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Internal waves generated by surface perturbations are studied in a two-layer fluid in
the presence of two thin sills of equal height in the lower layer, both experimentally
and numerically. Small amplitude surface waves are found to generate internal waves
of large amplitude at the density interface in between the two sills. The largest
amplitude internal waves appear if a resonance condition is fulfilled: if half of the
wavelength of the internal wave of the period of the external perturbation fits into
the distance between the two sills in the form of standing waves. The internal waves
are then apparently nonlinear, nevertheless, the predictions of a linear theory for
the resonance condition apply by taking into account a systematic change in the
wavelength caused by nonlinearity, and the deviation from a sharp density interface.
Interestingly, the shape of these internal waves is found to be nearly sinusoidal. A
precise classification proves them to be cnoidal waves with a small elliptic parameter
m. C© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3699062]

I. INTRODUCTION

Internal waves play an essential role in a realm of processes related to environmental flows,1, 2

and are subject of increasing current interest.3–5 An isolated bottom obstacle, such as a sill, is
known to enhance the complexity of phenomena. Tidal flow over sills periodically excites waves,
turbulence, and intense mixing,6–9 even solitary waves.10 Bottom sills play an important role in
dissipating tidal energy.11, 12 Rotational effects can be neglected in most cases because of the rel-
atively small length scales of natural sills in shallow layers, nevertheless modeling of oceanic
currents modified by extended bottom obstacles requires the consideration of Coriolis force as
well.13, 14

An observational15 and various model studies16–19 indicate that flows in a two-silled fjord exhibit
an enhanced complexity as a consequence of internal wave interactions. Here we are interested in
how the presence of two obstacles of approximately the same height (which is close to that of
the pycnocline) change the internal dynamics in a two-layer fluid responding to weak external
excitations. According to our best knowledge, this is the first work in which both numerical and
experimental approaches are applied to systematically analyze the effects of two sills, as a function
of their distances. Purely numerical studies with linear stratification have already been carried out
in Refs. 16 and 17, based on an earlier work.18

An earlier study in our laboratory20 showed that one sill in the middle of a tank is able to
excite marked internal waves along the pycnocline if a small-amplitude barotropic standing wave is
present on the water surface. The results showed that – since the horizontal flow is blocked at the
bottom by the thin sill – a strong shear arises and a localized Kelvin-Helmholtz-like wave pattern,
a separation eddy emerges near the edge of the sill in the direction of the flow, which periodically
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varies in time, as it is driven by the phase of the surface wave forcing. This periodic tumbling yields
propagation of baroclinic waves of large amplitude (see Fig. 5 of Ref. 20). It is important to note
that in the absence of a bottom obstacle no such barotropic-baroclinic energy transfer takes place; in
that case the displacement of the interface inherits the phase and the amplitude of the free surface.
An important observation of this work is that small amplitude vertical oscillations in the surface
(caused, for example, by an external seiche21, 22) might determine the time scale of the internal
dynamics. Similar bottom sill-driven internal wave excitation processes have already been observed
in natural water bodies as well, see, e.g., Refs. 21 and 22.

For the present work, we modified our experimental setup by adding a second sill in or-
der to study the collective wave phenomena that arise in the presence of two sources of internal
waves. This is motivated by the expectation that between two sills standing waves can occur with
antinodes at the two ends. Moreover, if the period of these internal waves happens to coincide
with that of the surface driving, a resonance with a particularly large amplitude response might
occur.

We present here both experimental and numerical evidence that this qualitative expectation
is basically correct. Small amplitude surface waves are found to be amplified in the interface in
between the two sills. The largest amplitude internal waves appear if half of the wavelength of the
internal wave of the period of the external perturbation fits into the distance between the two sills.
The internal waves are then strongly nonlinear. Their maximal amplitude is of the order of the water
height of the lower layer, and this value is an order of magnitude larger than for sill distances away
from the resonant value. The predictions of a linear theory are, nevertheless, found to apply if one
takes into account a systematic change in the wavelength caused by nonlinearity and the deviation
from a sharp density interface. A precise classification proves them to be cnoidal waves with a small
elliptic parameter m.

