation of the power-
law decay with an exponent of —3/2, we first point out that
the long time decay of Larsen’s equationB’I5 follows a power
law, but with an exponent of —1/2 (Fig. 5, crosses), similarly
to recent alternative formulations.'”'® This behavior is due to
the radiation of linear internal waves in a medium of infinite
extension. The long-term decay in Winant’s nonradiative
approach14 is inversely proportional with time (Fig. 5,
circles). Note that the combination of the two theories—
wave radiation and velocity-square drag—cannot result in a
steeper power law,'* the decay remains ~t' (Fig. 5,
squares). When we substitute the drag factor ¢,=0.72 (as-
sumed to be constant by Winant"* owing to large Reynolds
numbers, decreasing from 1400 to 300 in the course of his
experiments'®) with the usual form®® ¢p(Re)=24/Re appro-
priate for the smaller Reynolds number in the present experi-
ments (see Fig. 6), the damping will be exponential (not
shown in Fig. 5).

An interesting fact is that power laws can be very often
found in the context of turbulence, but in our case, the mo-
tion is an approximately regular oscillation of a macroscopic
body. Similar attenuation dynamics was observed in much
more demanding experiments by Praud et al.,* where initial
perturbations were generated by towing a vertical grid with
various (constant) velocities. Irrespectively of the strength of
initial turbulence, the final stage consisted of a quasihorizon-
tal motion of interacting vortices grown up to the width of
the tank. They obtained a power-law decay for the average
horizontal velocity with an exponent of —0.65. Vertical ve-
locities were estimated by the continuity equation from hori-
zontal particle image velocimetry (PIV) data.* The decay
was found to be much faster, although the exponent has not
been determined. An evaluation of this exponent for their
data appears, however, to be consistent with our estimates
(see Fig. 5 in Ref. 4). We also observed the slow horizontal
drift of spheres in random final directions, however, the mag-
nitudes were so small (0.01-0.1 mm/s) that we were not
able to extract meaningful information about the attenuation
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dynamics. In several cases, the horizontal drift velocity re-
mained constant during the recorded time interval (usually
~100 buoyancy periods). Dye visualization confirmed that
this motion was always the consequence of pancake vortices
gradually stretching to the width of the tank.

The results coherently suggest that the late stage motion
of our spheres is a pure advection by the long lasting pan-
cake vortices perturbed by passing internal waves. The hori-
zontal motion has attracted more interest in the
literature**?%** because the decay rate is much faster in the
vertical direction.* Our findings show that such a simple
setup provides a valuable information about the intermediate
range of decaying stratified turbulence, and it can thus con-
tribute to a better understanding of a fundamental phenom-
enon.
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