The paper is organized as follows. Section II presents the experimental setup. A resonance
condition based on a basically linear reasoning is given in Sec. III. After a discussion of data
acquisition (Sec. IV), the experimental results are presented in Sec. V. Next, the numerical analysis
of the same phenomenon is presented, and practically the same resonance effect is found when
solving the Navier-Stokes equations in a Boussinesq approximation. The closing Sec. VII discusses
the relation between the linear theory and reality. We find that the basic reason for the disagreement
is the deviation of the linear shallow-layer wavelength and the one measured in the setup. When
taking into account the scale change due to this difference, a remarkable good agreement is found
between the linearly predicted and the observed still distance belonging to resonance. A nonlinear
analysis based on cnoidal standing and travelling waves provides an additional confirmation of the
results.

II. EXPERIMENTAL SETUP

The laboratory experiment was performed in a L = 2.26 m long rectangular tank made of
glass. The width and height of the tank were 15 and 25 cm, respectively. The tank was filled up
to H = 14 cm by stratified water with a sharp pycnocline at the height of H1 = 8 cm. Because of
this marked interface, the setup can be approximately thought of as a two-layer fluid system. The
bottom layer was made up of salt solution with an average density of ρ1 = 1028 kg/m3. Blue dye
was also added to this layer in order to make the waves along the pycnocline visible for optical data
acquisition and processing (see Sec. IV). The upper layer consisted of freshwater (ρ2 = 1000 kg/m3),
that was carefully layered on top of the bottom layer to the height of H2 = 6 cm. The temperature
differences were on the order of 0.1 K throughout the whole tank, therefore the effect of temperature
on the density was considered negligible.

In the middle of the tank a 5 mm thick acrylic glass sill was placed to the bottom, with a width
equal to that of the tank, and a height of h = 8 cm that coincided with the position of the undisturbed
pycnocline. A second, identical sill was placed at a horizontal distance d from the first sill. The
location of the second sill – our control parameter – varied in the interval of d = [3; 45] cm for the
different measurements, while the location of the first sill was fixed. At the surface, waves with a
characteristic amplitude of ∼0.3 cm were excited by a 80 cm long and 13 cm wide foam rubber
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FIG. 1. Schematic drawing of the experimental setup with a computer-driven wave maker unit (a) and the camera mounted to
the side of the tank (b). During data processing the video recordings were sliced to individual frames (c), and the pycnocline
displacement in a selected pixel column (between the two white vertical lines of the figure) was detected as a function of
time.

wave maker, mounted onto a computer-controlled traverse unit (a schematic drawing of the device
is shown in Fig. 1). The period of this external barotropic (surface) wave forcing was set to T = (6.6
± 0.01) s, that corresponds to a shallow water wavelength of λext = T

√
gH ≈ 7.7 m, more than

three times as long as the tank itself.

III. RESONANCE CONDITION

Assuming that the waves in the system are in the linear regime (which is not necessarily true,
considering their large amplitudes), the internal wavelength that corresponds to the period T of the
surface forcing can be estimated as λint = T

√
g′ H ′ ≈ 0.67 m in shallow-layer approximation. Here

g′ = g(ρ1 − ρ2)/ρ2 ≈ 0.3 m/s2 denotes the “reduced gravitational acceleration,” H′ = H1H2/H
= 3.4 cm represents the “reduced height,” and

c1 ≡
√

g′ H ′ ≈ 10.2
cm

s
(1)

is the phase velocity of linear internal waves in such a shallow-layer system (see, e.g., Ref. 23).
With a qualitative reasoning, one would expect a resonance-like amplification of the internal wave
amplitudes when the sill distance d equals to multiples of half a wavelength λint/2. Therefore, the
condition of resonance is that the resonance length

Dres ≡ T · c1

2
(2)

becomes related to the sill distance dres at resonance. In linear shallow-layer approximation, of
course, Dres = dres holds.

Although the amplitude A0 = 3 mm of the surface wave is small compared to the total water
height of H = 14 cm and appears thus to be consistent with a linear approximation, the estimate
A′ ≈ A0 g/g′ for the amplitude of the internal waves valid within the same approximation23 is
already comparable to H1 = 8 cm. This shows that the internal waves observed are in the strongly
nonlinear regime. We investigated the dependence of barotropic-baroclinic energy transfer on d in
this nontrivial setup.
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FIG. 2. Four snapshots of the flow pattern in the sill region for sill distance d = 25 cm. Time and the flow direction in the
upper layer are indicated. The height of both sills is h = 8 cm.

IV. DATA ACQUISITION AND PROCESSING

The basic steps of data acquisition and processing are depicted in Fig. 1. Each experiment was
recorded by a video camera that was placed to point perpendicularly to the sidewall of the tank in
the region of the fixed sill. These video records were sliced (25 frames per second), and evaluated
quantitatively. A vertical column of pixels was selected at a given horizontal position (shown as
a single white vertical line in Fig. 2) nearby the fixed sill. The displacement of the pycnocline
within this column was acquired by detecting the sharp change in the darkness level for each
frame.

Fourteen experiments were carried out in the same two-layered fluid, each for different sill
distance d. All of the obtained time series were smoothed by 7-point moving averaging. The testing
of the reproducibility was crucial, as turbulent mixing during an experiment (and during the relocation
of the sill) might alter the density profile and thus bias the results of the subsequent measurements.
Therefore, after the completion of the 14 runs, a randomly selected 5 of them were repeated,
and the obtained time series were compared with those of the previous runs. Not surprisingly, the
largest relative reproducibility error corresponds to the experiment in which the largest amplitudes
were observed. Nevertheless, even in this case the reproducibility is quite convincing, as seen in
Fig. 3.

To obtain an appropriate measure of the intensity of barotropic-baroclinic transfer, we calculated
the standard deviation of the pycnocline displacement for each d (all of the time series were of equal
length of 44 s, or 1100 frames).
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FIG. 3. Pycnocline displacement z versus time t for two different runs in the same setup (d = 25 cm).
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FIG. 4. The time series z(t) of pycnocline displacement, (a) and its Fourier spectra (b) for d = 9 cm (solid curve) and 25 cm
(dashed curve – red).

V. EXPERIMENTAL RESULTS

The time series z(t) for sill distance d = 9 cm (solid black curve) and 25 cm (dashed curve – red)
and their Fourier spectra are shown in Fig. 4. In both cases the largest Fourier amplitude appears at
T = 6.6 s, the period of the external forcing. One can also notice an additional peak at 3.3 s which
represents the first harmonic of the forcing, and another around 2.4 s. The main observation to be
emphasized here is the following: while these smaller spectral amplitudes are on the same order of
magnitude for both spectra, the peak at T is two orders of magnitude larger in the case of d = 25 cm,
which clearly implies a resonance-like amplification.

The standard deviations for all of the experiments are shown in Fig. 5 as a function of the
sill distance d. (The error bars were set to be twice as large as the greatest measured difference
between the standard deviation σ value of an original experiment and that of its reproducibility
test.) A typical resonance curve-like graph is obtained with a maximum around d = 25 cm. A
three-parameter Lorentzian was fitted to these data in the form of

σ (d) = I
γ 2

(d − dres)2 + γ 2
. (3)
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FIG. 5. The standard deviation σ values of the pycnocline displacement for the 14 experimental runs, as a function of the
sill distance d. The dotted vertical line corresponds to Dres = 33.5 cm (details in the text).
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The regression yielded the values of dres = (25.8 ± 0.3) cm, I = (12.7 ± 0.2) mm, and γ = (5.7
± 0.6) cm. The function is shown by a solid curve (orange) in Fig. 5.

The dotted vertical line in Fig. 5 represents the value of Dres (Eq. (2)). As mentioned in Sec. III,
the linear shallow water wave theory and the “zero horizontal flux” boundary conditions predicted
the maximal amplification to occur at d = Dres. Thus, a significant deviation from this theory is
clearly visible, but the presence of a resonance-like behavior appears to remain.

VI. NUMERICAL SETUP AND RESULTS

In the numerical approach the two-dimensional Navier-Stokes equations were solved in nonhy-
drostatic Boussinesq approximation. An Arakawa-C gird24 was used, which consisted of 201 × 26
equidistant cells, each sized �x × �z = 1.28 cm × 0.53 cm. These were chosen to correspond to
the geometric parameters of the laboratory experiments. The kinematic viscosity ν was treated as
an isotropic constant, of its usual molecular value of ν = 10−6 m2/s. Numerical solutions were ob-
tained using the Advanced Ocean Modeling open-source software package, written in FORTRAN95
environment,25 in which the system of partial differential equations is being solved with the method
of successive over-relaxation, with slip boundary conditions at all solid boundaries. The numerical
error was estimated by the divergence of the whole velocity field. A dimensionless divergence

δ = T

(
�u

�x
+ �w

�z

)
(4)

was used, where �u is the horizontal and �w the vertical velocity difference in neighbouring cells
of horizontal and vertical size �x and �z, respectively. With the resolution used, the maximal value
of δ was kept below 0.0015 at any time, indicating a reliable numerical accuracy.

The driving acceleration f was generated by a surface sine wave, with a period of T = 6.6 s and
an amplitude of A0 = 3 mm, a wave corresponding to the driving used in the experiments, in the
form of

f = −g
2π

L
A0 sin

(
2π

x

L

)
cos

(
2π

t

T

)
, (5)

where L (m) is the length of the tank and x represents the horizontal location. (For the simulations
we took L = 2.57 m, but we note, that the actual value does not play a role, if it is large enough.)
The initial density of the fluid is chosen as a function of the height z as follows:

ρ(z) = ρ2 + �ρ

2

[
1 + tanh

(
H1 − z

l

)]
. (6)

ρ2 = 1000 kg/m3 is the reference density, �ρ = 28 kg/m3 the density difference between the
two layers, h = H1 is the height of the lower layer and specifies the position of the pycnocline, and
l = 1 cm parametrizes the thickness of the gradient region. The latter corresponds to an approximately
3 cm thick regime around the pycnocline, where the density profile is nearly linear and changes
about 3 % (see shade color coding in Figure 6). The height of the lower layer H1 = 8 cm and the
upper layer H2 = 6 cm were chosen to be the same as in the experiment.

The program created a data file in which the density values in each grid point were saved in
every 0.6 s. A cell at a vertical location z = H1 was selected from the horizontal region between
the two sills so that it was in 2 grid point horizontal distance from the “fixed” sill. This distance
was selected in order to yield an appropriate comparison with the experimental results for which
the pycnocline displacement was evaluated at a similar vicinity of the sill (see the white vertical
lines in Figs. 2 and 6). The density values of this selected cell were extracted and the pycnocline
displacement as a function of time was stored for each different sill distance.

An example is shown in Figure 7 for d = 25 cm (dashed curve – red) and d = 9 cm (black solid
curve). One can see that, like in the experiment, the peak for d = 25 cm is essentially larger than
for d = 9 cm. Again, a resonance-like behavior is observed. It is worth noting that in a numerical
simulation of another setting with linear stratification, a similar resonance was found by Xing and
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FIG. 6. A few snapshots of the simulation. Time instants in a steady state and the shade/color coding for the density [kg/m3]
distribution are indicated. The white vertical line marks the pixel column from where the pycnocline displacement time series
was obtained. The height of both sills is h = 8 cm and the distance between them is d = 27 cm.

Davies.17 The resonance condition of the sill distance being a multiple of half of the wavelength of
the internal waves, has been found there, too.

As in the experiment, the standard deviation σ was calculated for each time series. The σ (d)
values for all simulations are shown in Figure 8. Fitting a Lorentzian resonance curve in the form of
Eq. (3), resulted in the values of dres = (26.9 ± 0.3) cm, I = (16.7 ± 0.2) mm, and γ = (4.1 ± 0.4) cm.
The function is shown by a solid curve (orange) in Fig. 8. The resonance appears at sill distance
dres ≈ 27 cm, in fairly good agreement with the experimental results.

VII. DISCUSSIONS

Both in the case of experimental and numerical runs, the observed value of dres = (26 ± 1)
cm appeared to be significantly smaller than the theoretical Dres = 33.5 cm. The ratio of these
quantities can be introduced as a “correction factor” α, that is found to be α = dres/Dres ≈ 0.8. The
question arises of what causes this deviation from the theory. One could argue that the difference is
an effect of energy dissipation, analogously to the shift of resonant frequency that occurs if damping
is applied to a linear oscillator. It is important to note that in the case of the numerical runs, only the
viscous term of the Navier-Stokes equation could act as a source of such dissipation. As described in
Sec. VI, the molecular value of viscosity ν was implemented, which clearly cannot be responsible
for the observed magnitude of α, in itself. Yet, as seen, the numerical results are in agreement with
the experiments, therefore we can rule out turbulent damping or boundary layer effects as the main
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FIG. 7. The time series (a) and Fourier spectra (b) of the pycnocline displacement z(t) obtained in the numerical simulation.
d = 25 cm (dashed curve – red) and d = 9 cm (solid black curve) in both panels (cf. Fig. 4).
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FIG. 8. The standard deviations for different sill distances d, obtained by numerical simulations (dashed curve) and by
experiments (dotted curve). The Lorentzian fit to the numerical data is also shown (solid curve – orange). The dotted vertical
line indicates the sill distance Dres for the first resonance mode according to the linear wave theory.

contributors to the shift, as these were not resolved by the program. Therefore, the remaining possible
reasons for the difference could either be our inappropriate choice of the boundary conditions at
the sills, or simply, that the linear two-shallow-layer approximation is not sufficient to describe this
system.

In the first case, one could argue that the resonance condition (2) might not reflect the actual
physics of the system accurately, as it is based on the assumption that the antinodes of the excited
standing waves should be located at the sills. The horizontal velocity at the bottom vanishes in the
vicinity of the vertical boundaries, which per se would force the pycnocline to stay horizontal and
would hence yield an antinode in these regions. However, the horizontal flow in the upper layer
could, in theory, cause a certain shear stress that might alter this waveform and lead to some sort of a
mixed boundary condition. In order to test this hypothesis for our numerical setup, we calculated the
square of the time-averaged absolute values of the pycnocline displacement 〈|z(x, t)|〉2 as a function
of the horizontal coordinate x for the grid columns between the two sills. The resulting pattern is
shown in Fig. 9 for d = 25 cm onto which a function f(x) = B sin 2(x 2π /λ) was fitted (dashed line –
orange). We note that for this fit x = 0 was set halfway between the two sills. The regression gives
a wavelength of λ = (51.0 ± 3.5) cm that fairly coincides with 2d. Therefore, we can state that the
fluid indeed exhibits antinodes at the sills.
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FIG. 9. Squared, time-averaged modulus 〈|z(x, t)|〉2 of pycnocline displacement in the region between two sills from the
numerical run for d = 25 cm, and the result of a fit of f(x) = B sin 2(x 2π /λ) (dashed line – orange).



046601-9 Boschan et al. Phys. Fluids 24, 046601 (2012)

FIG. 10. (a) A photograph of the internal wave pattern with a period of T = 6.6 s in a single-sill control experiment. (b)
The pycnocline displacement data (dots) obtained from the image in (a). The sinusoidal fit (dashed – orange) resulted in a
wavelength of λobs ≈ 46 cm.

This conclusion leads us to the second aforementioned option that the phase velocities of the
internal waves in this setup could significantly differ from c1, and so could their wavelengths from
the corresponding value. Knowing the period, we intended to measure the wavelength of a freely
propagating internal wave along the pycnocline in a laboratory experiment, and compare the result
with the prediction of the theory.

To carry out such a measurement, we needed a modified setup with only one sill located in the
middle of the tank. In this control experiment, for the better observation of propagating waves,
the length of the basin was extended to L = 4.52 m. The period of forcing remained T = 6.6 s. In
the control setup, the linear theory yields λtheor = Tc1 = (62 ± 2) cm. Here the error originates from
the uncertainty of the vertical position of the blurred density interface, and of the measurement of
density. Photographs were taken of the pycnocline, such as the one shown in Fig. 10(a), and were
processed as described in Sec. IV. Fitting a sinusoidal function z(x) = C sin (x 2π /λ + φ) to the
pycnocline displacement data (Fig. 10(b)) resulted in a wavelength of λobs = (46 ± 0.5) cm. We
note, that approximately the same wavelength was observed in another control experiment with two
sills (at d = 25 cm), too. We thus conclude, that dres is basically set by the natural free wavelength of
the system and is not modified by some “two-sill effect.” Interestingly, the accuracy of both this fit
and the one of Fig. 9 indicates that despite of their large amplitudes, these internal waves are nearly
sinusoidal. The ratio of the observed and theoretical wavelengths based on the linear theory gives
λobs/λtheor = 0.75 ± 0.04, which is consistent with the value of the above defined correction factor
α. This corresponds to the ratio of the phase velocities as well.

As already stated, the internal waves in our setup are of large amplitude, implying nonlinearity,
which provides a possible explanation for the deviation from the linear theory. Because of the
sinusoidal character of the waveforms, the best candidate to describe these internal waves is a cnoidal
wave (see, e.g., Ref. 2) with a small elliptic parameter m. The governing two-layer Korteweg–de
Vries (KdV) equation for the shape of the internal interface η(x, t) reads as

∂η

∂t
± c1

(
∂η

∂x
+ 3

2

H2 − H1

H1 H2
η

∂η

∂x
+ H1 H2

6

∂3η

∂x3

)
= 0. (7)

Since the rescaling η → H1 H2/(H2 − H1) · η , x → √
H1 H2 · x , t → √

H1 H2/c1 · t leads to a di-
mensionless form, the same as for a homogeneous single-layer fluid,2 using the well-known ex-
pressions for the wavelength λ and phase velocity c of a cnoidal wave, we obtain for the two-layer
problem:

λ =
√

16m

6A

(H1 H2)2

H2 − H1
K (m), (8)
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FIG. 11. (a) The dimensionless parameter f(A, λ) of (11) corresponding to the observed wave amplitudes, as a function
of wavelength with H1 = 8 cm, H2 = 6 cm. (b) The right-hand side of Eq. (11), as a function of the elliptic parameter m
(black solid curve). The upper bound of f(A, λ) is marked by a horizontal line (red) in both panels. The parameter value
corresponding to the travelling internal wave of the control experiment (black dot) is also shown.

and

c = c1

(
1 + 2A

m

H2 − H1

H1 H2

(
1 − m

2
− 3

2

E(m)

K (m)

))
. (9)

Here A is the amplitude of the internal wave, m denotes the aforementioned elliptic parameter, and
K(m) and E(m) are the complete elliptic integrals of the first and second kind, respectively, of elliptic
modulus k2 = m. Note that the wave height is 2A in this notation.

Using the observation that the σ of Eq. (3) is proportional to the wave amplitude A, we obtain
for the λ dependence of the observed amplitudes between the two sills

|A(λ)| = Am
γ 2

(λ/2 − dres)2 + γ 2
. (10)

Here we apply the fact that the wavelength is set by the sill distance as λ = 2d. Parameter Am = 1.8 cm
represents the largest observed amplitude at resonance. Substituting Eq. (10) into Eq. (8), we obtain
an expression for elliptic parameter m,

f (A, λ) ≡ 6|A(λ)|λ2

16

|H2 − H1|
(H1 H2)2

= mK 2(m). (11)

The dimensionless function f(A, λ) is plotted against λ, for H1 = 8 cm, H2 = 6 cm in Fig. 11(a)
with a maximum found to be 1.63. The right-hand side as a function of m can be seen in Fig. 11(b),
along with a horizontal line corresponding to this maximum. One can see from here that the range
of elliptic parameters of the observed standing waves is 0 < m < 0.48. The lower bound m = 0
describes a standard sinusoidal wave.

The cnoidal waveform for the maximum, m = 0.48 is shown in Fig. 12. It is remarkable that the
deviation from the sinusoidal form is so minor even at this relatively large value of m.

The mechanisms that select the resonance amplitude are hidden in the interaction of nonlinear
waves, the details of which are difficult to unfold. From the arguments above only a range of m
can be determined. One might, however also consider the travelling internal wave of the control
experiment, after removing one of the sills. Similar analysis for this wave yields m = 0.155, and
this value is marked as a dot in Fig. 11(b). The wave shape is also plotted as a black solid curve
in Fig. 12. From the velocity formula (9), we get c/c1 = 0.85. This is fairly close to the correction
factor α = 0.8 obtained when comparing the naive linear theory with the observations. Thus, the
travelling wave of the control experiment appears to be the one whose properties should be used
when determining the resonance condition.

Finally, let us mention that, in view of the blurred feature of the density interface, the calculations
can be repeated for H1 = 7.5 cm, H2 = 6.5 cm, and H1 = 8.5 cm, H2 = 5.5 cm. These limits set the
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FIG. 12. The internal waveform obtained as a periodic solution of the two-layer KdV equation for amplitude A = 1.8 mm,
layer heights H1 = 8 cm, and H2 = 6 cm, and elliptic parameter m = 0.48 (dotted curve – red). The internal wave then has
the form η(x)/A = 2/m · [1 − m − E(m)/K(m)] + 2 · cn2[2K(m)x/λ , m], where cn denotes the Jacobi elliptic function (see,
e.g., Ref. 2). A sinusoidal function cos (2πx/λ) is also shown (dashed curve – red). For comparison, the shape of the “free
wave” characterized by m = 0.155 is also plotted (black solid line). Note that the deviations from the sine function are almost
negligible.

uncertainty range for the predictions of the cnoidal theory. In particular, for the elliptic parameter of
the travelling wave, we find with these layer configurations m = 0.078 and m = 0.236, respectively.
Based on Eq. (9), we thus find that the cnoidal velocity c lies within the range of c/c1 = 0.8 ± 0.1,
a value even closer to the correction factor α. These findings provide an evidence of the ubiquity of
cnoidal waves, as the most general parametrization of waveforms, also observed in nature, ranging
from the fully linear (simple harmonic) case at m = 0, to the fully nonlinear solitary wave solution
at m = 1 (see, e.g., Ref. 26).

Our results raise the idea of a possible measuring method for field applications. There are
several lakes, bays, and fjords, where the water body is strongly stratified. In such water bodies
either conductivity or temperature measurements might work well to detect displacements of the
internal density interface. The resonance effect should show up also when the obstacles do not sit
on the bottom, but have a large enough height to hinder the weak horizontal currents excited by
surface waves. Practically, one can think of a rectangular shape where the sidewalls can have a
variable distance. As demonstrated, two vertical obstacles placed at the density interface work as
an amplifier, and the measurement of the resonance peaks in internal oscillations provides a tool to
detect and identify weak external oscillations.

ACKNOWLEDGMENTS

Useful discussions with P. Boschán and K. G. Szabó are acknowledged. This work was supported
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